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ABSTRACT
The computation of Delaunay triangulations from static point sets
has been extensively studied in computational geometry. When the
points move with known trajectories, kinetic data structures can be
used to maintain the triangulation. However, there has been little
work so far on how to maintain the triangulation when the points
move without explicit motion plans, as in the case of a physical
simulation. In this paper we examine how to update Delaunay trian-
gulations after small displacements of the defining points, as might
be provided by a physics-based integrator. We have implemented a
variety of update algorithms, many new, toward this purpose. We
ran these algorithms on a corpus of data sets to provide running
time comparisons and determined that updating Delaunay can be
significantly faster than recomputing.

Categories and Subject Descriptors:F.2.2 [Theory of Computa-
tion]: Analysis of Algorithms and Problem Complexity—Nonnu-
merical Algorithms and Problems; I.6.m [Computing Methodolo-
gies]: Simulation and Modeling—Miscellaneous

General Terms:Algorithms, Experimentation

Keywords: Delaunay triangulation update motion

1. INTRODUCTION

Delaunay triangulations, and their duals Voronoi diagrams, are
fundamental to computational geometry. They provide a decompo-
sition of the space surrounding a set of points into well shaped cells
which can be used to extract proximity information and detect colli-
sions [30, 29]. However, they are still fairly expensive to compute,
despite extensive investigations of how to build them quickly and
robustly [10, 28, 33, 11]. Recently modifications to existing algo-
rithms have been proposed which allow the Delaunay triangulation
of millions of points to be computed [3], extending the domains in
which such techniques can be applied.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SCG’04,June 8–11, 2004, Brooklyn, New York, USA.
Copyright 2004 ACM 1-58113-885-7/04/0006 ...$5.00.

In many situations where the Delaunay triangulation or Voronoi
diagram is required, the Delaunay triangulation of a perturbed con-
figuration of the points is available. For example, in a physical
simulation where Delaunay is used for collision detection, the De-
launay triangulation must be recomputed at each time step as the
coordinates are updated by the integrator. These updates are neces-
sarily small, in order to ensure the accuracy of the simulation; thus
the Delaunay triangulation of the original and perturbed point sets
often have very similar combinatorial structure.

Our problem is then, given a point set with its Delaunay triangu-
lation, and a perturbation of each point in the original set, compute
the Delaunay triangulation of the perturbed point set. We present
several update techniques and compare their running times on var-
ious simulation data sets.

A motivation for this work came from molecular simulations.
There, the Delaunay triangulation is used to compute the molecular
surface area and volume and their various derivatives [14, 15]. The
combinatorial structure of the Delaunay triangulations before and
after an integrator updates the atom coordinates generally differ by
fewer than 10% of the tetrahedra of the triangulation. We found that
by performing flips on the initial triangulation structure, in practice,
we can update the triangulation of a molecule after a time step in
approximately half to three quarters the time it takes to recompute.
The details of this method are discussed in Section 4. A similar
method involving a mix of point removals and flips to update a
Delaunay triangulation where the points were constrained to stay
within their Voronoi cells was independently explored in [20].

Kinetic data structures, first introduced in [7], can be used to
maintain a Delaunay triangulation under smooth motion of the un-
derlying points. In Section 3 we discuss the trade offs involved
with and several techniques for using kinetic data structures to up-
date a Delaunay triangulation. In addition, we discuss possible ar-
eas where improved understanding and optimization might make
kinetic data structure based update methods competitive with re-
building.

There has been some work exploring using a kinetic Delaunay
triangulation to perform inter-frame collision detection and dynam-
ically adjust the integrator step size in the context of a particle sim-
ulation [22]. In general, the issues and advantages associated with
looking at the configuration between frames are quite application
dependent. Therefore, we will restrict ourselves to finding the De-
launay of the perturbed conformation and ignore any intermediate
state.

An alternative would be to allow the triangulation to deviate
slightly from Delaunay in the hopes of achieving greater stability.
In [6] the authors usedalmost Delaunay simplicesfor more robustly
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Figure 1: The number of certificate failures can be mislead-
ing: (a) shows the Delaunay triangulation of an arrangement
of points. They are then moved to configuration (b) without
changing the triangulation. The resulting triangulation has
only edge with a failed certificate, which is dashed, even though
none of the triangles are Delaunay.Ω(n2) flips are necessary to
make triangulation (b) Delaunay.

computing adjacency. However, there has been no investigation of
how to maintain such a set under motion, or maintain a subset of
the almost Delaunay simplices which forms a triangulation.

2. DELAUNAY PROPERTIES
The global correctness of a Delaunay triangulation can be veri-

fied using a set of local certificates, namely that for each facet (edge
in 2D), the sphere (circle) defined by the four (three) points of one
cell (triangle) incident to the facet (edge) does not contain the re-
maining point from the other incident cell (triangle). This test is
known as the InCircle predicate. As a result, it is easy to test if a
given triangulation is the Delaunay triangulation of a set of points.
Unfortunately, even a single failed certificate can mean that the tri-
angulation is arbitrarily far from Delaunay. For an example, see
Figure 1. In simulations, when points do not move far, such situ-
ations do not occur and the number of failed certificates is a good
measure of the amount of work that needs to be done to update a
triangulation to Delaunay.

In 2D, a triangulation which is not Delaunay can be made De-
launay by repeatedly finding an edge with an invalid certificate,
and replacing it with the other diagonal of the quadrilateral defined
by the two triangles sharing the edge. Such flips are calledDelau-
nay flips. Converting an arbitrary triangulation to Delaunay using
this technique requiresO(n2) flips. The concept of Delaunay flip
can be extend to 3D, where a facet is flipped to an edge and vice
versa. However, it is not always possible to convert a triangulation
to Delaunay using Delaunay flips alone [31]. However, we have
found that flipping works most of the time in 3D, as is discussed in
Section 5.

If the triangulation is not embedded, flipping becomes problem-
atic even in 2D. Figure 2 shows such an example where Delaunay
flips cannot be used to convert a non-embedded triangulation to De-
launay. As a result, in order to use Delaunay flips we will have to
ensure that the triangulation is embedded first.

In 3D there are relatively few local operations that can be per-
formed on a Delaunay triangulation, the most important being point
insertion and point removal. A point can be inserted by removing
all cells whose circumsphere contains the point (i.e. those whose
certificate would be invalidated by the new point). The resulting
hole is star-shaped around the new vertex and can be filled by con-
necting each facet on the boundary to the new point with a cell.
Point insertion was first proposed using flips [17] and forms the
basis for most recent implementations of Delaunay triangulation
construction. The cells which are removed by the point insertion
can be kept around and used to build a hierarchical point location
structure, which speeds insertions.

(a) (b)

Figure 2: Flips do not work when the triangulation is not embed-
ded: (a) shows the Delaunay triangulation of an arrangement
of points. The point marked with a dot is then moved as shown
in (b) without changing the triangulation, making it no longer
embedded. The only edge that is not locally Delaunay is the
dashed edge, and this edge cannot be flipped (since the edge
that would be created by the flip already exists).

(a) (b)

Figure 3: Stability and Delaunay triangulations:(a) shows an ar-
rangement of points with a very unstable Delaunay triangula-
tion due to the degenerate conformation. In most cases there is
some tolerance around each vertex, as shown in (b).

A point can be also be deleted from a Delaunay triangulation.
This operation is slightly more complicated and is covered in [13].
We will use both these operations for updating Delaunay triangula-
tions.

Delaunay triangulations can be very brittle structures. In certain
configurations, for example the nearly co-circular points in Figure 3
(a), arbitrarily small displacements can result in large changes to
the triangulation. While the example shown is highly degenerate
and is unlikely to arise in practice, in much of the data we looked
at the distance the vertices must be moved in order to invalidate a
certificate is quite small. Thetoleranceof a certificate is the min-
imal amount each vertex in the certificate must move in order to
invalidate the certificate and can be easily computed [1]. We found
the average tolerance to be around 10% of the local edge length and
that perturbations of 1% of the edge length could invalidate 20% of
the certificates.

2.1 A Note on Terminology

In the remainder of the paper we will restrict ourselves to 3D
Delaunay triangulations, although much of what is said also applies
to 2D. We will usecell to mean the full dimensional simplex (a
tetrahedron) andfacet to mean the simplex with a dimensionality
of d− 1 (a triangle).

The lifting map is a convenient way of thinking about Delaunay
triangulations [16]. It is the mapping lifting the 3D point set to a
paraboloid in four dimensional space, namely

(x, y, z) → (x, y, z, x2 + y2 + z2)

In the lifted space, the InCircle test is a point/plane orientation test
and the Delaunay triangulation is the lower convex hull of the lifted
point set.



Once we are in the lifted space it is natural to generalize De-
launay triangulations to power complexes [5] by allowing the lift-
ing coordinate to be specified independently, namely(x, y, z) →
(x, y, z, l). A way to do this is by giving each point a weight so
l = x2 + y2 + z2−w. The weight can by interpreted as the square
of the radius of a sphere around the point. The resulting lower con-
vex hull is the dual of the power diagram, a Voronoi diagram of
the weighted points using the power distance. This interpretation
is used in the molecular surface area computations mentioned in
the introduction. For simplicity, we will restrict the initial and final
weights of the points to be zero.

Since all of our current approaches only look at one time step at
a time we will letP be the coordinates of the points before the time
step andP ′ the perturbed coordinates. The Delaunay triangulation
of a point set will be denotedD(P ). So the overall problem is to
computeD(P ′) givenP, P ′ and,D(P).

3. KINETIC DELAUNAY
Given a set of continuous trajectories for the points, we can use a

kinetic data structure to maintain the Delaunay triangulation during
the motion. In contrast to most studies of kinetic data structures [9],
in our problem, no trajectory betweenP andP ′ is specified. As a
result we are free to choose it as we see fit in order to minimize the
amount of work that is performed. In Section 3.3 we discuss the
trade offs involved. We only are interested in events which occur
during a narrow interval of time, which affects our choice of type
of solver to use. These issues are discussed in Section 3.5. As with
all known extant work on kinetic data structures, we will restrict
our trajectories to be polynomials of time.

3.1 Kinetic Data Structures Overview
Computational geometry is built on the idea ofpredicates—

functions of parameters defining the geometric data set (e.g. point
coordinates) which return discrete sets of values. Many predicates
reduce to determining the sign of an algebraic or even arithmetic
expression on the coordinates of the primitive objects. For exam-
ple, to test whether a point lies above or below a plane (i.e. the
InCircle test under the lifting map), we compute the dot product
of the point with the normal of the plane and subtract the plane’s
offset along the normal. If the result is positive, the point is above
the plane, zero on the plane, negative below. The validity of many
combinatorial structures built on top of geometric primitives can
be proved by checking a finite number of predicates of the geomet-
ric primitives, calledcertificates. For a Delaunay triangulation, the
certificates are one InCircle test per facet of the triangulation, plus
point plane orientation test for each facet and edge of the convex
hull.

The kinetic data structures framework is built on top of this view
of computational geometry [25]. Let the geometric objects move
by replacing each of their coordinates with a function of time. As
time advances, the objects now trace out paths through space called
trajectories. The values of the algebraic functions of the coordi-
nates used to evaluate the certificates now also become functions of
time. We call thesecertificate functions. As long as these functions
maintain the correct sign, the original data structure is still correct.
However, if one of the certificate functions changes sign, the orig-
inal structure must be updated and some new predicate functions
computed. We call such occurrencesevents.

Maintaining a kinetic data structure is then a matter of determin-
ing which certificate function changes sign next (i.e. determining
which predicate function has the first root after the current time)
and then updating the structure and certificate functions.

3.2 Maintaining a Delaunay Triangulation
Maintaining a Delaunay triangulation using a kinetic data struc-

ture is well understood in theory and has been implemented numer-
ous times [8].

The predicate functions for kinetic Delaunay triangulation are
the determinant of the matrix corresponding to the lifted point/-
hyperplane orientation test as was mentioned in Section 2.1. The
matrix is:

∣∣∣∣∣∣∣∣∣
x0(t) y0(t) z0(t) l0(t) 1
x1(t) y1(t) z1(t) l1(t) 1
x2(t) y2(t) z2(t) l2(t) 1
x3(t) y3(t) z3(t) l3(t) 1
x4(t) y4(t) z4(t) l4(t) 1

∣∣∣∣∣∣∣∣∣ (1)

whereli(t) = x2
i (t)+y2

i (t)+z2
i (t)−wi(t). If the initial and final

triangulations are Delaunay rather than power complexesw(t0) =
w(tf ) = 0.

When a certificate fails, a flip must be performed and seven new
certificate functions must be computed. However, the negation of
the certificate function of the facet/edge being flipped is the certifi-
cate function of the edge/facet created by the flip. The function and
roots can be cached and reused, leaving only six new ones to be
handled. Additionally, each time the motion of a point changes, all
the predicate functions corresponding to facets of cells incident to
the point must be recomputed and re-solved.

In order to compare the costs of the various trajectory types con-
sidered, it helps to establish some notation. There are two logical
components to the cost of using a kinetic Delaunay data structure
to interpolate between two point sets:

• trajectory change cost: the cost of computing and solving
the predicate functions for each of the facets of the Delaunay
triangulation every time the point set’s trajectory changes (in-
cluding the initial specification of the trajectory).

• per flip cost: the cost associated with computing and solving
the six predicate functions mentioned in the previous para-
graph.

Let f be the number of facets in the final triangulation,S(d)
the cost to generate and solve a certificate polynomial of degree
d, em the number of flips (events) that occur during the motionm
and letp be the number of times the motion of all the points is
changed after the initial specification. Then the total cost of the
kinetic data structure is(f(p + 1) + 6e)S(d). Alternatively, we
could move each point independently, one after another, and only
recompute the certificates involving each point when its trajectory
changes. Then, the cost is(5f + 6e)S(d) since each certificate
must be recomputed once for each of the five points involved.

If the points are given weights then there is an extra source of cer-
tificate functions. Some points, calledredundant pointsare points
which are above the convex hull in lifted space and therefore not
part of the triangulation. As a result, for each point which is inci-
dent to four other points in the triangulation, we need to maintain
a certificate to verify that the point has not moved above the hy-
perplane defined by its four neighbors and off the convex hull. In
addition we need certificates to track the location of each redundant
point. These add a cost(t+3er)S(d) wheret is the number of de-
gree four vertexes andr is the number of redundant points per cell
of the triangulation. In our examples,t andr are close to zero since
the weights are never very uneven. As a result those components
of the cost can be ignored.



3.3 Interpolating Motions
We are now free to choose the motion interpolating betweenP

andP ′ to minimize our total work. We found that for the data sets
investigated, the initialization cost dominated, so we chose to fo-
cus on minimizing that and ignore the cost of flips. There the cost
we consider is the product of the number of times the motion is
changed and the cost of generating and solving a certificate func-
tion.

3.3.1 Minimize Trajectory Changes: Linear Interpolation
We can minimize the number of times the motion of each point

changes. This means picking a single motion for each point that
interpolates its initial and perturbed positions. The simplest way to
do this is by allowingx, y, z to change linearly at the same time.
The resulting certificates have degree five.

If we are already dealing with regular triangulations, or are will-
ing to bear the added complexity, we can instead interpolate lin-
early in the lifted space — i.e. interpolatex, y, z and l linearly.
The corresponding Cartesian space motion is the same as before
for x, y, andz. The weight varies quadratically with time. If the
initial and final weights are 0 and we varyt from 0 to 1 during the
interpolation, thenw(t) = (t2 − t)|d|2 whered = (dx, dy, dz) is
the perturbation vector for the point. Note that the weight is always
negative and is bounded by|d|2/4.

Interpolating in lifted space reduces the degree of the certificates
to four at little additional cost. We call these methodslinear in-
terpolation andlifted linear interpolation respectively. The latter
is the lowest degree interpolating motion which does not require
modifying the motions during the interpolation. The cost is then
(f + 6elli)S(4).

3.3.2 Minimize Degree: Linear Certificate functions
Generating and solving high degree certificate functions is ex-

pensive compared to computing static predicates. Polynomial mul-
tiplication is quadratic in the degree (the algorithms with better
asymptotic bounds have constants which are too large to be useful
for the polynomials in question) and there is overhead from allo-
cating space for all the intermediate values. In addition, solving a
degree five polynomial takes three times as long as solving a linear
one as is shown in Figure 4.

For all these reasons it is advantageous to minimize the degree
of the certificate functions. There are two ways to make the certifi-
cate functions linear, either allow one row of the certificate matrix
(Equation 1) to vary linearly, or allow one column.

If we allow one row to vary linearly and hold the others constant,
it corresponds to moving each point as inlifted linear interpolation,
but moving them one at a time. We call this methodpoint at a time
interpolation. Using the above notation, work is(5f + 6epat)S(1)
since each certificate must be recomputed five times, once for each
point involved.

If, instead, we allow one column to vary linearly and hold the
other columns constant, it corresponds to linearly interpolating all
points along each coordinate successively (includingl). The mo-
tion will need to be changed three times during the interpolation,
as the coordinate being interpolated shifts fromx to y to z to l. We
call this methodcoordinate at a timeinterpolation. The work is
(4f +6ecat)S(1). This has better trajectory change cost thanpoint
at a timeinterpolation. In this interpolation method the weight can
become quite large. Ifx, y, z are all moved beforel, then the max-
imum weight of a point is2(x · d) + |d|2 wherex is the initial
coordinates of the point andd is the displacement vector, as be-
fore. In practice this large change in the weight results in many
more events occurring then inpoint at a timeinterpolation.

3.4 Cost Comparison

Certain aspects of the costs associated with the kinetic data struc-
ture based update methods and with rebuilding the triangulation can
be compared a priori, namely the costs associated with evaluating
the static predicates and generating the kinetic certificate functions.

• Naive computation of an InCircle certificate function where
the result is linear takes twice as many multiplications as for
the static predicate. We can reduce this to approximately the
same number of multiplications as for the static predicates by
reordering the input to the determinant computation to avoid
linear intermediate results.

• An InCircle test where all of the Cartesian space motions
are linear, which results in a degree five certificate function,
takes approximately five times as many multiplications to
compute as the static determinant.

• An InCircle test where are the trajectories are quadratic (in-
cluding the lifted coordinate), takes approximately ten times
as many multiplications as a static determinant.

These are all underestimations of the amount of work necessary
to compute the certificate functions as it ignore the extra overhead
associated with memory management and branches.

In our data sets, building a Delaunay triangulation from scratch
takes approximately four InCircle predicate evaluations per facet in
the final triangulation. Using this we can compare the lower bound
on the kinetic data structure cost with the static algorithm. Table 1
shows this comparison. The estimates of the lower bounds on the
kinetic data structure update cost and the rebuilding cost are all
quite close for the methods we tried, and prohibitive for any higher
degree trajectories.

This analysis ignored many types of work associated both with
building a Delaunay triangulation and with maintaining a kinetic
data structure, however it does capture the most important compo-
nents of the work. On the static Delaunay side, [12] found that
40-100% of the running time of Delaunay computation was taken
by predicate evaluation. That 40-100% includes point/plane orien-
tation tests used during point location, of which there are typically
50% more than the InCircle tests. However, those are lower degree
and as a result require fewer than one fourth as many operations, so
are not a large fraction of the running time.

3.5 Solvers

There are a number of aspects of the Delaunay update problem
which create different requirements on the solvers than with normal
kinetic data structure implementations. Unfortunately, we have not
yet been able to exploit these differences to our advantage. The key
differences are:

• We are only interested in events that occur during a brief win-
dow corresponding to the interval between the two frames in
question, or even to some shorter interval until the motion
is next due to change. Effort spent computing and tracking
certificate failure times outside this interval is wasted.

• We need to robustly handle degeneracies and numerical is-
sues.

Both issues can be addressed by using interval based solvers.
Extending earlier work published in [26] we have implemented



method description cost determinant cost
linear move the points linearly in Cartesian space (f + 6eli)S(5) 5f

lifted linear move the points linearly in lifted space (f + 6elli)S(4) 4f

point at a time move points one at a time linearly in lifted space (5f + 6epat)S(1) 5f

coordinate at a time move all the points linearly along each coordinate, one after
another

(5f + 6ecat)S(1) 4f

quadratic move all the points linearly along some sort quadratic trajec-
tories in lifted space

(5f + 6eq)S(8) 8f

rebuilding rebuild the Delaunay triangulation from scratch — 4f

Table 1: A comparison of the various kinetic data structure based methods:f is the number of facets in the final triangulation,
em the number of flips (events) caused by motionm, S(d) is the cost to solve a polynomial of degreed. The costcolumn is how
many certificate functions will be generated and solved by the kinetic Delaunay update. Thedeterminant costis an estimate the in
initialization cost in units of a the cost of a static determinant evaluation. Note that the base costs of the low degree kinetic data
structures are very close to that of rebuilding. This agrees with our experimental findings. The cost for quadratic trajectories is too
high to be of practical interest.
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Figure 4: Solver costs:The table shows the time inµs of the
various solves for isolating roots pf polynomials of specified de-
gree. The exact Descartes solver and filtered Descartes solver
both perform exact root isolation operations and allow exact
root comparisons. GSL is a numerical, eigenvalue based solver
using the GNU Scientific Library [23] which wraps the ATLAS
[35] linear algebra package. Currently the eigenvalue based
solver is faster than our solvers for low degree polynomials. We
expect to be able to bring down the costs of the interval based
solvers. The polynomials were generated with integer coeffi-
cients chosen uniformly between -1000 and 1000 and the roots
were isolated over an interval from 0 to 1. The timings were
done on a 1.8Ghz Pentium 4.

solvers that use Descartes rule of sign and Sturm sequences to iso-
late roots in intervals. These solvers naturally only act on an inter-
val of the real line, and so can ignore roots outside of the interval of
interest. Root isolation and comparison can all be implemented us-
ing field operations, and so exact comparison of roots can be done.
We have also implemented interval based solvers which use float-
ing point filters to accelerate the root isolation and comparison.

Unfortunately, the necessary operations in the kinetic setting are
fundamentally predicates (root comparisons) acting on construc-
tions (roots of certificate polynomials), rather than pure predicates,
making the filtering process more difficult and costly than in the
static case. As shown in Figure 4, the filtered interval solver out-
performs the eigenvalue based solver for high degree polynomials,
but is more than ten times slower for the sorts of low degree poly-
nomials we are interested in. We expect that we can reduce the gap
significantly in the future, but doubt the penalty for using an exact
solver will be as low as that for filtered static computations except
in the case of linear certificates.

We plan to publish a more detailed discussion of our solver pack-
age in a future paper.

4. STATIC UPDATE TECHNIQUES
The kinetic data structure based approaches involve creating a

smooth morph between the initial and final triangulation. In most
instances this is doing too much work, since we do not care about
any of the intermediate state. Therefore, we propose a set of al-
ternative update schemes which only involve computing predicates
on the initial and final coordinates and directly transforming the
initial triangulation into the final answer. These perform better in
practice than the kinetic data structures based approaches, at least
in part because they leverage much of the work that has gone into
optimizing static geometric algorithms.

The most straight forward such technique is to take each point in
turn, remove it from the triangulation, walk to the cell containing its
new location and then reinsert it. We call this methodplacement.
Single point removals and insertions preserve the Delaunayhood
of the triangulation, so the final triangulation is guaranteed to be
Delaunay. If motions are small, the walk is cheaper than traversing
the point location hierarchy. In practice, this is an extremely poor
way to update Delaunay triangulations since all the structure, even
the conserved part, is rebuilt. In addition deleting a node from a
triangulation is more expensive than inserting one.

A particularly poor case would beP = P ′. The placement
method would take every point, remove it, re-triangulate the hole



and then reinsert the point exactly as it was before. While station-
ary points can be easily skipped, it is hard to robustly handle rigid
transformations or triangulation preserving perturbations.

4.1 Point Removal
A valuable property for any Delaunay update technique would

be to do minimal work in the above case where the triangulation
structure is unchanged. Let(T ,Q) signify assigning the coordi-
nates of the point setQ to the vertices of the triangulationT . Using
this notation, Delaunay triangulations ofP andP ′ are equal when
(D(P),P ′) is Delaunay. In order to verify this, we must first check
the orientation certificate for each cell in the triangulation using the
perturbed coordinates,P ′. This pass verifies that the triangulation
is an embedding. Second, we must check the InCircle certificate
for each facet using the perturbed coordinates, verifying that the
triangulation is Delaunay.

The placement algorithm can be modified as follows. We try to
verify that (D(P),P ′) is Delaunay by checking the above certifi-
cates. If it is not, we remove some point,p, fromP andP ′. We then
computeD(P \ p) and check if(D(P \ p),P ′) is Delaunay. We
repeat the process until we have a setR such that(D(P \ R),P ′)
is Delaunay. Once we are done, we can reinsert the points fromR
in toD(P ′ \R). If the points do not move too far, their location in
D(P ′ \ R) will be near one of their neighbors in the initial trian-
gulation, so walking through the triangulation from their neighbor
will be an efficient method of point location. The removal process
is guaranteed to terminate, if only because(D(∅), ∅) is trivially
Delaunay.

As a note, the determinant based InCircle tests do not make sense
when the points defining the cell are not oriented properly. When
the orientation of the points in a cell is reversed, the result of any
InCircle tests involving this sphere is also reversed. We can explic-
itly check the orientation of each cell before evaluating the InCircle
predicate, but this is needlessly expensive. As a result, it is best to
divide the point removal in to two phases. In the first only check
cell orientation, and in the second, when the triangulation is an em-
bedding, check InCircle certificates.

In order to implement this algorithm, a list of invalid facets and
cells must be maintained as well as a queue ordering the points for
removal based on some sort of score. Removing a point from a
Delaunay triangulation only changes cells that were are incident to
that point. As a result it is easy to track which cells and certifi-
cates may have become valid or invalid in response to the removal
of a point. Then, as long as the scoring function for a point only
depends on the local neighbors, it can be updated efficiently.

We have investigated a number of heuristics for scoring func-
tions. The first method, gives each vertex a score of one if it is
involved in an invalid certificate, and zero otherwise. This means
picking any point which is involved in an invalid certificate. We
call this methodrandompoint removal.

As an improvement onrandompoint removal, we can assign a
score to each point based on how many failed certificates it is in-
volved in. This ranking function is also local so it too can be effi-
ciently maintained. We call this methodworst firstpoint removal.

The previous heuristics are simply based on combinatorial prop-
erties of the triangulation and the predicates. Instead, we can score
each point based on how much the perturbation has locally distorted
the geometry of the point set. To do this, for each point,p, we can
compute the optimal rigid transform of its link vertices from their
coordinates inP to their coordinates inP ′. This transform gives
a predicted location ofp. Each point’s score is then how much its
location inP ′ differs from its predicted location. This method is

called farthest firstand is also local. However, the computations
involved are significantly more expensive.

Finally, we can try removing each point from the triangulation
and look at how much this improves the score of the triangulation
as a whole. We can then remove the point which improves the score
the most. Although the ranking function is still local, this method is
significantly more expensive than other methods and requires more
book-keeping. We call this methodlook aheadpoint removal.

4.2 Flipping in 3D
Removing a point from a Delaunay triangulation is a fairly ex-

pensive process. The algorithm to fill in a hole when a point is
removed is quadratic in the number of neighboring vertices [13],
which is typically 14 or 15. In addition, many new cells/facets are
created all of which must be checked for validity under the new co-
ordinates. Flips are a much cheaper alternative, requiring constant
time updates to the triangulation and only creating six facets whose
InCircle certificates have to be checked.

With this in mind, an alternative algorithm is to remove points
until all cells are properly oriented — i.e. the triangulation,(D(P \
R),P ′) is embedded. Then we can try to use Delaunay edge flips
to finish the conversion to Delaunay. We call this methodhybrid.
Most of the time, we will succeed. Sometimes though, the algo-
rithm will reach an un-flippable conformation.

Unfortunately, the previous solution, removing points, can no
longer be safetly applied in this case, since the triangulation is no
longer necessarily an embedding using the original coordinates. In
addition, the triangulation is not Delaunay with the perturbed co-
ordinates and the hole created by removing a point from a non-
Delaunay triangulation in 3D may not be able to be filled with
cells [32].

Fortunately, flipping rarely gets stuck in practice, so it is accept-
able to use a very expensive handler when it does. For the time
being we try to find a point which is adjacent to a non-Delaunay
cell, but which can be removed from the triangulation using the
new coordinates. Failing that we just recompute the triangulation
from scratch, using the preexisting connectivity to speed point lo-
cation.

One alternative would be to try a Markov walk-like process of
flipping away from Delaunay and then trying to flip back to Delau-
nay. We have not thoroughly investigated this route.

Another alternative is to try to find a subset of the vertices that
can be removed so that the boundary of the hole is Delaunay. Then
the hole can be filed by computing the Delaunay triangulation of
the boundary vertices and pruning cells that are outside the hole.
The result may not be Delaunay along the boundary, so we must
proceed with flipping.

5. EXPERIMENTAL RESULTS
We tested our algorithms on frame pairs taken from several dif-

ferent types of simulation. Properties of the data are shown in Ta-
bles 2 and 3. The simulations are as follows:

• molecular simulations: hairpin is a short 177 atom beta
hairpin and Staphyloccocal protein A, PDB code 2SPZ, (pro-
tein A for short), a 601 atom globular protein. The simula-
tions were performed using the Tinker package [34] with 2fs
time steps.

• muscle simulation: bicepis volumetric data from a simula-
tion of a bicep contracting. The points move comparatively
little between the frames, as is shown in Table 2.



simulation picture points cells
ephemeral
cells

InCircle
tests tolerance (%) 20% tolerance (%)

hairpin 177 1114 2554 7516 8.5 1.5

protein A 601 3943 10250 31430 8.6 1.5

bicep 3438 21376 66553 210039 9.0 1.6

falling objects 1000 6320 17137 52958 12 1.7

shifting objects 1000 6381 17742 55299 13 1.2

Table 3: Attributes of the static Delaunay triangulation: Ephemeral cellsare cells created during the construction process which are
not in the final triangulation. There were generally three times as many ephemeral cells as cells in the final triangulation. Their
number gives some idea of the excess work done by the rebuilding process.Tolerance %is the average fraction of the local edge
length that points must move to invalidate on in circle certificate. The20% toleranceis the fraction of the local average edge length
that points need to move to destroy 20% of the certificates. Very small motions compared to the edge length can invalidate many
cells in a Delaunay triangulation.

simulation timesteps failed cells (%) motion (%)

hairpin 1 3.5 1.1
2 8.3 2.1
4 14 4.0
8 25 7.3

protein A 1 8 3.1
2 14 5.7
4 24 14

bicep 1 .64 .03
2 1.2 .07
4 2.3 .17

falling objects 1 1.5 1.8
2 2.6 4.1
4 5.2 11
8 9.3 37

shifting objects 1 2.2 1.0
2 3.0 2.0
4 4.0 3.8
8 6.0 7.5

Table 2: Attributes of the motion:The failed cells is how many
cells from the Delaunay triangulation of the first frame were
not in the Delaunay triangulation of the second. This varied
quite significantly between data sets, with the molecular simu-
lation datasets being the most rapidly changing ones. Themo-
tion is the average of how far each point moved divided by its
average edge length.

simulation degree: 1 4 10 rebuild time

hairpin 8.4ms 210ms 620ms 15ms
protein A 29ms 790ms 5.6s 69ms

bicep 250ms 4.5s 25s 430ms
falling objects 72ms 1.2s 16s 153ms

shifting objects 55ms 1.2s 17s 120ms

Table 4: Kinetic Delaunay initialization costs:Here we show the
costs to initialize the event queue for various degree polynomial
trajectories. This means compute the failure time for each cer-
tificate, given the initial conformation and trajectory and insert
these events into the queue. The cost of computing the triangu-
lation from scratch is shown for comparison. Note that a linear
certificate based kinetic Delaunay must have at least four ini-
tialization passes, the cost of just one is shown.

• falling objects simulation: is data taken from a simulation
of a collection of 1000 objects dropped into a pile. Initially
the objects fall through the air with occasional contacts, but
later in the simulation they form a dense, although still shift-
ing pile. We call the two phasesfalling objectsandshifting
objects. The data came from research published in [24].

The CGAL Delaunay triangulation package was used for all of
our static computations. This is a quite mature Delaunay triangula-
tion package, which sets a rather high bar for our algorithms. How-
ever, we think this reflects most practical situations since fast and
robust static Delaunay computation is well understood and a num-
ber of good packages are available both commercially and under
free software licenses.

5.1 Kinetic Delaunay Results
The kinetic data structure based approaches are not currently

competitive with static Delaunay computation, as is shown in Ta-



linear lifted linear coordinate at a time point at a time
simulation rebuild event time events time events time events time

hairpin 15ms 13 350ms 13 220ms 126 32ms 21 37ms
protein A 69ms 164 1.46s 134 840ms 198 120ms 217 140ms

bicep 430ms 106 7.6s 98 4.5s 160 1.1s 101 1.1s
falling objects 153ms 36 2.3s 30 1.6s 150 300ms 78 330ms

shifting objects 120ms 89 2.1s 45 1.7s 128 220ms 69 270ms

Table 5: Kinetic Delaunay update costs:running times and event counts for different interpolating motions are shown as well as the
rebuilding time. The linear certificate based methods are within a factor of two of rebuilding, but we suspect that novel optimizations
are necessary to have them outperform rebuilding. The kinetic data structures were implemented using the kinetic data structures
framework presented in [27] and the CGAL triangulation package. Rebuilding was done using the CGAL Delaunay triangulation
code. Timings were done on a 1.8Ghz Pentium 4.

ble 5. The running time was dominated by the initialization cost—
i.e. computing the initial failure time for the certificates, shown in
Table 4. For the nonlinear certificates this computation is com-
plicated by the need to multiply polynomials of unknown degree,
requiring many loops and memory management. For the linear cer-
tificate function based motions we were able to use a specialized
polynomial representation which removed much of this overhead.

As a note, the static rebuilding was done using filtered predi-
cates, so it is exact, where as we were forced to use purely nu-
merical methods for the kinetic data structures as filtering is still
too slow for low degree nonlinear polynomials. The non-filtered
static construction code ran in to numerical issues with the shift-
ing objects data set since many objects are resting on the support
platform. Inexact kinetic Delaunay did not have any problems.

The fastest kinetic Delaunay based method was thecoordinate at
a timeinterpolation withpoint at a timeinterpolation close behind.
The later algorithm actually generally had fewer events, due to the
smaller changes in the weights. However its extra initialization cost
made it slightly slower. Both techniques were about a factor of two
more expensive than recomputing the triangulation. We are not sure
if further optimizations will bring the running time low enough to
be competitive. The most promising optimization one would be
to reorder the determinant computation to reduce the number of
multiplications to be closer to that of the static computation as was
described in Section 3.4.

An important optimization used was to cache redundant matrix
minor calculations. Each cell in a Delaunay triangulation is in-
volved in up to four certificate computations, one for each facet.
Each of the certificate generation computations involving a cell is
that of a matrix determinant (Equation 1) with one row differing
and can be seen as testing whether the additional point is above or
below the lifted hyperplane defined by the cell. The matrix minors
defining this hyperplane can be cached in a lazy manner, speeding
up the certificate polynomial computation. Since each InCircle test
involves two cells, we can check to see if either cell has the ap-
propriate minors cached before generating them and computing the
certificate. This optimization reduces the running time by approxi-
mately 25%.

5.2 Static Update Results
The static predicate based methods leverage much of the exist-

ing Delaunay triangulation computation code and consequently are
much simpler to implement and readily track most improvements
in Delaunay computation. We implemented the techniques on top
of the CGAL Delaunay triangulation code and predicates. Running
times are shown in Table 7.

Of the purely point removal based techniques, we found theworst
first point removal method to be the fastest, followed closely by the

simulation step size (frames) stuck frequency (%)

hairpin 1 2
2 4

bicep 1 5
2 33

falling objects 1 2
2 5
4 17

shifting objects 1 23
2 31

Table 6: Frequency of flipping getting stuck:for each simula-
tion, the frequency with which Delaunay flips get stuck is shown
for various step sizes. When Delaunay flips get stuck, expen-
sive steps have to be taken, such as rebuilding the triangulation
from scratch. Fortunately, this happens infrequently on most
models, so the overall cost is small.
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Figure 5: Static update performance as a function of failed cer-
tificates: the plot shows the ratio of the running times of theran-
dompoint removal, worst firstpoint removal and hybrid meth-
ods to rebuilding compared to the number of invalid cells in the
triangulation. With the exception of the two points from the
protein A simulation, the hybrid method performed quite well.



placement random worst first hybrid
simulation steps rebuild time removed time removed time removed flips time

hairpin 1 15ms 84ms 13 23ms 15 23ms 0 176.1ms
2 16ms 87ms 27 34ms 31 45ms 0 397.5ms
4 16ms 87ms 57 62ms 51 58ms 9 5012ms

protein A 1 69ms 320ms 111 213ms 98 163ms 7 12842ms
2 67ms 310ms 237 420ms 150 270ms 33 18360ms

bicep 1 420ms 1.7s 21 231ms 19 228ms 1 17 133ms
2 420ms 1.7s 42 350ms 38 320ms 1 37 153ms
4 430ms 1.8s 80 600ms 70 540ms 3 67180ms
8 420ms 1.8s 955 5.3s 630 4.2s 13 469 570ms

falling objects 1 153ms 510ms 37 110ms 31 95ms 1 36 43ms
2 160ms 530ms 73 129ms 55 171ms 1 66 53ms
4 160ms 520ms 158 419ms 107 300ms 3 13779ms
8 160ms 524ms 460 524ms 350 725ms 4 247109ms

shifting objects 1 123ms 510ms 80 264ms 58 267ms 8 3156ms
2 120ms 510ms 104 280ms 72 270ms 52 27100ms

Table 7: Static update performance:the times to rebuild the triangulation and the number of removals for the various heuristics are
shown. Times in boldface are ones which are better than rebuilding (the left most time). The time of thelook aheadpoint removal
was an order of magnitude worse than the others, although it did manage to remove 50% fewer points on some of the models.

randompoint removal. They both outperformed rebuilding on the
bicep and the falling objects simulations. They performed espe-
cially poorly on the hairpin and shifting objects data. The former
is probably due to the comparatively small cost associated with
traversing the point location hierarchy in the hairpin model, the
smallest tested. The latter, seems to be related to handling the
many degeneracies along the bottom of the point set. In general,
they outperformed rebuilding when 1-2% of the cells were invalid
after perturbation.

Our attempt to use the actual geometry of the motion to order
points for removal was useless, as the magnitude of the motion
vectors were too uniform in the simulations and uncorrelated with
actual changes in the Delaunay triangulation. Consequently, the
results are not shown. In addition, the cost of computing the rigid
transforms was large, making the method quite slow overall. Place-
ment was also slow, as could be predicted.

The fastest method overall was thehybrid method. It was able
to update the triangulation faster than rebuilding in all the simula-
tions, even over multiple time steps. It was over three times as fast
as rebuilding for the falling objects and the bicep. Overall, when
less than 2% of the cells are invalidated by the perturbation, per-
forming flips is two to three times faster than rebuilding. As the
percentage rises to ten, the advantage goes to rebuilding. However,
the simulations we looked at were firmly in the 2-3 times faster
domain. Figure 5 shows this comparison.

The main draw back of performing flipping is that sometimes it
gets stuck and an expensive recovery step has to be taken. Frequen-
cies of getting stuck on the various data sets are shown in Table 6.
With the exception of the shifting objects, the frequency of getting
stuck was less than 10% for single time steps. This means that even
if we rebuild after getting stuck, the speed penalty is small.

6. CONCLUSIONS AND FUTURE WORK

Using Delaunay flips to update a Delaunay triangulation is much
faster than rebuilding with the perturbation sizes used in most simu-
lations. Other static Delaunay based techniques are also faster than
rebuilding in many cases. However, kinetic data structures based
approaches need significantly more optimization to be competitive.

The most promising kinetic techniques use linear certificate func-
tions and are within a factor of two of rebuilding.

Most of the certificates computed in the kinetic Delaunay-based
techniques did not fail during the time interval in question. This
suggests that we perform filtering before generating the certificates,
skipping the expensive generation step for ones which can be shown
not to fail. For most of the data sets, the perturbation distance was
less that the tolerance of half of the certificates, providing one pos-
sible filtering mechanism. We have only just begun to investigate
this issue.

When we remove points and reinsert them as part of the point
removal algorithm, the insertion/removal operations must be done
one at a time. This can lead to the creation of ephemeral tetrahe-
dra — tetrahedra created after the removal of one point but then
destroyed shortly thereafter when a later point is removed. It could
speed things up if we were able to efficiently patch holes created by
removing more than one point. However, these holes have a much
less restricted structure than those created by the removal of a sin-
gle point. They are not star shaped and may not be genus 0. While
such holes are guaranteed to be triangulable [32], there are no fast
algorithms for doing so.

Our handling of un-flippable configurations is extremely expen-
sive. It would be advantageous to have a technique to handle this
case that was more local and that reduced the problem to a slightly
simpler one.

There has recently been a great deal of work on how bound the
performance of geometric algorithms based on properties of the in-
put data. Example of this includeε-sampling [2], local graphs [18],
as well has various point set attributes which allow the complex-
ity of the 3D Delaunay triangulation to be bounded [4, 19] among
others.

In contrast there has been little accomplished with regards to
bounding work in needed to maintain structures under motion. The
efforts by the kinetic data structures community have generally
bounded the number of changes that occur as points are allowed to
move over specified complexity trajectories for an unlimited amount
of time. These bounds are not useful in cases where only a finite
time interval is of interest. Moreover the existing bounds are loose,
O(n4) changes for a kinetic Delaunay data structure in 3D, while
it is generally believed that the correct bound is closer toO(n3).



We would like to produce models of moving objects which allow
us to bound the number of combinatorial changes during a period
of motion. We have looked at ideas for measuring local coherence
such as was used in thefarthest firstpoint removal heuristic, how-
ever, we have not been able to relate them to the amount of work
performed.

In general, the problem of how to update geometric structures
after small displacements of their defining elements defines an in-
terest research area. The Delaunay triangulation may not be the
best structure to maintain in such a setting, because it is canoni-
cal and very sensitive to the locations of its defining points. Non-
canonical structures, such as the deformable spanner of [21], can
behave much better in this respect.
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