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Abstract

We propose a data-driven scene flow estimation algo-
rithm exploiting the observation that many 3D scenes can
be explained by a collection of agents moving as rigid bod-
ies. At the core of our method lies a deep architecture able
to reason at the object-level by considering 3D scene flow in
conjunction with other 3D tasks. This object level abstrac-
tion, enables us to relax the requirement for dense scene
flow supervision with simpler binary background segmenta-
tion mask and ego-motion annotations. Our mild supervi-
sion requirements make our method well suited for recently
released massive data collections for autonomous driving,
which do not contain dense scene flow annotations. As out-
put, our model provides low-level cues like pointwise flow
and higher-level cues such as holistic scene understanding
at the level of rigid objects. We further propose a test-time
optimization refining the predicted rigid scene flow. We
showcase the effectiveness and generalization capacity of
our method on four different autonomous driving datasets.
We release our source code and pre-trained models under
github.com/zgojcic/Rigid3DSceneFlow .

1. Introduction
Understanding dynamic 3D environments is a core chal-

lenge in computer vision and robotics. In particular, appli-
cations such as self driving and robot navigation rely upon
a robust perception of dynamically changing 3D scenes.
To equip autonomuous agents with the ability to infer spa-
tiotemporal geometric properties, there has recently been
an increased interest in 3D scene flow as a form of low-
level dynamic scene representation [40, 72, 78, 55, 52, 58].
Scene flow is the 3D motion field of points in the scene [74]
and is a generalization of 2D optical flow. In fact, opti-
cal flow [3, 26] can be understood as the projection of the
scene flow onto a camera image plane [16]. Such dense mo-
tion fields can serve bottom-up approaches for high-level
dynamic scene understanding tasks like semantic segmen-
tation [41] or motion perception. However, representing
dynamics via a free form velocity field has two major disad-
vantages. First, in most applications of interest, dynamics
are attributed to rigid object motion [11, 45]. This notion

Figure 1: Our network takes two successive frames as input
(a), and outputs a set of transformation parameters for each
segmented rigid agent (c) which are used to recover per-
point rigid scene flow. After applying the predicted flow to
the first point cloud, the two frames are aligned (b, d).

has been extensively exploited in robotics [10, 15, 9, 8] and
holds especially for vehicles in autonomous driving. Pre-
dicting unconstrained per-point flow may lead to non-viable
results, e.g. parts of the same car might move in different di-
rections. Second, accurately learning direct flow estimation
necessitates dense supervision that is expensive to acquire
and prone to annotation errors. As a result, many meth-
ods have resorted to training on simulated data [44, 78, 55],
yet this comes at the price of a non-negligible domain gap.
Other methods have attempted to solve the problem in a
completely unsupervised manner [72, 80, 47], however they
fail to provide competitive performance. In Fig. 2 we illus-
trate these two extremes of no- and full-supervision while
spanning the many intermediate possibilities, sorted accord-
ing to annotation effort1.

Based on this observation, we seek a sweet spot between
supervision effort and performance. To this end, we pro-
pose a scene abstraction approach that uses rigid objects as
the basic components. More specifically, by splitting the
scene into foreground (movable objects) and background
(static objects), we explain the background (BG) flow as

1Note that no prior work exists at different points on the spectrum given
in Fig. 2. This leaves ample room for future exploration.
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Figure 2: Recent scene flow methods either use full super-
vision (and suffer from domain gap) or no-supervision (and
suffer from reduced performance). Instead, our method uses
weak supervision and benefits from the best of both worlds.

the sensor ego-motion and the foreground (FG) flow as clus-
ters of rigidly moving entities. As a result, we tackle both
aforementioned challenges at the same time: (1) we en-
force a rigidity constraint to get meaningful and more accu-
rate (foreground and background) flow, (2) we can relax the
requirement for dense flow supervision with a much sim-
pler binary mask annotation and ego-motion that can often
be extracted directly from the agent’s IMU. The result is
a weakly supervised method for accurate flow estimation
that, unlike completely unsupervised approaches, outper-
forms previous state of the art (SoTA) by a significant mar-
gin. For example, reducing the end-point-error on the li-
darKITTI dataset by more than 30 cm relative to the SoTA.
At the same time our result provides an interpretable and
readily usable object-level scene representation. In brief,
our contributions are:

• We exploit the geometry of the rigid scene flow problem
to introduce an inductive bias into our network. This
allows us to learn from weak supervision signals: back-
ground masks and ego-motion.

• Our data-driven method decomposes the scene into
rigidly moving agents enabling us to reason on the level
of objects rather than points. We use this notion to pro-
pose a new test-time optimization, further refining the
flow predictions.

• Our method is backed by a novel, flexible, scene flow
backbone, which can be adapted to solve various tasks.

As a result of these contributions, our method greatly out-
performs the SoTA on several benchmarks: FT3D [44],
stereoKITTI [45], lidarKITTI [22], and semanticKITTI [5],
while generalizing to the waymo-open dataset [69] without
additional fine-tuning.

2. Related Work
Data Driven 3D Scene Flow. While there is extensive
literature on traditional 3D scene flow [74, 29, 79, 33, 70,
73, 51, 65, 66, 31, 19, 16, 11, 54], we focus our attention to
recent data-driven methods that emerged based on advances
in deep learning on unordered point sets [56, 88, 1].

Early methods for 3D scene flow estimation mimicked
their 2D counterparts. SceneFlowNet [44] used 2D op-

tical flow and disparity maps to estimate the 3D scene
flow. FlowNet3D [40] successfully adopted the ideas from
FlowNet [30, 18]. FlowNet3D++ [78] extended FlowNet3D
to incorporate additional geometric constraints. Meteor-
Net [41] used multiple temporally ordered frames to im-
prove the accuracy of the inferred flow. Wang et al. [76]
incorporated a continuous convolution into a 3D-FCN [71]
to undo both the ego-motion and object-motion in two con-
secutive LiDAR frames. PointRNN [21] used recurrent neu-
ral networks to model temporal point sets, which yields
3D scene flow as a by-product. HPLFlowNet [24] ordered
the points into a permutohedral lattice of SplatNet [68]
to apply bilateral convolution layers. This allowed effi-
cient and robust non-rigid 3D flow computation. Both Oc-
cFlow [52] and CaSPR [58] introduced spatio-temporal rep-
resentations to continuously and densely estimate the scene
flow. Mustafa and Hilton used semantic coherence between
multiple frames to improve 4D scene flow estimation, co-
segmentation and reconstruction [49]. Mittal et al. [47] and
PointPWCNet [80] proposed self-supervised losses to infer
the scene flow in an end-to-end manner. Finally, FLOT [55]
proposed a simple correspondence-based end-to-end scene
flow network. While our backbone also estimates corre-
spondences, decomposing the scene into rigid agents pro-
vides us further higher level scene understanding and en-
ables test-time optimization, while requiring less supervi-
sion.

Local Rigidity and Multi-body Motion. Flow estima-
tion has also been tackled by imposing physical priors such
as multi-body rigidity. Initial attempts involved factoriza-
tion [13, 37] to separate independently moving objects.
Golyanik et al. [23] used rigidity constraints on over seg-
mentation of RGBD-frames. [48] used detection & track-
ing to constrain the flow. Vogel et al. [75] modeled scene
flow using piecewise rigidly moving planar patches. De-
wan et al. [17] used 3D descriptors to enforce local geomet-
ric constancy on a factor graph. GraphFlow [2] and Sphere-
Flow [27] considered large motions and relied on sparse
keypoints that are not repeatable in 3D [61, 82]. Similar
to us, Jamiez et al. [32] as well as recent Dynamic-SLAM
pipelines [28, 62, 67] assumed that clustering would yield
motion segmentation. In fact, MaskFusion [60] and EMFu-
sion [67] explicitly used Mask-RCNN [25] to this end.

On a data driven front, considering the rigidity in the
scenes [42], Ma et al. [43] made use of depth and flow es-
timates from a stereo RGB-D setup within an optimization
framework to obtain the 3D motion of each instance. This
method relied upon a given instance segmentation, a diffi-
cult problem to solve even for the SoTA approaches [77, 87,
83]. Based on VoxelNet [92], PointFlowNet [4] jointly pre-
dicted 3D scene flow, bounding boxes, and rigid motion of
objects in the scene. Yi et al. [86] used a PointNet++ [57]
based flow estimator for piecewise rigid 3D part induction.



Figure 3: Architecture of our weakly-supervised scene flow estimation pipeline. Our module consumes point clouds X and
Y of two consecutive frames and estimates per-object transformation parameters {T}K−1

k=1 , ego-motion Tego, and object
masks {z}Kk=1. These outputs can be combined into an object-level scene abstraction and pointwise rigid scene flow.

3. Method
Problem setting. Suppose that we observe a pair of 3D
scenes X and Y acquired by a single moving observer in
two consecutive instants t0 and t1, respectively. Here, X ∈
R3×N = {xi ∈ R3}i denotes a point cloud (so does Y)
and V ∈ R3×N = {vi ∈ R3}i its corresponding vector
field in 3D s.t. X + V ∼∼∼ Y relates frame t0 to t1. We
further assume that X, Y, and also V are multi-body i.e.
composed of multiple objects. Hence, V can be clustered
into K objects V = {Vk ∈ R3×Nk}Kk=1 each of which
follows rigid dynamics, i.e. V can be summarized by a set
of K rigid transformations T ≡ {Tk ∈ SE(3)}Kk=1 such
that V ∼∼∼ {Tk ◦Xk −Xk}Kk=1 where K � N and:

SE(3) =

{
T ∈ R4×4 : T =

[
R t
0> 1

]}
, (1)

R ∈ SO(3), t ∈ R3.2 The motion of the immobile back-
ground, determines the ego-motion Tego ⊂ T .

Summary. We refrain from directly predicting uncon-
strained pointwise flow vectors and rather aim to estimate
T ≡ {Tk}Kk=1 for all rigid bodies from which the entire
scene flow V = {Vk}Kk=1 can be recovered. To this end, we
propose to learn the task of rigid flow estimation by solving
an optimization problem composed of a set of loss functions
as illustrated in Fig. 3. To reason on the level of objects, we
use both instance masking and motion. To obtain the masks,
we use a FG / BG prediction module in conjunction with an
FG clustering. To estimate ego-motion, we run a differen-
tiable registration on the BGs extracted from both point sets.
The motions of the individual objects in the FGs are ob-
tained similarly under the assumption of local-rigidity. We

2We denote the action of T as X′ = T ◦ X and X̂′ = TX̂ where
X̂ ∈ R4×N is the homogenized X.

avoid flow-level or instance-level supervision altogether and
only assume the availability of the binary FG/BG annota-
tions and ego-motion information as a much weaker super-
vision signal than dense scene flow. In the sequel, we first
describe our formulation of the individual objectives (§ 3.1)
before proceeding to our network architecture (§ 3.2). Ad-
ditional details are available in our supplement.

3.1. Energy Formulation

Our solution to the 3D scene flow estimation is attained
as the minimum of a non-convex energy composed of a BG
segmentation loss LBG, an ego-motion loss Lego, and an
FG loss LFG:

Γ? = argmin
Γ
LBG + Lego + LFG (2)

where the optimal rigid scene flow (V?, T ?) results from the
output of a deep neural network ϕ with learnable parame-
ters Γ: (V?, T ?) = ϕΓ?(X,Y). Next, we detail the indi-
vidual loss terms; each involves an unknown or latent vari-
able obtained as a network prediction as specified in § 3.2.

Background segmentation error (LBG). To decom-
pose the scene into agents that move as rigid bodies, we
follow a coarse-to-fine approach. In the first step we aim
to split the background and foreground points, where the
foreground represents all points belonging to the movable
objects (e.g., cars, cyclists, people, . . . ). In order to learn
this binary segmentation of a point cloud, we minimize the
loss LBG = 1

2 (LX
BG + LY

BG) where:

LX
BG =

1

N

N∑
i=1

BCE(hX
i , h̄

X
i ). (3)

hX, hY denote the GT binary masks of point clouds X and
Y, respectively. hX = {hX

i }Ni=1 and hY = {hY
i }Ni=1 are



the inferred foreground probabilities of points in X and Y
yet to be clarified in § 3.2, and BCE(hi, h̄i) = hi log(hi)+
(1− hi) log(1− hi).

Ego-motion error (Lego). The scene flow of the physi-
cally static background can be fully explained by its trans-
formation parameters, the ego-motion. We estimate these
parameters by first extracting the background points of both
the source and target point cloud3. To reduce the compu-
tational complexity, we then randomly sample N b = 1024

points therefrom such that Xb ∈ R3×Nb ⊂ X and Yb ∈
R3×Nb ⊂ Y. The goal of ego-motion estimation is to
compute the optimal Rego ∈ SO(3) and tego ∈ R3 in the
weighted least-squares sense

R?
ego, t

?
ego = argmin

Rego,tego

Nb∑
l=1

wl‖Regox
b
l+tego−φ(xb

l ,Y
b)‖2,

where φ(x,Y) is a soft assignment function returning a
point from Y that corresponds to x ∈ X. The weights wl

will be clarified below.
We approximate the optimal soft assignment φ via the

entropy-regularized Sinkhorn algorithm [63, 14, 84]. To
this end, we momentarily assume the availability of an affin-
ity matrix M ∈ RNb×Nb

describing the similarity of the
background points in Xb and Yb. Prediction of the cur-
rently unknown M will be made precise in § 3.2. Given M,
we perform an alternating row and column normalization
on it for kS , 3 iterations, which yields A ∈ RNb×Nb

+ , a
doubly stochastic (DS) assignment matrix.

In practice, due to the occlusions and sampling pattern,
not all background points will have correspondences. We
therefore add a slack row and column to M (hence to A),
which enable down-weighting the outliers, while still re-
turning a DS-matrix. The soft correspondence function then
reads φ(xb

i ,Y
b) = Ybai/‖ai‖1 where ai is the i-th column

of A after removing the slack row. Given the correspon-
dences, the ego-motion can be recovered in closed-form
using a (differentiable) weighted Kabsch algorithm [36]
where the weights wi are obtained as the total contribution
wi =

∑Nb

j=1 aij . Our ego-motion penalty measures the l1-
discrepancy between the points transformed with the esti-
mated (Rego, tego) and the GT parameters (Rego, tego):

Ltrans =
1

B

B∑
i=1

‖(Regox
b
i + tego)− (Regox

b
i + tego)‖1,

where B denotes the number of all background points in
point cloud X. To stabilize the training, we further add
a regularizer loss that discourages the assignment of large

3During training we use the GT BG segmentation mask 1 − h, while
during inference we threshold the inferred FG probabilities 1− h.

values to the slack rows and columns [84]:

Linlier =
1

N b

Nb∑
i=1

(
1−

Nb∑
j=1

aij

)
+

1

N b

Nb∑
j=1

(
1−

Nb∑
i=1

aij

)
.

The overall ego-motion loss is then the weighted sum:

Lego = Ltrans + λinlierLinlier (4)

where λinlier := 0.005 in all our experiments.

FG instance-level rigidity error (LFG). To define our
per-instance rigidity loss, we assume the availability of the
following entities: (i) Xf , the points of the source frame
belonging to the FG; (ii) Vf , the flow vectors associated to
Xf ; and (iii) foreground clusters C = {Ck ∈ R3×Nk =

{ckj ∈ R3}j}N
C

k=1 aggregating the individual rigid entities.
(i) is a by-product of BG segmentation, i.e. during train-
ing, the indices of these points are obtained from the GT
mask and during inference by thresholding the inferred FG
probabilities. The flow vectors in (ii) are the result of the
scene flow module (see § 3.2). Finally, (iii) is computed by
a simple DBSCAN clustering [20] of the 3D coordinates in
Xf , which is based on the hypothesis that the foreground
objects scattered across the scene are naturally separated by
void space [35]. We refrain from using a data driven in-
stance segmentation module, because our simple approach
alleviates the need for instance segmentation labels.

Our rigidity loss Lrigid encourages the predicted flow
vectors Vf

k of each cluster k to be congruent, i.e. Vf
k can be

well approximated by a rigid transformation Tk composed
of the rotation Rk and translation tk:

Lrigid =
1

N c

Nc∑
k=1

1

Nk

Nk∑
j=1

‖Rkckj + tk − (ckj + vk
j )‖1 (5)

The supervision signals Rk and tk are computed on the fly,
such that they best explain the underlying flow Vf :

T?
k = argmin

Tk

‖Tk ◦Ck − (Ck + Vf
k)‖. (6)

We solve Eq (6) for each individual cluster once again using
the Kabsch algorithm [36]. We additionally complement
the per-cluster rigidity objective with a two way Chamfer
distance (CD) computed across all the foreground points:

LCD =
∑

x∈Xf
v

min
y∈Yf

‖x− y‖2 +
∑

y∈Yf

min
x∈Xf

v

‖x− y‖2 (7)

where Xf
v := Xf + Vf . The overall FG loss is then a

weighted sum of the above objectives:

LFG = Lrigid + λCDLCD (8)

where λCD := 0.5 in all our experiments.



3.2. Network implementation

Provided a large dataset with FG-BG mask annotations
as well as ego-motion, we learn to minimize Eq (2) using a
deep neural network ϕΓ as shown in Fig. 3. In the sequel,
we describe the individual modules of our network and the
full inference of rigid scene flow. We refer the reader to the
supplement for more details.

Backbone. Our formulation (§ 3.1) involves the estimation
of different entities, requiring our network to solve multiple
tasks similar to [34]. While it would be possible to deploy
a specialized network for each task, this would increase the
memory footprint and would not encourage tasks to rein-
force each other [90, 89]. Instead, we propose a flexible
backbone suited for solving multiple tasks through special-
ized heads. Specifically, our backbone network is based on
Minkowski-Net [12] and follows a U-Net [59]-like encoder-
decoder architecture with skip connections. Its input is a
sparsely voxelized point cloud Xv ∈ R3×Nv

and its outputs
are per-point latent features Fv ∈ R64×Nv

. The same back-
bone with shared weights is also applied to Yv ∈ R3×Mv

to
obtain the latent features Gv ∈ R64×Mv

. In the following,
we omit the superscript v for clarity and unless specified dif-
ferently, use X and Y to refer to the voxelized point clouds
and F and G to refer to their associated latent features.

Background segmentation head. Our background seg-
mentation head consists of two sparse convolutional layers
with instance normalization and the ReLU [50] activation
function after the first one. It takes the latent features F and
G as input and outputs per-point foreground probabilities
hX ∈ RNv

and hY ∈ RMv

.

Ego-motion head. Given the latent features Fb and Gb

of the background points Xb and Yb, the ego-motion head
computes the affinity matrix M ∈ RNb×Nb

s.t.

Mij = exp
(
− ‖f bi − gb

j‖/τego

)
, (9)

where τego controls the softness of the correspondences.

Scene flow head. Based on the notion that scene flow is
tightly coupled to correspondences [55], we now devise our
scene flow head. To assure differentiability, we estimate soft
correspondences. To allow for large motion, we measure
the similarity in the latent space of features F and G instead
of in the physical space. Hence, we find the corresponding
points in X and Y as:

Xc := YD, dij := softmax(− 1

τflow
‖fi − gj‖2) (10)

where τflow is again a learnable temperature that controls
the softness of the correspondences in the same manner as
τego above. Soft correspondences can be used to compute
the initial flow estimate as Vinit := Xc−X. However, this

initial flow vector field is likely to be noisy due to large mo-
tions, sampling, and imperfect latent features and thus still
has to be refined [55]. Our refinement module takes Vinit

as input and locally smoothens it by estimating a residual
flow ∆Vinit thorough a series of sparse convolutional lay-
ers. The refined scene flow V ∈ R3×Nv

is then obtained
as: V = Vinit + ∆Vinit. The detailed architecture of the
scene flow head is given in the supplement.

From transformations to per-point rigid scene flow. The
output of our multi-task network comprises of: (i) transfor-
mation parameters of the ego-motion Tego and individual
clusters {Tk}K−1

k=1 ; (ii) object level masks {zk}Kk=1; and
(iii) unconstrained pointwise scene flow estimates V. The
pointwise rigid scene flow Vrigid can then be recovered as
Vrigid ∼∼∼ {Tk◦Xk−Xk}Kk=1, where Xk denotes the points
of X belonging to the cluster k according to the inferred ob-
ject masks zk. For the points that are neither assigned to the
background nor to any of the foreground rigid bodies, we
use the unconstrained scene flow predictions V.

Training and implementation details. Our method is
implemented in PyTorch using the MinkowskiEngine [12].
Unless specified differently, we train our network in an end-
to-end manner for 40 epochs (or until convergence), by min-
imizing Eq (2). We train on a single NVIDIA GTX2080Ti
with batch size 8. We use the Adam [38] optimizer with
an initial learning rate 10−3, which is decayed every epoch
according to an exponential schedule with γ = 0.98. The
whole training takes about two and a half days. The de-
tailed parameters of the Sinkhorn algorithm and DBSCAN
clustering are available in the supplement.

Inference. The abstraction of the scene into a collection of
rigid bodies enables us to run test-time optimization of their
inferred transformation parameters. Specifically, we run an
optimization scheme in which we iteratively minimize the
closest point distance to the target points. For ego-motion
we index the background points, and for individual clusters,
all the foreground points of Y. The indexing is performed
using the inferred object masks zX

k and zY
k . Given the final

transformation estimates {T?
k}Kk=1 pointwise rigid scene

flow can be recomputed as Vrigid ∼∼∼ {T?
k ◦Xk −Xk}Kk=1.

A detailed description of our optimization scheme including
its run-time is available in the supplement.

In the following, we reintroduce the superscript v so as to
denote the voxelized point Xv . Note that Vrigid represents
the flow for the voxel centers Xv and during inference, still
has to be transferred to the points X. We perform this trans-
fer by a simple inverse-distance weighted interpolation:

v?
i =

∑
j:xvj∈E(xi)

vrigid
j ‖xi − xv

j‖
−1

2∑
j:xvj∈E(xi)

‖xi − xv
j‖

−1

2

, (11)

where E(·) returns the set of k-NN in the Euclidean sense.



Dataset Method Supervision EPE3D [m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

FT3D

FlowNet3D [40] Full 0.114 0.412 0.771 0.602
HPLFlowNet [24] Full 0.080 0.614 0.855 0.429
PointPWC-Net [80] Full 0.059 0.738 0.928 0.342
FLOT [55] Full 0.052 0.732 0.927 0.357
EgoFlow [72] Full 0.069 0.670 0.879 0.404
Ours Full 0.052 0.746 0.936 0.361

stereoKITTI

Flownet3D [40] Full 0.177 0.374 0.668 0.527
HPLFlowNet [24] Full 0.117 0.478 0.778 0.410
PointPWC-Net [80] Full 0.069 0.728 0.888 0.265
FLOT [55] Full 0.056 0.755 0.908 0.242
EgoFlow [72] Full 0.103 0.488 0.822 0.394
Ours Full 0.042 0.849 0.959 0.208

Table 1: Evaluation results in a fully supervised setting on
FT3D and stereoKITTI datasets.

4. Experimental Evaluation
In this section, we first describe the datasets (§ 4.1) and

evaluation metrics (§ 4.2) used in our experiments. We
start the evaluation, by assessing the performance of our
backbone flow estimation network under full supervision
on point clouds lifted from stereo images (§ 4.3). We then
proceed to evaluate our full pipeline in a weakly supervised
setting on real LiDAR scans (§ 4.4). Finally, we showcase
the generalization capability of our method (§ 4.5) and jus-
tify our design choices in an ablation study (§ 4.6).

4.1. Datasets

For all datasets, we follow a common preprocessing
step [40, 24] and remove points whose depth or distance
to the sensor is larger than 35 m. For training and evalu-
ation, we randomly sample 8192 points from both frames
independently. A detailed description of the datasets and
preprocessing steps is available in the supplement.

FlyingThings3D (FT3D). [44] is a large-scale stereo
dataset of synthetic man-made objects that are scattered in
space and move randomly between the two frames. We
generate the point clouds and GT scene flow in accordance
with [24]. FT3D consists of 19640 training examples (from
which we use 3928 for validation) and 3824 test examples.
Note, FT3D is only used for training in the fully supervised
evaluation of our backbone and scene flow head (§ 4.3).

stereoKITTI. [45, 46] is a real world scene flow dataset
with 142 point cloud pairs, which are all used for testing.
The point clouds and GT scene flow are obtained by lifting
the annotated disparity maps and optical flow to 3D [24].
As a consequence, the points of the two frames are under
direct correspondence. We remove the ground points by a
naive thresholding of the height coordinate [40, 24].

lidarKITTI. [22] is a real world dataset acquired with
a Velodyne 64-beam LiDAR. It consists of the same 142
pairs as stereoKITTI. GT is obtained by projecting the point
clouds to the image plane and assigning them the annotated
3D flow vectors. In this dataset, the points of the two input

Dataset Method Supervision EPE3D [m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

lidarKITTI
(w/o ground)

PointPWC-Net [80] Full 0.390 0.387 0.550 0.653
FLOT [55] Full 0.653 0.155 0.313 0.837

Ours (backbone) Full 0.535 0.262 0.437 0.742
Ours Weak 0.150 0.521 0.744 0.450

Ours+ Weak 0.110 0.745 0.844 0.353
Ours++ Weak 0.094 0.784 0.885 0.314

lidarKITTI
(with ground)

PointPWC-Net [80] Full 0.710 0.114 0.219 0.932
FLOT [55] Full 0.773 0.084 0.177 0.943

MeteorNet [41] 1 Full 0.277 / / /
Ours (backbone) Full 0.820 0.102 0.190 0.934

Ours Weak 0.133 0.460 0.746 0.527
Ours+ Weak 0.106 0.673 0.808 0.421

Ours++ Weak 0.102 0.686 0.819 0.410
1 MeteorNet uses three tine frames and was trained on 100 and evaluated on 42 scenes of this dataset.

Table 2: Evaluation results on lidarKITTI. Ours (backbone)
denotes our model from § 4.3 trained with full supervi-
sion on FT3D. Ours are the direct estimates of our pipeline.
Ours+ and Ours++ additionally denote test-time optimiza-
tion of only ego-motion and all rigid bodies, respectively.

frames are not in direct correspondence and have a typical
sampling pattern of a LiDAR sensor.

semanticKITTI. [5] provides per point semantic labels and
accurate ego-motion for 21 LiDAR sequences of the KITTI
odometry dataset. It is split into eleven (00-10) LiDAR se-
quences for training and eleven (11-21) for testing. We use
sequences 03 and 05 for validation and the remaining nine
for training. SemanticKITTI is used to train our method in
a weakly supervised manner (§ 4.4 to § 4.6). Note that this
dataset does not contain dense scene flow annotations.

4.2. Evaluation metrics
We use standard evaluation metrics to assess the perfor-

mance of our approach and compare it with SoTA methods,
FlowNet3D [40], HPLFlowNet [24], PointPWCNet [80],
FLOT [55], and EgoFlow [72]. Our main evaluation met-
ric is the 3D end-point-error (EPE3D), defined as the mean
l2 distance between the predicted and GT scene flow.

Additionally, we follow [40, 24] and also report: (i) strict
accuracy (Acc3DS), defined as the percentage of points
whose EPE3D < 0.05 m or relative error < 0.05, (ii) re-
laxed accuracy (Acc3DR) that denotes the ratio of points
whose EPE3D < 0.10 m or relative error < 0.10, and (iii)
Outliers, i.e. the ratio of points whose EPE3D > 0.30 m or
relative error > 0.10.

For the experiments in a weakly supervised setting, we
also report the relative angular error (RAE) and the relative
translation error (RTE) of the estimated ego-motion.

4.3. Our backbone under full supervision
A core module of our proposed pipeline is the backbone

network described in § 3.2. It is therefore valuable to first
assess its performance in conjunction with the scene flow
prediction head, before turning to evaluate the performance
of our entire weakly-supervised pipeline. To this end, we
follow the traditional setting used by our competitors and
train in a fully supervised manner on FT3D by minimizing



Figure 4: Qualitative results of our weakly supervised method on lidarKITTI (top) and waymo open (bottom). For improved
visibility, the EPE3D (top row b,c ) is clipped to the range between 0.0 m (white) at 0.3m (red). As a result of predicting an
unconstrained pointwise sceneflow, the rigid objects (car) in the results of FLOT might get deformed (d).

the l1 distance between the predicted and GT scene flow.
We then evaluate our model on both FT3D and stereoKITTI.

When evaluated on FT3D, our method performs on
par with FLOT [55] in terms of EPE3D and outperforms
all methods in terms of Acc3DS and Acc3DR (Tab. 1).
More importantly, it achieves superior generalization per-
formance on stereoKITTI, where it consistently outperforms
SoTA in all evaluation metrics, setting a new SoTA with
0.042 m EPE3D (≈ 1.5 cm better than the closest com-
petitor). Based on these results, we conclude that sparse
convolutions are an effective backbone for scene-flow esti-
mation, and that our simple scene flow head can match the
performance of SoTA, while enabling better generalization.

4.4. Our pipeline under weak supervision

Setting. Point clouds in both FT3D and stereoKITTI are
obtained in the same manner: by lifting stereo images to
3D. Hence, their domain gap is relatively small. On the
other hand, in LiDAR-based autonomous driving scenarios,
point clouds are much sparser and assume a very different
sampling pattern, resulting in a much more challenging set-
ting for scene flow estimation.

We evaluate our entire weakly-supervised pipeline in this
challenging setting by using the lidarKITTI dataset. Specif-
ically, we consider two scenarios: 1) we remove ground
points by naively thresholding the vertical coordinate, 2)
we use the “raw” point clouds that also include the ground
points for which the flow estimation is especially difficult.

We train a joint model for both scenarios in a
weakly supervised manner using the point clouds from se-
manticKITTI. Unlike semanticKITTI, lidarKITTI only in-
cludes the points and annotations of the objects that are vis-
ible within the front camera images. We therefore process
semanticKITTI in the same manner. Since there are no Li-
DAR datasets available with scene flow annotations, we use
the models trained on FT3D for all the baselines.

Evaluation. Fig. 4 and Tab. 2 show that the domain gap
between the stereo and LiDAR point clouds is too big for
the traditional fully supervised methods to generalize effec-
tively. Indeed, the performance of SoTA methods is up to 10
times worse when compared to the results on stereoKITTI.
On the other hand, our weakly supervised model predicts
accurate rigid scene flow with an EPE3D ≈ 0.1 m for both
scenarios (after test-time optimization), while also provid-
ing an object-level abstraction (Fig. 4). Since our fully su-
pervised backbone model also fails to generalize, we con-
clude that the crucial advantage of our method does not lie
in a stronger backbone, but rather in the ability to train on
the same domain. Additional qualitative and quantitative
results are available in the supplement.

4.5. Generalization to other datasets.
Waymo open [69] is a recently introduced large-scale au-

tonomous driving dataset that would ideally be used for su-
pervision of 3D scene flow methods. However, it does not
provide dense flow annotations. While it does include all
the annotations that our weakly supervised approach relies
on, we are more interested in using it to evaluate the gen-
eralization capability of our method. To this end, we use
the first three sequences4 of the waymo open validation set
and quantitatively evaluate our weakly supervised model in
terms of ego-motion estimation and background segmenta-
tion. We provide qualitative results of the rigid scene flow
estimation and object-level scene abstraction in Fig. 4.

Remarkably, our model that was trained only on se-
manticKITTI can seamlessly generalize to waymo open.
When evaluated on the task of ego-motion estimation, it
achieves an RRE of 0.141◦ and RTE of 0.099 m. In the BG-
segmentation task, its performance on the foreground points
drops slightly to 0.960 precision and 0.689 recall, while on
the background points it remains high with 0.957 and 0.996

4This results in more than 14k point cloud pairs, which is almost the
same size as the whole semanticKITTI dataset



lidarKITTI
Lego LCD Lrigid EPE [m] ↓ Acc3DS ↑ Acc3DR ↑ RRE [◦] ↓ RTE [m] ↓

3 3 0.721 0.044 0.093 0.476 0.750
3 3 0.363 0.044 0.163 0.610 0.342
3 3 0.136 0.409 0.712 0.380 0.146
3 3 3 0.134 0.460 0.746 0.320 0.130

Table 3: Ablation study of the proposed training objec-
tive. All models are trained on semanticKITTI and eval-
uated without test-time optimization on lidarKITTI (with
ground) dataset.

precision and recall, respectively. The drop in foreground
performance can be accredited to the domain gap between
the datasets [85]; waymo open includes many more fore-
ground objects, especially pedestrians, than semanticKITTI.

4.6. Ablation Studies

Influence of different loss terms. We compare our model
trained with the full loss function to multiple ablations in
Tab. 3. Each model is trained on semanticKITTI and eval-
uated without test-time optimization on lidarKITTI with
ground points. Tab. 3 shows that the terms Lego and LCD

are crucial for the performance of our model. Adding Lrigid

further regularizes the performance and leads to an im-
provement in all evaluation metrics. Note how the terms
that are applied only on foreground points (e.g. Lrigid) also
improve the ego-motion estimation Tab. 3.

Task-specific networks. Instead of training a single net-
work capable of solving multiple tasks, one could also de-
vise a combination of task-specific networks. We ablate
this design choice in Tab. 4 in which we compare our full
model to BG segmentation and ego-motion specific net-
works. Both task specific networks comprise of our back-
bone with the corresponding head and are trained with
the LBG and Lego objective function, respectively. Tab. 4
shows that the performance of our full model is slightly
inferior to the task-specific one when compared on BG
segmentation. This is expected, since in our full pipeline
the BG segmentation head is also trained nearly in isola-
tion, with a single loss function. On the other hand, our
full model outperforms the task-specific ego-motion model,
even when the task-specific model is combined with the GT
background mask. This shows that individual tasks (e.g.
flow and ego-motion estimation) can indeed reinforce each
other, which leads to better downstream performance.

Pretraining the backbone with full supervision. We an-
alyze the effect of initializing our weakly supervised model
with pretrained backbone weights. To this end, we use the
backbone weights from the model trained with full supervi-
sion in § 4.3. Initializing the backbone with the pretrained
model leads to 1.4 cm and 2.3 cm improvement in terms
of EPE3D on lidarKITTI without and with ground points,
respectively. Further details and additional metrics of this
ablation study are available in the supplement. Note that

Task BG segmentation ego-motion
BG seg. ego-motion prec. FG ↑ rec. FG ↑ prec. BG ↑ recall. BG ↑ RRE [◦] ↓ RTE [m] ↓

semanticKITTI (w/o ground)
3 0.977 0.901 0.992 0.998 - -

3 - - - - 0.245 0.054
3 3 0.971 0.895 0.991 0.998 0.201 0.047

semanticKITTI (with ground)
3 0.970 0.911 0.996 0.999 - -

3 - - - - 0.307 0.071
3 3 0.966 0.904 0.996 0.999 0.249 0.059

Table 4: Comparison of our full pipeline with specialized
networks for BG segmentation and ego-motion estimation,
respectively. Note, we provide GT background masks to the
ego-motion specialized network also in the test phase.

in all evaluations presented in Sec. 4 we use the inferior
model with randomly initialized weights trained only with
weak supervision.

Run time. We now compare our method to FLOT [55]
and PointPWC-Net [80] in terms of run-time and number
of parameters5. We perform the evaluation on a standalone
computer with Intel Xeon E5-1650, 32GB RAM, and a
single NVIDIA Titan V. For FLOT [55] and PointPWC-
Net [80] we use the official implementation provided by the
authors. FLOT has the lowest number of trainable parame-
ters (0.11 million) but, with 0.395 seconds on average, also
the highest run time per point cloud pair. PointPWC-Net
has a larger model with approximately 7.7 million param-
eters but performs one inference step in 0.147 seconds on
average. Finally, our method contains about 8 million pa-
rameters and requires 0.154 seconds on average for a single
point cloud pair. With added test-time optimization our run
time increases to 0.234 seconds on average.

5. Conclusion
Scene flow is the lowest level in a hierarchy of dynamic

scene perception. As such, while providing a useful cue to
higher-level tasks, it is also the most demanding to super-
vise. Based on this observation, in this work, we have in-
troduced a novel method that relaxes the dense supervision
by integrating flow into a higher-level scene abstraction in
the form of multi rigid-body motion. The result is a state-
of-the-art flow estimation network that additionally outputs
a concise dynamic scene representation. In particular, our
mild supervision requirements are well suited for utilizing
the annotation level of recently released massive data col-
lections for autonomous driving. In future work, we plan to
incorporate cues from multiple frames further seeking tem-
poral consistency as well as increased accuracy.
Acknowledgements. This work is sponsored by Stanford-Ford Al-
liance, the Samsung GRO program, NSF grant IIS-1763268, the Vannevar
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5The evaluation is performed with 8192 randomly sampled points on
the lidarKITTI dataset.
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A. Appendix
A.1. Implementation details

We now provide the implementation details of our network ar-
chitecture, foreground clustering using DBSCAN, and test-time
optimization scheme. Additionally, we summarize the Kabsch al-
gorithm and the entropy regularized optimal transport. For a gen-
eral overview please refer to Sec. 3 and Fig. 3.

A.1.1 Network architecture

Our whole network is built upon MinkowskiEngine [12], an auto-
differentiation library for sparse tensors. In all experiments, we
first randomly sample 8192 points from the source and target point
cloud, respectively. We then voxelize the original point clouds
into sparse tensors with a voxel size of 0.1 m. If more than 8192
voxels remain, we randomly select 8192 of them. For the evalu-
ation, all the inferred quantities are transferred from the voxels to
originally sampled points using Eq (11). The combined network
has 8,078,149 learnable parameters. Fig. 5 shows the detailed ar-
chitecture, where blue rectangles denote the Minkowski convo-
lutional and transpose convolutional layers, violet rectangles the
ResBlocks, and orange rectangles are ReLU activation functions.

Backbone network. The detailed architecture of the backbone
network is depicted in Fig. 5 (a). We use absolute coordinates
instead of the more common binary occupancy as the input fea-
ture of the first layer. All convolutional layers are followed by in-
stance normalization and in ResBlocks additionally by the ReLU
activation function. The output of the backbone network are 64-
dimensional pointwise latent features. Due to the fixed voxel size,
the number of points can vary between the point clouds.

Scene flow head. The scene flow head, depicted in Fig. 5 (b),
takes the initial flow vector field Vinit as input and computes a
residual flow ∆Vinit. All layers except the last are followed by the
ReLU activation function. Normalization functions are not used in
the scene flow head.

Background segmentation head. The background segmenta-
tion head (Fig. 5 (c)) comprises two sparse convolutional layers,
where the first one is followed by the instance normalization and
ReLU activation function. The output of the second layer is passed
through a sigmoid function to obtain the foreground probabilities
h.

A.1.2 Foreground clustering

We cluster the foreground points into objects using a simple DB-
SCAN clustering algorithm. Specifically, we first extract the fore-
ground points Xf of the source point cloud using the inferred
foreground probabilities hX. We then run a scikit-learn [53] im-
plementation of DBSCAN with eps = 0.75 m and the minimum
number of samples in the neighborhood equal to 5. After cluster-
ing, we only retain clusters with at least 10 points. Our clustering
algorithm is based on the hypothesis that the objects scattered in
the scene, are separated by void space. If two objects (e.g. cars)
are too close to each other and get assigned to the same cluster,
our method does not have the capacity to recover from this wrong
assignment. However, we conduct an ablation study (§ A.3.2) and



Figure 5: Network architecture of the backbone network (a), scene flow head (b), and background segmentation head (c).
Blue blocks denote the convolutional (3DConv) and transpose convolutational (3DConvTr) layers, where 3DConv,a,b,c,d
denotes a 3D convolutional layer with the kernel size a, stride b, output feature dimension c, and normalization function d.
Orange rectangle denotes the ReLU activation function [50] and IN is the instance normalization.

empirically confirm the above-mentioned hypothesis for the au-
tonomous driving datasets.

A.1.3 Test-time optimization

The object-level abstraction of the scene enables us to perform
test-time optimization of per-object rigid body transformations.
This optimization is performed independently for the background
and each of the foreground objects. In the following we assume
that our network outputs object-level masks {z}Kk=1 and transfor-
mation parameters {Tk}Kk=1.

Background transformation. Let z1 and T1 denote the inferred
background mask and ego-motion transformation parameters, re-
spectively. We use z1 to extract the background points Xb and
Yb of the source and target point cloud, transform Xb with the
inferred ego-motion T1 and use these point clouds as an input to
the ICP [6] optimization of the transformation parameters. Specif-
ically, we use the Open3D [91] implementation with the maxi-
mum correspondence distance of 0.15 m and a maximum number
of iterations equal to 300. On lidarKITTI the optimization of the
background transformation parameters takes 0.06 s on average for
a point cloud pair, using the same computer as in the run time ex-
periments in § 4.6.

Object level transformations. For the object level transforma-
tions, we follow a similar procedure. We start by extracting the
points Xk of the object k in the source point cloud using the ob-
ject mask zk, and all the foreground points Yf of the target point
cloud using the complementary mask of the background mask z1.
We then transform the points Xk with the inferred transforma-
tion parameters Tk and again use the point clouds as input to the
ICP optimization of the transformation parameters. We use all the
foreground points of the target point cloud as we do not have ac-
cess to the instance level correspondences. The optimization of
all foreground transformation parameters for a single lidarKITTI
point cloud pair takes approximately 0.02 s on average. We per-
form at most 300 iterations of ICP per object with a maximum
correspondences distance equal to 0.25 m.

A.1.4 Kabsch algorithm

In order to make the paper self contained, we now summarize the

weighted Kabsch algorithm, which represents the closed-form dif-
ferentiable solution to the ego-motion estimation problem:

R?
ego, t

?
ego = argmin

Rego,tego

Nb∑
l=1

wl‖Regox
b
l + tego − φ(xbl ,Y

b)‖2.

In the following, we omit the superscript b and define ql :=
φ(xl,Y) and the resulting point cloud of correspondences as
Q ∈ R3×N = {ql ∈ R3}l. Let x and q:

x :=

∑N
l=1 wlxl∑N
l=1 wl

, q :=

∑N
l=1 wlql∑N
l=1 wl

(12)

denote the weighted centroids of point clouds X and Q, respec-
tively. The centered point coordinates can then be computed as
x̃l := xl − x and q̃l := ql − q. By arranging them back to the
matrix form X̃ ∈ RN×3 and Q̃ ∈ RN×3, a weighted covariance
matrix S ∈ R3×3 can be computed as

S = X̃TWQ̃ (13)

where W = diag(w1, . . . , wN ). Considering the singular value
decomposition S = UΣVT , the optimal rotation matrix is given
by

R?
ego = V

1 0 0
0 1 0
0 0 det(VUT )

UT (14)

where det(·) denotes computing the determinant and is used to
avoid generating a reflection matrix. Finally, the optimal transla-
tion vector is recovered as

t?ego = q−R?
egox. (15)

Note, when estimating the per-object transformation parameters of
the foreground points, we use an unweighted Kabsch algorithm,
i.e. W = I.

A.1.5 Entropy-regularized optimal transport

We provide a brief overview of the Sinkhorn algorithm used to ap-
proximate the optimal transport following [7]. Consider a discrete
probability measure µ on the simplex Σd , {x ∈ Rn+ : x>1n =
1} with weights a = {ai} and locations {xi}, i = 1 . . . n as:

µ =
∑n

i=1
aiδxi , ai ≥ 0 ∧

∑n

i=1
ai = 1 (16)



where δx is a Dirac delta function at x.
For two probability measures µ and ν in the simplex, let

U(µ,ν) denote the polyhedral set of nµ × nν matrices:

U(µ,ν) = {P ∈ Rnµ×nν

+ : P1nν = µ ∧ P>1nµ = ν}

where 1d is a d-dimensional vector of ones. U(µ,ν) is also re-
ferred to as the transportation polytope.

Let C be a nµ × nν cost matrix that is constructed from the
ground cost function c(xµi , x

ν
j ). Kantorovich’s optimal transport

formulation seeks to find the transport plan optimally mapping µ
to ν:

Wc(µ,ν) = dc(µ,ν) = minP∈U(µ,ν)〈P,C〉 (17)

with 〈·〉 denoting the Frobenius dot-product. Note that this expres-
sion is also known as the Wasserstein distance (WD). Due to the
computational difficulties in minimizing Eq (17) Cuturi [14] in-
troduced an alternative convex set consisting of joint probabilities
with small enough mutual information:

Uα(µ,ν) = {P ∈ U(µ,ν) : KL(P ‖ µν>) ≤ α} (18)

where KL(·) refers to the Kullback Leibler divergence [39]. This
restricted polytope leads to a tractable distance between discrete
probability measures under the cost matrix C constructed from
the function c:

dc,α(µ,ν) = minP∈Uα(µ,ν)〈P,C〉. (19)

dc,α can be computed by a modification of simple matrix scaling
algorithms, such as Sinkhorn’s algorithm [63, 64]. Note that here
the cost matrix is inversely related to the affinity matrix defined in
the main paper.

A.2. Datasets
In this work, a total of five datasets are used to train and eval-

uate the performance of the proposed approach. In the following,
we detail the generation of the training and evaluation data. For all
datasets, we use the same coordinate system centered at the cam-
era or LiDAR sensor. The z-axis of the coordinate system points
in the viewing direction of the camera or to the front of the car,
the positive y-axis points in the up direction, and x completes the
right-handed coordinate system. All processed point clouds are
available under https://3dsceneflow.github.io/.

FlyingThings3D [44]. FlyingThings3D is a large-scale synthetic
dataset of stereo RGB images proposed to train 2D based scene
flow networks. We follow [24] and use the subset of the dataset in
which the extremely hard examples are omitted. The point clouds
are obtained by lifting the stereo images to 3D using the anno-
tated disparity maps, optical flow, and camera parameters. We
again follow [24] and remove the points whose disparity and op-
tical flow are occluded (occlusion maps are part of the original
dataset). Additionally, points with a depth larger than 35 m are
removed [24]. The resulting point clouds are in direct correspon-
dence, i.e. Y = X + V, where X and Y are the source and target
point cloud, and V is the ground truth flow. For training and eval-
uation, 8192 points are randomly sampled from each point cloud
independently.

Dataset Method Supervision EPE3D [m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

stereoKITTI

(w/o ground)

HPLFlowNet [24] Full 0.117 0.478 0.778 0.410
PointPWC-Net [80] Full 0.069 0.728 0.888 0.265
FLOT [55] Full 0.056 0.755 0.908 0.242
Ours (backbone) Full 0.042 0.849 0.959 0.208
Ours Weak 0.163 0.541 0.658 0.452
Ours++ Weak 0.134 0.709 0.800 0.311

stereoKITTI

(with ground)

HPLFlowNet [24] Full 0.238 0.194 0.429 0.787
PointPWC-Net [80] Full 0.204 0.292 0.556 0.645
FLOT [55] Full 0.122 0.480 0.691 0.401
Ours (backbone) Full 0.143 0.392 0.660 0.533
Ours Weak 0.136 0.470 0.712 0.420
Ours++ Weak 0.068 0.836 0.897 0.263

Table 5: Evaluation results on stereoKITTI dataset. Weakly
supervised models are trained on semanticKITTI LiDAR
point clouds and evaluated directly on stereo point clouds of
stereoKITTI. Ours and Ours++ denote the output of the net-
work before and after test-time optimization, respectively.

stereoKITTI [45, 46]. This is a dataset based on the KITTI Scene
Flow benchmark, which is designed for the evaluation of stereo
based scene flow methods. It consists of 200 training and 200 test
scenes. Because the ground truth annotations of the test scenes
are not available, only the training scenes are used for evaluation.
Due to incomplete and noisy annotations, 58 scenes are further
removed and the final evaluation set comprises 142 scenes [40,
24]. The stereo images are lifted to point clouds analogously to
FlyingThings3D [24]. Again, occluded points and points with a
depth larger than 35 m are removed. For evaluation, we sample
8192 points from each point cloud independently. Tab. 1 shows
the result of the typical evaluation protocol in which the ground
points are removed by a naive thresholding the y coordinate at
−1.4 m [40, 24] (the cameras in the KITTI setup are mounted at
≈ 1.65 m height above ground). In Tab. 5 we additionally report
the results without removing the ground points.

lidarKITTI [45, 46]. This dataset comprises the Velodyne 64-
beam LiDAR point clouds corresponding to the same 142 scenes
used in stereoKITTI. The ground truth scene flow vectors are ob-
tained by projecting the points of the source point cloud to the
image plane using the provided calibration parameters, and as-
sociating them with the scene flow vectors of the corresponding
pixels from the stereoKITTI dataset [41]. Due to directly using the
LiDAR point clouds the points of both frames are not in direct cor-
respondence and exhibit the typical LiDAR sampling pattern with
very uneven point density.

semanticKITTI [5]. This dataset provides pointwise semantic
labels annotated in 3D and improved ego-motion information for
all sequences of the KITTI odometry benchmark [22]. Differ-
ent to stereoKITTI and lidarKITTI, which include only the points
that map to the image plane of the front camera, semanticKITTI
contains full 360◦ LiDAR sweeps. We therefore process se-
manticKITTI point clouds to make them consistent with lidarK-
ITTI. Specifically, we first convert the 3D coordinates of the points
to polar coordinates and consider only the points with an azimuth
angle in the range [−45◦, 45◦] and elevation angle in the range
[−24.9◦, 12.0◦]. This maintains the points that would roughly
map to the image plane of the front camera. We then addition-
ally remove the points that are less than 1.5 m or more than 35 m
away from the LiDAR sensor. The binary background mask is

https://3dsceneflow.github.io/


scene flow BG - segmentation ego motion
Dataset Method Supervision mean EPE3D [m] ↓ med. EPE3D [m] ↓ med. F-EPE3D [m] ↓ med. B-EPE3D [m] ↓ prec. FG ↑ rec. FG ↑ prec. BG ↑ recall. BG ↑ RRE [◦] ↓ RTE [m] ↓

lidarKITTI
(w/o ground)

Ours Weak 0.150 0.111 0.227 0.104 0.726 0.885 0.978 0.940 0.379 0.130
Ours+ Weak 0.110 0.064 0.227 0.049 0.726 0.885 0.978 0.940 0.126 0.053

Ours++ Weak 0.094 0.051 0.164 0.049 0.726 0.885 0.978 0.940 0.126 0.053

lidarKITTI
(with ground)

Ours Weak 0.133 0.109 0.186 0.109 0.734 0.855 0.991 0.980 0.327 0.130
Ours+ Weak 0.106 0.083 0.186 0.083 0.734 0.855 0.991 0.980 0.142 0.091

Ours++ Weak 0.103 0.083 0.131 0.083 0.734 0.855 0.991 0.980 0.142 0.091

Table 6: Detailed results of out weakly supervised method on lidarKITTI dataset. Ours denotes the direct output of the
network. Ours+ and Ours++ are the results with only background and full test-time optimization, respectively

generated by combining the semantic labels into the background
(class labels from 40 to 249 ) and foreground (other class labels)6.
We split the point cloud pairs of semanticKITTI into 4350 valida-
tion (sequences 03 and 05) and 18840 training samples (remaining
nine sequences of the training set). Because BG-FG labels of the
test dataset are not available, we perform all evaluations on the
validation dataset.

waymo open [69]. This is a large scale dataset collected by a fleet
of waymo self-driving cars in various conditions. It contains 1950
sequences of 20 s duration each, collected with an acquisition rate
of 10 Hz. In our experiments we use the training batches 0–16
(≈ 50% of the training data) for fine-tuning (§ A.3.2) and the val-
idation batches 0–2 (≈ 40% of the validation data) for evaluating
our approach7. Waymo cars are equipped with five LiDAR sensors
altogether, one mid-range LiDAR on the top and four short range
ones on the sides of the car. In our experiments, we only use the
points acquired by the top, mid-range scanner. We then transform
these points into a cordinate system centered at the location of the
LiDAR sensor in the KITTI setup and follow the processing steps
used in semanticKITTI dataset to extract only the points that would
roughly project to the front camera. Along with the ego-motion in-
formation, waymo-open also provides the 3D bounding-boxes of
vehicles, pedestrians, cyclists, and signs. We use the former three
classes to extract the foreground and consider the remaining points
as background.

A.3. Evaluation details and additional results
We start this section by providing additional details and results

(§ A.3.1) supporting the evaluations presented in Sec. 4, before
reporting additional evaluations (§ A.3.2) that were omitted from
the main paper due to the space constraint.

A.3.1 Evaluation details

Additional results on stereoKITTI. In § 4.3, we evaluate the
performance of our backbone under full supervision on FlyingTh-
ings3D and stereoKITTI. Tab. 5 supplements that section with the
evaluation results on the stereoKITTI dataset without removing the
ground points. Additionally, we report the generalization results of
our weakly supervised model trained on the LiDAR point clouds
of semanticKITTI.

As expected, the performance of all fully supervised meth-
ods drops significantly if the challenging ground points are not

6https://github.com/PRBonn/semantic-kitti-api/
blob/master/config/semantic-kitti-all.yaml

7https://waymo.com/open/download/

Dataset Method Initialization EPE3D [m] ↓ Acc3DS ↑ Acc3DR ↑ Outliers ↓

lidarKITTI
(w/o ground)

Ours Pretrained 0.102 0.706 0.833 0.357
Ours++ Pretrained 0.080 0.834 0.912 0.279

Ours Random 0.150 0.521 0.744 0.450
Ours++ Random 0.094 0.784 0.885 0.314

lidarKITTI
(with ground)

Ours Pretrained 0.091 0.601 0.788 0.445
Ours++ Pretrained 0.080 0.742 0.850 0.369

Ours Random 0.133 0.460 0.746 0.527
Ours++ Random 0.103 0.686 0.819 0.410

Table 7: Evaluation of our model trained with random ini-
tialization of the weights (Random) and with the weights
pretrained on FT3D (Pretrained), on lidarKITTI dataset.
Ours and Ours++ denote the direct output of the network
and the result after test-time optimization, respectively.

BG segmentation ego-motion
Method Initialization prec. FG ↑ rec. FG ↑ prec. BG ↑ recall. BG ↑ RRE [◦] ↓ RTE [m] ↓

semanticKITTI (w/o ground)
Ours Pretrained 0.950 0.892 0.991 0.996 0.145 0.035

Ours++ Pretrained 0.950 0.892 0.991 0.996 0.127 0.031
Ours Random 0.971 0.895 0.991 0.998 0.201 0.047

Ours++ Random 0.971 0.895 0.991 0.998 0.133 0.032
semanticKITTI (with ground)

Ours Pretrained 0.942 0.909 0.996 0.998 0.177 0.044
Ours++ Pretrained 0.942 0.909 0.996 0.998 0.116 0.029

Ours Random 0.966 0.904 0.996 0.999 0.249 0.059
Ours++ Random 0.966 0.904 0.996 0.999 0.121 0.032

Table 8: Evaluation of our model trained with random ini-
tialization of the weights (Random) and with the weights
pretrained on FT3D (Pretrained), on semanticKITTI dataset.
Ours and Ours++ denote the direct output of the network
and the result after test-time optimization, respectively.

removed. Remarkably, our weakly supervised model general-
izes from LiDAR to stereo point clouds, and when combined
with the test-time optimization even outperforms all methods on
stereoKITTI with ground points. Tab. 5 also hints that the gen-
eralization LiDAR 7→ stereo is less challenging than the opposite
stereo 7→ LiDAR.

Additional results on lidarKITTI. Tab. 6 supplements Tab. 2
and provides detailed results of our method on the lidarKITTI
dataset. Note, how the test-time optimization improves back-
ground (Ours+) as well as foreground (Ours++) scene flow esti-
mates. The results of the BG-segmentation and FG/BG scene flow
split should be interpreted with caution, due to the noisy anno-
tation of the lidarKITTI dataset (see below). Further qualitative
results are shown in Fig. 6 and failure cases in Fig. 7

Noisy annotations of lidarKITTI. During the evaluation, we
have discovered that lidarKITTI annotations are noisy and con-
tain outliers. These GT errors occur especially around the points

https://github.com/PRBonn/semantic-kitti-api/blob/master/config/semantic-kitti-all.yaml
https://github.com/PRBonn/semantic-kitti-api/blob/master/config/semantic-kitti-all.yaml
https://waymo.com/open/download/


BG segmentation ego-motion
Method Mode prec. FG ↑ rec. FG ↑ prec. BG ↑ recall. BG ↑ RRE [◦] ↓ RTE [m] ↓

Ours++ generalization 0.960 0.689 0.957 0.996 0.141 0.099
Ours++ fine-tuned 0.945 0.921 0.989 0.992 0.111 0.078

Table 9: Comparison of the model fine-tuned on waymo
open with the model trained only on semantiKITTI (gen-
eralization), on the waymo open dataset. Fine-tuned model
outperforms the directly generalized one in terms of FG pre-
cision and ego-motion error.

lying on or close to the object boundaries. Outliers are caused by
the projection of the 3D point onto the 2D image plane, where
two distant points in 3D can map to the same pixel, as there is
no perception of depth. Fig. 8 shows two prominent examples:
in some cases, the instance mask and motion of one object are
also assigned to the other (top), and in other cases, the background
points get assigned the instance label and scene flow of the object
in the front (bottom). Because of training on semanticKITTI with
accurate annotations, our method is still capable of predicting the
correct object masks (Fig. 8 (b)). Wrong annotation however re-
sult in a lower BG-segmentation performance and cause apparent
errors in our scene flow prediction (see Fig. 8 (c)). Unfortunately,
this error is reflected in the quantitative evaluations not only for our
method but also for many other scene flow algorithms out there. To
reduce this effect, we additionally report median EPE3D values in
Tab. 6, as well as the FG and BG EPE3D based on our predicted
BG-mask, instead of the noisy GT mask.

A.3.2 Additional evaluations and ablation studies

Pretraining vs training from scratch. Evaluations reported in
§ 4.4 to § 4.6 are performed using the weakly supervised model
trained on semanticKITTI from scratch. However, recent works
show that general 3D backbone networks can benefit from pre-
training on large (annotated) datasets [81].

To evaluate this in our setting, we consider a model whose
backbone weights were initialized with weights trained (with full
supervision) on FlyingThings3D rather than randomly. The eval-
uations on lidarKITTI (Tab. 7) and semanticKITTI (Tab. 8) show
that, in line with the literature, our backbone network can indeed
benefit from pretraining. The improvement in is especially promi-
nent in scene flow estimation (more than 1 cm lower EPE3D in
Tab. 7) and in ego-motion estimation (lower rotation and transla-
tion errors in Tab. 8). In order to fully adhere to the weakly super-
vised setting, we use the randomly initialized model in all other
evaluations.

Fine-tuning on waymo open. In the main paper, waymo open
dataset is used only to evaluate the direct generalization per-
formance of our model trained on semanticKITTI. However, as
briefly discussed in the main paper, waymo open also provides all
the annotations that our weakly supervised model relies on. We
now use these annotations, to evaluate the gain obtained by fine-
tuning our model. To this end, we initialize our model with the
weights trained on semanticKITTI and fine-tune it for 22k iter-
ations (less than 2 epochs) on waymo open. Tab. 9 shows that
the fine-tuned model greatly outperforms the model trained only
on semanticKITTI, especially in terms of foreground recall (gain
of more than 20 percent points) and relative translation error (im-

GT inst. mask lidarKITTI (with ground)
train test EPE [m] ↓ F-EPE [m] ↓ B-EPE [m] ↓ RRE [◦] ↓ RTE [m] ↓
3 0.097 0.216 0.085 0.146 0.082

3 0.101 0.183 0.094 0.139 0.091
3 3 0.097 0.265 0.085 0.146 0.082

0.102 0.195 0.094 0.139 0.091

Table 10: Performance evaluation of our simple foreground
clustering algorithm compared to models using GT instance
mask during training and/or testing on lidarKITTI dataset.

lidarKITTI (with ground)
EPE [m] ↓ RRE [◦] ↓ RTE [m] ↓

w/o Sinkhorn 0.594 0.539 0.615
with Sinkhorn 0.133 0.327 0.130

Table 11: Ablation study of the Sinkhorn algorithm on li-
darKITTI dataset (evaluation protocol follows Tab. 3 in the
main paper).

provement of 2 cm). The relative improvement is qualitatively also
depicted in Fig. 9

Training and testing with GT instance masks. To define the
FG instance-level rigidity loss and to perform the test-time op-
timization of the foreground, we rely on a simple unsupervised
clustering of the foreground into individual objects. Arguably, this
part could be replaced by a more powerful instance segmentation
head, which would however require instance annotations during
training. It is of interest to see how much benefit a perfect cluster-
ing would bring to our method. We therefore ablate by replacing
the output of our clustering with the GT instance labels, which
are provided both in semanticKITTI and lidarKITTI. We assess
the individual contributions from having GT labels during train-
ing, testing or both. Tab. 10 shows that our model with the simple
clustering algorithm performs comparably to the models using GT
instance masks during training (semanticKITTI) and/or testing (li-
darKITTI). We conclude that our clustering algorithm, which does
not require GT instance masks during training or testing, is the
preferred option. Due to the noisy instance annotations of the li-
darKITTI dataset, the performance of models using GT instance
masks during testing should be interpreted with caution.

Sinkhorn algorithm. The benefit of using the entropy-
regularized Sinkhorn algorithm for the ego-motion estimation is
two fold: (i) the Sinkhorn distances should yield more accurate
correspondences due to the optimally of the transport map, and
(ii) in combination with the slack row and column it enables us to
down-weight the outliers in a principled manner. We empirically
confirm these benefits in an ablation study in which we directly
use the affinity matrix M to compute the soft correspondences
φ(xbi ,Y

b) = Ybmi/||mi||1 and estimate the ego-motion with
an unweighted Kabsch algorithm (§ A.1.4).

Tab. 11 depicts a significant increase of the EPE when Sinkhorn
is deactivated. This increase can be accredited to the inferior es-
timation of the ego-motion parameters, which reults in a much
higher RTE and RRE.



Figure 6: Successful cases of our method on the lidarKITTI dataset. By correctly splitting the scene into foreground and
background (d), our method estimates the accurate scene flow vectors (b), which align the two frames (c).

Figure 7: Failure cases of our method on the lidarKITTI dataset. Top: even though the car’s object mask (d) is correctly
predicted, its predicted scene flow vectors yield large end-point-errors (b). Bottom: a pillar in the middle of the scene is
wrongly predicted as foreground object (d), hence its scene flow does not agree with the background and GT (b).

Figure 8: lidarKITTI annotations are obtained by projecting 3D points onto the image plane, which results in wrong instance
(a) and scene flow (c) annotations for points with azimuth and elevation angles close to the object boundaries (e.g. green car
is partially blue in (a) top). On the other hand, our method infers correct object masks (b) and scene flow (d), yet due to the
wrong GT annotations, the scene flow appears to be erroneous.



Figure 9: Fine-tuning on waymo open improves performance and robustifies our model. Top: objects close to the sensor are
not common in semanticKITTI and hence cannot be detected correctly by the generalized model (c). Bottom: a challenging
example with 18 foreground objects (much larger than average number in semanticKITTI). Note, how more object masks are
correctly inferred by our fine-tuned model compared to direct generalization (c-column).

Figure 10: Failure cases on waymo open dataset. Top: our model is unable to estimate accurate ego-motion and scene flow
(b) if the background points consists only of the ground points after foreground removal (c). Bottom: rare objects such as
trucks (top right corner in c and d) appear ambiguous to our model and cause prediction of the wrong masks (c).


