
Zonotopes as Bounding Volumes

Leonidas J. Guibas
�

An Nguyen
�

Li Zhang
�

Abstract

Zonotopes are centrally symmetric polytopes with a
very special structure: they are the Minkowski sum of
line segments. In this paper we propose to use zono-
topes as bounding volumes for geometry in collision
detection and other applications where the spatial rela-
tionship between two pieces of geometry is important.
We show how to construct optimal, or approximately
optimal zonotopes enclosing given set of points or other
geometry. We also show how zonotopes can be used
for efficient collision testing, based on their description
via their defining line segments — without ever build-
ing their explicit description as polytopes. This implicit
representation adds flexibility, power, and economy to
the use of zonotopes as bounding volumes.

1 Introduction

Zonotopes have long been studied in combinatorial ge-
ometry, polyhedral combinatorics, algebraic geometry,
and other parts of mathematics. Yet, except for their
use in solving systems of polynomial equations [13],
their usefulness in applications of interest to science
and engineering has been limited. In this paper we
propose to develop the use of zonotopes (and espe-
cially zonogons and zonohedra, the ��� and ��� cases)
as versatile bounding volumes for pieces of underly-
ing geometry in modeling applications. Bounding vol-
umes are useful in collision detection, distance compu-
tation, penetration depth computation, surface fitting,
and many other geometric processes.

A zonotope � is defined by line segment genera-
tors �
	��� � ������������ in ��� . The zonotope is simply the
Minkowski sum of its line segment generators. Equiv-
alently, a zonotope is simply an affine image of the unit
cube from � � to � � . It is obviously a convex polytope
and its facets are parallelepipeds defined by ��������� -
tuples of its generators. Note that a zonotope must be
a centrally symmetric convex polytope. While in 2-D
any centrally symmetric convex polygon is a zonogon,

�
Department of Computer Science, Stanford Uni-

versity, Stanford, CA 94305. E-mail: guibas, an-
guyen@cs.stanford.edu.�

Systems Research Center, Hewlett-Packard Labs, 1501 Page
Mill Road, Palo Alto, CA 94304. E-mail: l.zhang@hp.com.

that is no longer the case in 3-D or higher dimensions.
However, many familiar polyhedra are zonotopes, in-
cluding cubes and parallelepipeds, truncated octahedra,
and rhombic dodecahedra. In 3-D the facets of a zono-
topes are parallelograms defined by pairs of generators.
The collection of all those facets sharing a particular
segment generator form a band (zone) wrapping around
the zonotope — a fact which justifies the name zono-
tope.

Since a zonotope is always centrally symmetric, ev-
ery facet has an opposite congruent facet on the other
side. The combinatorics of the faces of a zonotope are
equivalent to those of the vertices in an arrangement of
great hypercircles in a sphere of one less dimension.
This can be most easily seen by considering the space
of � -dimensional hyperplanes tangent to the zonotope.
The space of all their � -dimensional normal unit vec-
tors can be seen as a unit sphere, equivalent to an ori-
ented projective ��������� -space. For any given unit vec-
tor, there is a unique hyperplane normal to the vector
and tangent to the zonotope at some face. Under this
map each generator gives rise to a great circle; thus
the facets of the zonotope are in 1-1 correspondence
with the vertices of this spherical arrangement under
this tangent space map. Note that all facets belonging
to a zone, map to the vertices on the great circle defined
by their shared generator.

Spherical arrangements can be mapped to hyper-
plane arrangements by a simple projective map. Be-
cause of these two correspondences, we can both es-
timate the size and construct zonotopes by using the
corresponding classical bounds for hyperplane arrange-
ments. In particular, zonotopes in ��� have complexity
(including number of facets) that is ���! "�$# 	 � , and can
be constructed within the same time bound. In particu-
lar, a zonohedron may have complexity ���! "�%� .

A variety of bounding volumes have been used for
collision detection. These include axis-aligned bound-
ing boxes [4], bounding boxes in general orientation
(OBBs) [10], spheres [12, 17], and many more. Note
that the first two are in fact special cases of zonotopes.
In general, the trade-off involved in selecting a bound-
ing volume shape is between the tightness of fit for the
underlying geometry and the simplicity of testing the

intersection between bounding volumes. All currently
proposed bounding volumes are shapes of constant de-
scription complexity, that is, each of them is defined by
a fixed number of parameters.

Several facts make zonotopes an intriguing possibil-
ity as a bounding volume:

� Zonotopes are closed under Minkowski sum and
difference; this implies that testing for intersec-
tion between two zonotopes can be implemented
by testing for point inclusion in their Minkowski
difference.

� The list of generators is an efficient implicit repre-
sentations of the zonotope; for example, in � � , a
zonotope of size ���! �%� can represented by only
 generators. Furthermore, operations such as
Minkowski sum and difference are trivial to ex-
press in terms of generator lists.

� Zonotopes allow for bounding volumes of vari-
able complexity, within a unified framework. For
example, when constructing a bounding volume
hierarchy, one can use zonotopes with more gener-
ators at higher levels in the hierarchy, where there
are few hierarchy nodes but the complexity of the
enclosed geometry may lead to a bad fit using only
few generators. As we will show, mixing space
and space-time volumes [3, 11, 12] is another ex-
ample.

2 Summary of the Results

In this paper we present efficient algorithms for find-
ing tight zonotopes enclosing some underlying poly-
hedral geometry and for using zonotopes as bounding
volumes in collision detection applications. Through-
out, we aim to represent zonotopes via their collection
of generators, and not as explicit polytopes.

Specifically:

� We give an � �! ����� � � algorithm for computing
the minimum area zonotope enclosing a set of
points in ��� .

� We give an algorithm to find a zonotope enclos-
ing given points in � � with generators along�

given directions and minimizing the sum of the
generator lengths, in time ���! � �$# 	�� �
	�� �� � .

� We give an algorithm to find a zonotope enclos-
ing given points in � � whose total generator
length is within � � � � ��� � � of the optimum, in
time � �! ���# � ��# 	 � � ��# 	�� � � � .

Furthermore, given zonotopes in � � specified by
their generators, we can:

� Decide whether two zonotopes with generators
in total intersect or not, in time � �! ����� � � time.

� When repeated intersection testing is required, as
in physical simulations, we describe how to im-
plement efficiently some of the classical methods
(such bounding volume hierarchies, or tracking
closest feature pairs) using only the implicit de-
scription of zonotopes via their generators.

� We show how to easily build bounding space-time
volumes for zonotopes, for use in collision detec-
tion applications where it is critical that no colli-
sions be missed.

Although many questions remain open, the develop-
ments in this paper show the potential benefits of using
zonotopes in other areas of science and engineering.

3 Zonotope Fundamentals

Formally, a zonotope is a Minkowski sum of a fi-
nite set of line segments. An alternative view
is to define a zonotope by its center and gen-
erator vectors. The zonotope � centered at � ,
with generators � 	���� � ����������� � , is the point set ��� ������ � � ��� � ��� � � � � � � for all �!�#"$� &% . We write
� ' �(� �*)+� 	 ��� � ������� ��� �
, � . For simplicity, we as-
sume throughout the paper that the zonotopes are non-
degenerate, i.e. any � generators are linearly indepen-
dent. In � -dimensions, a zonotope with generators
has complexity � �! ��# 	 � . As we remarked, the topol-
ogy of the boundary of a zonotope matches the topol-
ogy of a line arrangement [19]. We describe this duality
in three dimensions.

In three dimensions, the faces on a zonotopes are
parallelograms. Let us take the - -axis as pointing up.
The boundary of a zonotope can be decomposed into
two pieces: the upper hull �/. and the lower hull � # .
We project �0. on the 132 plane and obtain the tiling 4
of a convex polygon 5 , the projection of the vertical
silhouette of �/. . Each tile 6 �87 in 4 is the projection
of a face on � . and is a translation of parallelogram
�91:�<;� � 2=�>;7 � � �/�#1 ��2 � �?% where �<;� denotes the pro-
jection of � � on the 1:2 -plane. Now consider the plane@ 'A�*- � -B' �?% . For each generator � � of � , we draw a
plane

@ �
passing through the origin and perpendicular

to � � . Let C � be the line
@ �ED @

. Denote by F the ar-
rangement of ��C �G� �H�I"J� �% . The dual diagram of 4
is isomorphic to the line arrangement F : each parallel-
ogram 6 �K7 in 4 corresponds to a vertex between C � and

2

v
′

6

T12

L
′

4

`
′

1

L4

`6

`5

`4

`3

`2

`1

v
′

1

v
′

2

v
′

3

v
′

4

v
′

5

Figure 1: The dual between the line arrangement F and the tiling 4 .

C 7 ; each vertex in 4 to a face in F ; and each edge in 4
to an edge in F (Figure 1).

In the later sections, we will exploit this duality be-
tween line arrangements and zonotopes to design effi-
cient algorithms for zonotope intersection testing.

4 Smallest Enclosing Zonotopes

In this section we focus on algorithms for computing
smallest enclosing zonotopes for some underlying ge-
ometry in ��� . Many possible definitions of ‘small-
est’ can be used, including volume, surface area, total
length of generators, etc. A first basic observation is
that it suffices to consider only the convex hull of the
underlying geometry, since a zonotope is convex. Since
we are only concerned with polyhedral geometry, from
now on we will focus on computing the optimal enclos-
ing zonotope of a set of points, which we may assume
to be the vertices of a given convex polytope. We con-
sider the cases �B'�� and ����� separately.

4.1 Minimum Area Enclosing Zonotope in ���
In � � we can give a fast algorithm to compute the min-
imum area enclosing zonotope. Our input can be as-
sumed to be a convex polygon � of vertices

@ � �%�B�
"$� , in ��� . We show that the smallest area zonotope�

that contains all the points
@ �

can be computed in
� �! � ��� � � time.

We first look at a much simpler problem, when the
center � of the zonotope is specified. In ��� , a zono-
tope is simply a centrally symmetric polygon, or zono-
gon. If the zonogon has a center at � and contains

all the points
@ �

, it must also contain all the reflection
points

@ ;� of
@ �

through � , and thus it contains the con-
vex hull of the set of � points

@ �
and
@ ;� . This convex

hull is centrally symmetric around � , and so it is the
minimum area zonogon centered at � and containing
all the points

@ �
. We call this zonogon

� � � � .
In the general setting, only the points

@ �
are given.

We need to find the center � that minimize the area of� � � � . For notational simplicity, we will allow indices
outside the range � � ���
	 and identify

@ �
with

@ �
. � and@ �

� for each " .
For a given center � , the vertices of

� � � � are either
original points

@ �
or reflected points

@ ;� . By group-
ing the original points together, and respectively, the
reflected points, we can describe

� � � � as a circular se-
quence of vertices in a counterclockwise order of the
form: � ' @��� � � � @�� � @ ;��� � � � � @ ;� � � ����� @��� � � � @�� � @ ;��� � � � � @ ;� � � .
We call this sequence the combinatorial description of� � � � .

We denote � ��	 the area of a polygon � , and define
the function ��� � ��� � , � � � �!'�� � � � ��	 , for each
point ��� ��� . Note that given � and � , we can con-
struct

� � � � in � �! � time, and thus � can be evaluated
at any point � � � � in � �! � time. To find the global
minimum of � , we first establish some properties of � .

In a region where the combinatorial description of� � � � is a constant � , exploiting the symmetry of

3

Pas

P'a's

Pa's

Pbs

P'b's
Pas+1

O

Figure 2: A part of a zonotope

� � � � , we have that, see Figure 2:

� � � � '
����� 	

� � � @���� @ ;� � � @� �	� � 	 �
� @���� � � � @�� � @ ;� � � 	 � � @ ;� � � � � � @ ;� � � @� �	� � 	�

'
����� 	

� � @ � � � @��� � @� �	� � 	 � � � @��� � � � @� � @ ;� � � 	�

'

����� 	
� � @ � � � @ ��� @ � �	� � 	 � � � @ ��� @ � �	� � 	

�� � @ ��� � � � @��	� ��	 � � � @ ��� � � � @��	� @ � � � 	�

'

����� 	
� � @ � � � @ ��� @ � �	� � 	 �� � @ ��� � � � @�	� ��	

� � � @��� � � � @�� � @ � � � 	
 � � @� � � � � @� � 	
�
It follows from the above equation, in each region

where � is a constant, � is an affine function of � .
The coefficient of the linear term of that affine function
comes from the term � @ ��� � � � @� � ��	 and thus, depends
only on the edges of � appearing on

� � � � .
For an edge

@�� @��
. 	 of � , let � be such that

@ � be the
point furthest from

@�� @��
. 	 among all the points

@ �
. Let

C � be the directed line connecting the midpoint of
@ � @ �

to the midpoint of
@ � @�� . 	 .

It is easy to see that the edge
@ � @ �

. 	 of � is an edge
of
� � � � iff all the points

@ ;� are on the left side of the
directed line

@ � @ �
. 	 , i.e. iff

@ ;� is on the left side of@�� @��
. 	 , and thus, iff � is on the left side of C � . If �

denotes the arrangement of the lines C � , then it is clear
that � is a piecewise affine function over � . We have
thus shown:

Lemma 4.1

The area function � is piecewise affine, and its domain
decomposition is given by an arrangement of lines.

Given a line C , let us consider the restriction ��� of �
onto C . It is clear that ��� is a piecewise affine function

as well. We can compute the intersections of C with the
lines C � , and sort these intersections in � �! ����� � time.
After that, when � moves along C , we can track the
edges of � appearing on or disappearing from

� � � � .
This way, we can easily compute the function ��� in
� �! � additional time. Thus,

Lemma 4.2

The restriction of � onto any line C can be computed in
� �! � ��� � time.

By rotating the plane, we can assume, without lost of
generality, that the line C is a vertical line. We further
assume that the line C and the points

@ �
are in general

position, and thus C is not parallel to any of the edges in
� . When the point � is at ��� along C , the edges in �
appearing on

� � � � are edges on the upper hull of � .
When � moves upward and crosses one of the line C � ,
if that line corresponds with an edge in the upper hull
of � , that edge disappears from

� � � � . If the line C �
corresponds with an edge in the lower hull of � , that
edge appears on

� � � � . Observe that in both cases, the
slope of ��� increases. As the result, the slope of ��� is
monotonically increasing. Thus,

Lemma 4.3

The restriction ��� of � onto any line C is a unimodal
function.

It is well known that a planar function which is uni-
modal over all lines in its domain is itself unimodal.
As a direct consequence,

Corollary 4.4

The function � is unimodal.

Let C be a vertical line, and let ��� be the point where
��� achieves its minimum. From Lemma 4.2, ��� can be
computed in � �! ����� � time. If we compute the linear
coefficient of � at ��� , we can decide whether ��� is the
global minimum of � , and if not, using the unimodal
property of � , we can tell whether the global minimum
must be on the left or the right of C .

As � is piecewise affine on � , it has a global min-
imum at one of the vertices of � . We can use binary
search, with the help of a slope selection algorithm [5],
to locate that vertex. There are ���! "�%� candidate ver-
tices at the beginning. In each search step, we reduce
the number of candidate vertices in half, by first run-
ning the slope selection algorithm to obtain a vertical
line separating the set of candidates into 2 subsets of

4

equal size, then decides which of the subset contains
the global minimum. There are ��� ����� � search steps,
each costing � �! ����� � time for running the slope se-
lection algorithm to obtain a vertical line, and another
� �! � ��� � time to decide what side of that vertical line
the optimal vertex is on. The total cost of locating the
global minimum of � is ���! ����� � � . Thus,

Theorem 4.5 The minimum area zonotope containing
a set of points in � � can be computed in ���! ����� � � .

In � � , ����� , the computation of the optimal en-
closing zonotope for a point set is more complicated,
because not every centrally symmetric polyhedral body
is a zonotope. In fact, most centrally symmetric bod-
ies cannot be approximated arbitrarily closely by zono-
topes — those that can are know as zonoids. Unlike
in ��� , we know of no simple way to find an optimal
enclosing zonotope even when the zonotope center is
given. The volume of a zonotopes in � � is also more
complicated, being the sum of the volumes of all pos-
sible parallelepiped formed by d-tuples of the genera-
tors. So for � � � we consider two simpler problems.
In both problems, we use the sum of the total length of
the generators as the measure of optimality. In the first
problem, we consider the case where the directions of
the generators are given, and in the second problem, we
consider the task of finding an approximately optimal
enclosing zonotope.

4.2 Discrete Oriented Enclosing Zonotope

Given a set of points
@ ' ��� 	 � � � ��� � � � � � % , and

a set of unit vectors � ' �9� 	%��� � ��� � � ��� � % , we
would like to compute a point � and coefficients� 	 � � � ��� � � � � � such that the discrete oriented zonotope�
� ' �(� �*) � 	 � 	 � � � � � ��� � � � � � � � , � contains all points in@
.
What makes this problem easier is the fact that the

combinatorial structure of a zonotope depends on the
direction of its generating vectors, and not on the their
length, and thus the combinatorial structure of all dis-
crete oriented zonotopes with the same direction vector
set are the same. We can compute the hyperplane ar-
rangement dual to

�
� in ��� � �$# 	 � time, then, for any

��� � ��� -tuple of directions, we can find the normal di-
rection of the two zonotope faces corresponding to that
tuple, and find the two extreme points among

@
along

that direction. It is clear that we only need to look at
these extreme points when computing

�
� .

By rearranging the points if necessary, we can as-
sume without lost of generality that the first ; points
� 	 � � � ��� � � � � �

�
are the extreme points, �;G' � � � �$# 	 � .

To compute the coefficients � � ’s, we solve the fol-
lowing linear programming:

� "
�� � � 	 �
�

subject to:

� 7 ' � �
�� � � 	 �
�87 � � ����� � � ��� � ;

� � � � � �87 � � � ���3" �	�
� �!�#"J� � �%� ��� � ;
We can solve this linear programming in polyno-

mial time using interior methods [18]. There are ��� � � �
equations and constraints, and thus, the cost of solving
this linear programming is ��� �:	�� �� � . Thus,

Theorem 4.6 The minimum total length discrete ori-
ented zonotope

�
� having generators along

�
given di-

rections and containing a given set of points can be
computed in � �! � ��# 	�� �
	�� �� � time.

4.3 Approximate Minimum Total Length
Zonotope

In this subsection, we would like to compute a
zonotope

� �
containing the set of points

@ '
��� 	 � � � ��� � � � � � % such that the total length of the
generators of

� �
is within � ��� � of the the total

length of the minimum total length zonotope
� '

�(� �*)�
 	%��
 � ��� � � ��
� , � enclosing
@

.
We consider the set of unit vectors � '

�9� 	 ��� � ��� � � ��� � % that tessellates the sphere of directions
so that for any unit vector � , there is a vector � 7 in �
such that

� � � � 7>��� � . It is clear that we can do so
with ��� ����� ��# 	 � vectors. Let �
	%��� � ��� � � ��� � be the unit
vectors along the axes of some coordinate system, and
let � '���� ��� 	 ��� � ��� � � ��� � % .

For each generator vector
 � of
�

, let � �87 be a vector
in � such that
 �87 '�
 � � �
 ��� ��� �87 satisfies

�
 �87=��� � .
Let � ' � � � 	 �
 � � . It is clear that ���

� � � 	 �
 � �
 �87 ��� �� � � 	 �
 �����
 �87<� � ��� , and thus

� �"!#! � � 	
 � �"!#! � � 	 � �
 ��� � �87 �$!#! �� � 	 � �
 � �
 �87 � �"!#! � � 	 � �
 ��� � �87 �$!#! �� � 	 ���%�&� � �
Thus,

�
is contained inside a discrete oriented zono-

tope with direction vector set � . We call this zono-
tope
� ; . Clearly, the total length of generators in

� ; is
� � � �<� �'� ' � � � � ��� � �'� . We compute

� �
with di-

rection vector set � having the minimum total length.

5

The total length of generating vectors of
� �

is less than
the total length of

� ; , and thus is within ����� � the total
length of

�
. Thus,

Theorem 4.7 Given a set of points in � � , and an ����
. An approximate enclosing zonotope of the point set

with total length of generators within � ��� � of the opti-
mal one can be computed in � �! ���# � �$# 	 � � �$# 	�� � � � .
5 Collision Detection Between Two Zonotopes

We now describe algorithms for testing if two zono-
topes intersect in � � . We consider two scenarios. One
is the static collision detection in which we only need
to detect the collision between two static zonotopes.
The other is the dynamic collision detection in which
repetitive collision detections are needed between two
zonotopes that may be in different position or orien-
tation. In latter case, preprocessing is allowed to ac-
celerate the subsequent collision detection. Dynamic
collision detection arises in the applications dealing
with dynamic scenes such as moving objects. All of
these problems have been studied extensively for con-
vex bodies. Of course, a zonotope is a convex object.
Any algorithm for convex objects applies to zonotopes
as well. However, the explicit representation of a zono-
tope with generators needs � �! � � storage. Direct
application of the existing algorithms to zonotopes be-
comes inefficient. Therefore, the major challenge is to
design efficient algorithms that work for implicitly rep-
resented zonotopes. We show in this section that many
algorithms developed for convex bodies have efficient
counterparts for zonotopes.

5.1 Static collision detection

For this problem we need to ‘anchor’ zonotopes at par-
ticular points of space. Thus we will specify zonotopes
by giving their center, followed by a list of their line
segment generators. We treat the segment generators as
vectors emanating from the origin. Note that when the
center coincides with the origin, a zonotope coincides
with its centrally symmetric reflection through the ori-
gin.

Given two zonotopes � 	 ' �(� �*)+� 	 ������� ��� � , � and
� � ' ��� �*)�
 	��������%��
�� , � , we wish to decide whether
� 	 intersects � � , i.e. whether � 	 D � � '	� . The fol-
lowing is well-known.

Lemma 5.1 � 	 D � �

'�� iff � � � is in the zonotope

� � �*)+� 	 ����������� � ��
 	 �������%��
 �0, � .
The above lemma reduces the collision detection be-

tween zonotopes to the point membership problem of

a zonotope: given a point � and a zonotope � '
� � �*)�� 	 ��� � ����������� � , � (here ' � � �), determine
whether � � � . Of course, we may compute the ex-
plicit representation of this zonotope and apply a stan-
dard algorithm for point inclusion convex bodies. This
algorithm, however, will run in at least ���! � � time as
the number of vertices of a zonotope can be quadratic
in terms of the number of generators. In this section,
we present an algorithm for intersection detection with
only ���! ����� � � running time.

Recall that the boundary of � can be decomposed
into the upper hull � . and the lower hull � # . A point
is in � iff it is directly below �/. and directly above
� # . We therefore further reduce the problem to de-
termining whether a point is directly below � . or/and
above � # (the problems are symmetric). Let 5 be the
boundary of the projection of � . and the tiling 4 of 5
be the projection of �/. on the 132 plane (Figure 1). For
a point � , consider its projection �� on the 1:2 plane. If
�� is outside of 5 , � is not directly below �!. . Oth-
erwise, we locate the parallelogram 6 that contains �
and decide if � is above or below the corresponding
facet on � . .

The tiling 4 can be viewed as a monotone planar
subdivision. We will use a method similar to [8] to lo-
cate the point. Namely, we perform a binary search on
the monotone separators to determine the two adjacent
separators that sandwich the point. We will show be-
low that each separator consists of line segments and
can be computed in time � �! � ��� � . Since we per-
form � � ����� � comparisons against separators in total,
the algorithm runs in time � �! ����� � � . In what fol-
lows, we shall show how to construct a separator in
� �! � ��� � time.

We will now exploit the previously mentioned tan-
gent space duality between zonotopes and arrange-
ments. For a zonotope � , let F be the line arrange-
ment defined in Section 3. Order all the vertices in F
according to their 1 coordinates, and index the vertices
according to their order. We can assign the same in-
dex to the corresponding parallelogram in 4 . Clearly,
the order is consistent with the “right-to” relationship1

in 4 . Denote by � � the vertical line that just right to
the
�

-th vertex in F . Suppose that � � crosses the lines
C � � � C � � ��������� C ��� from left to right (Figure 1). Define the
corresponding pseudo vertical line � ; � in the tiling 4
as follows. We start from the top vertex of 5 and form
a monotone chain � by extending � ;� � ��� ;� � ����������� ;��� one

1We use “right-to” instead of “above” notation just for exposi-
tion convenience.

6

by one. Since � � separates all the vertices with indices
� � from those � � , �$; � separates all the faces with
indices � � from those � � , i.e � ; � is the

�
-th sep-

arator, from left to right, in 4 . We can compute � �
in ���! ����� � time by the optimal slope selection algo-
rithm [5]. Therefore, we have that:

Theorem 5.2 For any two zonotopes with genera-
tors in total, we can decide whether they intersect in
� �! � ��� � � time.

5.2 Dynamic collision detection

In dynamic collision detection, we may need to per-
form intersection testing for two zonotopes repetitively
when they are in different configurations. Dynamic
collision detection has been a central subject in mo-
tion planning, dynamic simulation, and computer ani-
mation. The typical methods include Minkowski sum
method for translational motions, hierarchical method,
and local walking techniques. We will describe how to
implement those methods efficiently for zonotopes.

Minkowski sum method. When only translation is
allowed, one standard technique is the Minkowski
sum method2. In such a method, we compute the
Minkowski sum of two convex objects and reduce
the collision detection problem to a point containment
problem in the Minkowski sum. According to the ear-
lier duality, this is very similar to point location in line
arrangements. Point location in line arrangements is
a very well studied topic in Computational Geome-
try. The best known trade-off between preprocessing
and query time is roughly � � �� � � query time by using

� � � � preprocessing time and space. Unfortunately, we
are unable to achieve the same bound for our problem.
Instead, we have the following weaker trade-off.

Lemma 5.3 For any zonotope with generators, for
any � � � � , we can preprocess it into a data
structure with ��� � � space so that the membership
query can be answered in time � � �

�
� ����� � � .

Proof: We compute a � ����� � -cutting � of the dual
arrangement: a set of � ��� �%� interior disjoint trape-
zoids that refine the arrangement of � lines so that
each trapezoid is crossed by � �! ��� � lines. We then
map the cutting to the tiling 4 of 5 . Each line C � is
mapped to a pseudo line C ;� which is the bisector of

2The Minkowski sum method works for rotations too, but it
raises the dimension from three to six and increases the complexity
significantly.

the strip corresponding to the generator � � (Figure 1).
We perturb each vertical thread to its right and map
to its corresponding pseudo vertical line as defined
before. This way, we obtain a planar subdivision � ;
of 5 . Each cell in the subdivision corresponds to a
trapezoid in � . Further, the line-trapezoid incidence
relationship in � F ����� is preserved. Thus, we can
compute and store a � � � ��� � query time point lo-
cation data structure for � ; and associate the cross-
ing lines with each cell in � ; . For any query point,
we first locate it in � ; and then use the algorithm as
shown in Theorem 5.2 to locate the point. The first
step takes � � � ��� � time, and the second step takes
��� � ����� � � time as each cell is crossed by ���! ��� �
lines. As for the preprocessing, since each pseudo
line has complexity ���! � , the complexity of the ar-
rangement of � pseudo lines is � �! �� � . In addition,
each cell needs to store � �! ��� � lines and there are
����� �%� cells. The storage in total is � �! �� � . By set-
ting �!' � � , we obtain the bound as claimed.

The above algorithms can also be used to compute
the polyhedral distance defined by the zonotope.

Corollary 5.4 Given a polyhedral metric defined by a
zonotope with generators, for any � � � � , we
can construct a data structure using � � � � storage and
in ��� � ����� � time, so that the distance between any
two points can be computed in time ��� �

�� ����� � � .
Proof: For any two points � � � , we locate the face
intersected by the ray from the origin to � � � and
then compute the Minkowski distance. The intersec-
tion can be reduced to point location in the mapping
of the boundary of the zonotope to a sphere centered
at the origin. Same technique and bound apply.

Hierarchical method. In the hierarchical method [6,
9], a series of bounding volumes are computed to ap-
proximate the object with higher and higher accuracy.
The collision detection between two objects is by start-
ing from the coarsest level of the bounding volumes
and descending until we separate two bounding vol-
umes or detect the collision between the two objects.
Here, we wish to emulate the hierarchical method for
implicitly represented zonotopes.

Denote by � �	� ��
 � the Hausdorff distance between
two point sets � and
 and by � �	� � the diameter of
a point set � . What is crucial in bounding volumes
construction in [9] is a the well-known approximation
property of convex bodies: for any convex object �

7

in three dimensions and for any � � �
, there exists

another convex body
 with � � ����� � vertices so that
� �	� ��
 � � ��� �	� � [7]. There are similar results for
zonotopes. In [1], it is shown that a unit ball in � �
can be approximated within Hausdorff distance � by a
zonotope with ��� ����� � generators. The proof is con-
structive but only works for Euclidean balls. In [2],
it is proven that in � -dimensions, any zonoid � can
be approximated within �%� �	� � by a zonotope with
� � ������ .�� � � generators, for any � � �

. But the proof
is non-constructive. In the following, we show that for
any zonotope with generators, we can construct an
approximation efficiently.

Lemma 5.5 For any zonotope � in ��� and for any
� � �

, there exists a zonotope
 with � � ����� � � gen-
erators, so that � �	� ��
 � � �%� �	� � . Further,
 can be
computed in ���! � time where is the number of the
generators of � .

Proof: Suppose that � ' � � �*)+� 	 ��� � �������%��� �
, � . By
symmetry, we can assume that all the � � ’s have pos-
itive - components. We normalize every � � and
each � � corresponds to a point � � on the unit hemi-
sphere. Now, we subdivide the unit hemisphere
into

�
patches so that for any two points � � � in

the same patch, the angle between � � and � � is
bounded by � � ��� � 	�� � � . Suppose that the patches are� 	 � � � ���������

� � . For each
� 7

, pick a point � 7 in
� 7

and denote by 7 ' � �� � 7 .
Now divide all the � � ’s into clusters according to

the patches they are in. Define � 7 ' �9� ��� � � �� 7 % . For each vector � � � � 7 , we form two
vectors: � 	� ' �+� � �" 7 � 7 is the projection of
� � on the direction 7 , and � �� ' � � � � 	� . Set
� 7 ' ���
	����� � 	� , for � � � � � . Consider the

zonotope � ' � � �*)+� �	 ��� �� �������%��� �� , � . Suppose that
� � �*)�
 	 ��
 � ��
 � , � is the tightest axis aligned bound-
ing box of � . (
 	%��
 � ��
 � can be computed easily by
projecting each � �� to the 1 ��2 � - axes). Now, consider
the zonotope
 ' � � �*)�� 	 ��� � ������� ��� � ��
 	 ��
 � ��
 � , � .
We claim that � �	� ��
 � � �%� �	� � if

� ' � ��� � for
some constant � � � .

Because � � ' � 	� � � �� , we have that

� � � �*)+� 		 ��� 	� ����������� 	� , � ! � � �*)+� � 	 ��� �� ����������� �� , � � � �*)�� 	 ��� � �������%��� � , � ! � � � �*)�� 	 ��� � �������%��� � , � ! � � �*)�
 	 ��
 � ��
 � , � '
 �

Denote by � ��� the Euclidean length of the vec-
tor � . For any point � �
 of the form � '

����� � � � � � 7�� 7
 7 , let � ' � ��� � ���������	 � 7 � � .

It suffices to prove that ������� � ��� �	� � if
� ' � ��� �

for some constant � � �
. First, it is easy to verify

that ������� � � � � � � �� � for some � � �
. Accord-

ing to the property of the subdivision, we have that
� � �� � � � 	 � � 	�� ��� � � � for some � 	 � �

. Therefore
������� � �

� �
� 	�� � � � � � � � . Further, it is not hard to

see that � �	� � � � �
� � � � � � for some constant � � ��

. Set � ' ��� ���� � � . Then we have that ������� �I�%� �	� � ,
if
� ' � ���� . Therefore, � �	� ��
 �!� ��� �	� � , and

has � � ����� � � generators.

Local walking method. In a local walking
method [14, 15], the closest pair of features (ver-
tices, edges, or faces) between two convex objects
is tracked for two objects. It is shown in [14] that a
simple local walking strategy is guaranteed to find the
closest pair of features between two convex volumes.
If the motion is small, then the closest pair at any
time step should not be “far” from the previous step,
and therefore the walking should terminate in a small
number of steps. Now, we show that the local walking
method can be applied to zonotopes as well. What is
crucial in Lin-Canny’s method is the ability of discov-
ering the neighboring features of any given feature.
This is easy for an explicitly represented polyhedron.
However, again we cannot afford to construct the
explicit representation of a zonotope. Instead, we show
that it is easy to construct the neighborhood of any
feature on the fly. For simplicity, consider the walking
from face to face in 4 . On each face of 4 , there are
four choices to choose to which neighbor to exit. We
have that

Lemma 5.6 For any zonotope with generators, after
preprocessing with � �! � space and � �! � ��� � time,
we can perform the face-to-face walking in � � ����� � �
time per step.

Proof: Again, by duality, the walk is to determine
the vertices adjacent to the vertex dual to a face in
4 . This can be done by maintaining a dynamic con-
vex hull data structure. The classical algorithm by
Overmars and van Leeuwen [16] gives us the desired
bound.

6 Zonotopal Space-Time Volumes

As we mentioned, an important benefit of zonotopes is
that their description complexity can be varied or ad-
justed according to the application needs. In this sec-
tion we illustrate how this can be exploited for collision
detection involving space-time volumes [3, 11, 12].

8

Consider a simple scenario where we have two zono-
topes

@
and 5 moving rigidly in ��� . We are inter-

ested in verifying that their paths do not collide. In a
typical implementation, the dynamics of

@
and 5 are

controlled by an integrator. At each time time step the
positions of the bodies are updated by the dynamics
module, and a new collision test is performed, using
(say), the algorithm described in Section 5. Note that
in this approach, the rate of collision checking is deter-
mined entirely by the system dynamics. It is possible
that collision may be missed, if they happen if

@
and

5 overlap, and then stop overlapping, within a single
time step. It is also possible that unnecessary collision
checks are done, as when the two bodies are far away.

A way to address both of these concern is to do col-
lision checking not on

@
and 5 , but on the portions of

space swept by
@

and 5 during a period of time ��� , the
so-called space-time volumes of the two bodies. In this
section we show how to enclose these space-time vol-
umes in bounding zonotopes. Note that if these bound-
ing volumes are disjoint, then

@
and 5 cannot collide

at any time during the interval ��� . If the volumes in-
tersect (either the bounding zonotopes, or the actual
space-time volumes swept by the bodies), the

@
and 5

may or may not collide during ��� . Note that
@

and 5
collide if they occupy the same space at the same time.
Our space-time volumes are 3-D and are the spatial pro-
jections of the real 4-D space-time volumes. Thus, if

@
collides with 5 ’s location at a different time during ��� ,
this will lead to a space-time volume intersection, even
though

@
and 5 have not collided. When such colli-

sions are detected, the interval ��� can be cut in half
and the process repeated, until either a real-collision
is detected, or non-intersection is confirmed. We omit
further details here.

If the body
@

just translates during the interval ��� ,
then its translation vector � can just be added to the list
of generators for

@
to produce a zonotopal description

for the exact space-time volume swept by
@

. The new
zonotope needs to be anchored at the origin of

@
, trans-

lated by ��� � . This simple case illustrates the power of
the zonotope description. Of course we must handle
the case of a more general rigid motion during ��� . Be-
sides translation, there can be a rotational component
as well. Let - be the rotation axis and � the rotation an-
gle; we assume that �

� ��� ��� —a condition that should
be easy to satisfy since in general ��� is small. The ro-
tational component causes each vertex of

@
to move

along a circular arc centered on the - axis, on a plane
normal to the axis. Figure 3 below depicts these vertex

arcs, projected onto a plane normal to the - -axis and
moved to a common origin.

O

c

Figure 3: The rotational motion of the ver-
tices of

@
.

If we can enclose these arcs in a tight-fitting paral-
lelogram (a 2-D zonotope), we augment the generators
of
@

with the translation vector � and these two ‘ro-
tational’ generators, to produce a space-time bounding
volume for the rigid motion of

@
. The resulting zono-

tope needs to be centered at the center of
@

, offset by
��� � and the offset between the common origin of the
arcs and the parallelogram center in Figure 3. The fact
that this zonotope bounds all placements of

@
during

the rotation follows, because the space-volume contain
all vertices of each such placement, and therefore (by
convexity) all of

@
throughout ��� .

Since we expect ��� to be small, we also expect the
set of arcs we need to enclose to be small in length.
However, the number of such arcs can be � �! "�%� (where
 denotes the number of generators of

@
, so we wish

to avoid looking at all these arcs individually. Looking
at Figure 3, we claim that a particular arc � is contained
in a circle centered at the origin and passing through its
other endpoint, because by assumption each arc spans
an angle of less than ��� ��� . Thus all arcs are fully en-
closed in a circle centered at the origin, whose radius is
the distance to the the most distant endpoint of any of
the arcs. This circle can in turn be enclosed in a square,
which forms our bounding parallelogram.

It remains to show how to compute the distance of
the vertex of

@
most distant from the rotation axis - .

To do so it suffices to project all generators of
@

onto
a plane normal to - and simply compute the 2-D zono-
tope generated by them � �! ����� � time, then select the
most distant of the � vertices thus formed. Thus we
have shown that:

Theorem 6.1 Given a rigid motion of
@

over interval

9

��� , a space-time bounding zonotope for all placements
of
@

can be computed by adding three generators to
@

.
These generators can be computed in � �! ����� � time.

Note that, since our space-time volumes are spatial
projections of the true 4-D space time volumes, we
need not assume that

@
moves with constant velocity

and angular acceleration during its rigid motion. All
that matters is the set of spatial positions occupied and
not the times at which they were. It would be inter-
esting to explore the idea of working directly with 4-
D zonotopes that are bounding volumes in true space-
time, but we have not explored that path since we cur-
rently lack an efficient intersection test for 4-D zono-
topes.

7 Conclusions

We have proposed the use of zonotopes as bounding
volumes for intersection testing and other applications.
Our work generates many open questions, including:

� In ��� , how well can a zonotope approximate a
given centrally symmetric convex polyhedron?

� How fast can such an optimal (in terms of volume)
zonotope be computed?

� What can we say about the number of generators
of this zonotope?

� How do we intersect efficiently 4-D space-time
zonotopal volumes?

� How can bounding volume hierarchies based on
zonotopes be constructed for arbitrary polyhedral
geometry?

References
[1] U. Betke and P. McMullen. Estimating the sizes of

convex bodies from projections. Journal of London
Mathematics Society, 27:525–538, 1983.

[2] J. Bourgain, J. Lindenstrauss, and V. Milman. Approx-
imation of zonoids by zonotopes. Acta Mathematics,
162:73–141, 1989.

[3] S. Cameron. Collision detection by four-dimensional
intersection testing. In Proc. IEEE Internat. Conf.
Robot. Autom., pages 291–302, 1990.

[4] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Pon-
amgi. I-collide: An interactive and exact collision de-
tection system for large-scale environments. In Proc.
ACM Interactive 3D Graphics Conf., pages 189–196,
1995.

[5] R. Cole, J. Salowe, W. Steiger, and E. Szemerédi. An
optimal-time algorithm for slope selection. SIAM J.
Comput., 18(4):792–810, 1989.

[6] D. P. Dobkin and D. G. Kirkpatrick. Fast detec-
tion of polyhedral intersection. Theoret. Comput. Sci.,
27(3):241–253, December 1983.

[7] R. M. Dudley. Metric entropy of some classes of
sets with differentiable boundaries. J. Approx. Theory,
10:227–236, 1974.

[8] H. Edelsbrunner, Leonidas J. Guibas, and J. Stolfi. Op-
timal point location in a monotone subdivision. SIAM
J. Comput., 15(2):317–340, 1986.

[9] J. Erickson, L. J. Guibas, J. Stolfi, and L. Zhang. Sep-
aration sensitive collision detection for convex objects.
In Proc. 10th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 327–336, 1999.

[10] S. Gottschalk, M. C. Lin, and D. Manocha. OBB-tree:
A hierarchical structure for rapid interference detec-
tion. Comput. Graph., 30:171–180, 1996. Proc. SIG-
GRAPH ’96.

[11] Philip M. Hubbard. Space-time bounds for collision
detection. Technical Report CS-93-04, Dept. of Com-
puter Science, Brown University, 1993.

[12] Philip M. Hubbard. Collision detection for interactive
graphics applications. IEEE Trans. Visualization and
Computer Graphics, 1(3):218–230, September 1995.

[13] B. Huber and B. Sturmfels. A polyhedral method for
solving sparse polynomial systems. Math. of Compu-
tation, 64:1541–1555, 1995.

[14] M. C. Lin and J. F. Canny. Efficient algorithms for in-
cremental distance computation. In Proc. IEEE Inter-
nat. Conf. Robot. Autom., volume 2, pages 1008–1014,
1991.

[15] B. Mirtich. V-Clip: Fast and robust polyhedral colli-
sion detection. Technical Report TR97-05, MERL, 201
Broadway, Cambridge, MA 02139, USA, July 1997.

[16] M. H. Overmars and J. van Leeuwen. Dynamically
maintaining configurations in the plane. In Proc. 12th
Annu. ACM Sympos. Theory Comput., pages 135–145,
1980.

[17] I. J. Palmer and R. L. Grimsdale. Collision detection
for animation using sphere-trees. Comput. Graph. Fo-
rum, 14(2):105–116, June 1995.

[18] M. H. Wright. Interior methods for constrained opti-
mization. In A. Iserles, editor, Acta Numerica 1992,
pages 341–407. Cambridge University Press, New
York, USA, 1992.

[19] G. M. Ziegler. Lectures on Polytopes, volume 152 of
Graduate Texts in Mathematics. Springer-Verlag, Hei-
delberg, 1994.

10

