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. . stricted graphs
A graph has growth ratk if the number of nodes in any subgraph

with diameterr is bounded byO(r*). The communication graphs

of wireless networks and peer-to-peer networks often have smalll Introduction

growth rate. In this paper we study the tradeoff between two quality o o )
measures for routing in growth restricted graphs. The two measures! N study on routing in communication networks has a long history.
we consider are the stretch factor, which measures the lengths of thé\mong all the routing algorithms, two most notable families are
routing paths, and the load balancing ratio, which measures howProbably shortest path routing algorithfeyand the load balanced
evenly the traffic is distributed. We show that if the routing algo- routing algorithmgs, 8]. These two families can be regarded as to
rithm is required to use paths with stretch faatpthen its load bal- minimize two quality measures: the stretch factor of the paths, de-
ancing ratio is bounded b@((n/c)' /%), wherek is the graph’s fined to be the worst case ratio between the length of the path used

growth rate. We illustrate our results by focusing on the unit disk Py the algorithm and the length of the shortest path, and the load
graph for modeling wireless networks in which two nodes have di- balancing ratio, defined to be the worst case ratio between the max-
rect communication if their distance is under certain threshold. we imum load incurred by the algorithm and that of the optimal load
show that if the maximum density of the nodes is boundeghby ~ Palancing routing glgonthm. _Both asmall §tretch fact_or and a small
there exists routing scheme such that the stretch factor of routing!0ad balancing ratio are desirable properties for routing. However,
paths is at most, and the maximum load on the nodes is at most these two properties have been studied separately in the past. This
O(min(y/pn/c,n/c)) times the optimum. In addition, the bound probably should not be so surprising as they are conflicting goals
on the load balancing ratio is tight in the worst case. As a special 10 Some extent: for a general graph, one can easily construct exam-
case, when the density is bounded by a constant, the shortest patRl€s §uch that a shortest path routing alg_orlthm r_1ecessar_|ly creates
routing has a load balancing ratio 6 /n). The result extends to heavily loaded nodes, and a load balancing routing algorithm nec-

k-dimensional unit ball graphs and graphs with growth fatéVe essarily uses long paths.
also discuss algorithmic issues for load balanced short path routing In this paper, we study the tradeoffs between those two mea-
and for load balanced routing in spanner graphs. sures for the family ofjrowth restrictedgraphs. In our definition,

a graph has bounded growth rdteéf the number of nodes in any
subgraph with diameter is bounded byO(*). Graphs with re-
stricted growth rate arises in many practical networks, either due to
physical constraints such as in wireless networks and VLSI layout
networks, or due to geographical constraints such as in peer-to-peer
overlay networkg23, 24, 16, 17] For example, the unit disk graph
has been used extensively to model a wireless network, which con-
sists of a set of nodes with direct communication between those
pairs of nodes within distancefrom each other. When the maxi-
mum density of the nodes, i.e., the maximum number of nodes cov-
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to-peer networks, such as media file sharing on Internet, content

addressable overlay networks, exploit this prop&ty 16, 17] In

this paper we show that for growth restricted graphs, there exists
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balance the load on the nodes because an uneven use of the nod@$e goal is to minimize the line width on each vertex. The semi-
may cause some nodes die much earlier, thus creating holes in th@al work of Raghavan and Thompsfas] shows that by using the
network. In addition, unbalanced use of the nodes may discouragerandomized rounding technique, one can approximate the optimal
them to participate in the routing. For these reasons, there has beesolution within a factor ofO(log n/ loglogn). However, in[1],
extensive work on energy-aware routing in wireless netw@rks it is shown that if we only use a restricted set of paths, i.e. the
14]. But most previous work focus on minimizing the overall en- paths that only make one bend, then the line width can be of an
ergy consumption. In this paper, we are more concerned about min2(y/n) factor more than the optimal solution. Since the graph in
imizing the maximum energy consumption of nodes in the network. VLSI routing is a graph with restricted growth rate due to physical
Since a major amount of energy consumed by a wireless node is orconstraint, ourO(+/n) upper bound implies that the construction
communication, we measure the load of a routing scheme to be then [1] is actually the worst possible case. Further, the bound holds
maximum total size of packets that pass any node in the network.as long as the underlying graph is similar to the unit disk graph
Then the load balancing problem can be formulated as minimizing with constant-bounded node density, which is the case due to the
the load and is exactly the classic load balancing routing for con- physical constraint.

nections with permanent durati¢s]. In addition to the combinatorial bounds, we also observe that the
The ideal algorithm would be the one that achieves good per- on-line algorithm for virtual-circuit routing developed 8, 4] can
formance in terms of both the stretch factor and the load balanc-be adapted to obtain an on-liaeshort-path routing algorithm that
ing ratio. In some special cases, for example when the nodes arés O(log n) competitive in terms of load balancing ratio, compared
aligned on a line or in a narrow barB], it is possible to design  with the optimalc-short-path routing algorithm. Another common
a routing algorithm achieving both a constant stretch factor and aapproach of reducing routing complexity in the wireless network is
constant load balancing ratio. This is however impossible in gen- to extract a sparse spanner grgptj from the unit-disk graph and
eral — it is not difficult to construct a set of nodes and routing only route packets on the spanrige, 20, We also consider the
requests such that any routing algorithm limited to using paths with |oad-balancing ratio of routing on spanner graphs compared to the
stretch factok (or c-short paths) necessarily causes some node to optimal algorithm on the unit-disk graph and show a tigtjpc®)
have(2(n/c) loads while the optimal load-balancing algorithm only - competitive ratio when the stretch factor of the spanner graph is
loadsO(1) packets on each node. Such an example, however, uses
highly crowded nodes. In this paper, we show that if the nodes . .
are not so crowded, then it is impossible to construct such a bad2 Preliminaries
example. We use two metrics to measure the density of wirelessgiyen an unweighted grapi = (S, E), we denote by P| the
nodes: themaximum densitpf a set of nodes is defined as the  mper of points on a patR in the graphG. We assume thad is
maximum number of nodes covered by any unit disk in the plane, ;onnected, otherwise we can consider each connected component
and theaverage densitgs the average number of nodes covered by individually. For any two point, g € S, denote byr(p, q) the
the unit disks centered at the nodes in the set. Both definitions aPength of the shortest path betweeandg. For any pattP between
pear naturally in analyzing wireless networks. In practice, we can p, ¢, thestretch factors(P) of P is defined to béP|/7(p, q). P is
expect the density of the wireless nodes to be low. Indeed, using.4|iedc-shortif w(P) < c. We sayG has growth raté: if for any

multi-hop peer-tc_)-peer cc_)mmunication to redu<_:e the deploymentp € Sandanyr > 1, the number of nodes iB = {q|(p,q) <}
and communication cost is exactly a goal of a wireless network. In js hounded byO(rF).

a dense network, techniques such as clustering are often used to re-
duce routing complexity by routing on a smaller set of “backbone”
nodes. The “backbone” nodes usually have constant defidity
12].

In this paper, we show tradeoffs between the stretch factor and
the load balancing ratio with a dependency on the density of the
wireless nodes. Specifically, if the maximum density of a point set

is p, then ac-short path routing can achieve a load balancing ratio of . . : : .
. : ath routing algorithm is &-short path routing algorithm.
O(min(+/pn/c,n/c)). In particular, if we use shortest path rout- P g&g P 9&4g

ing, i.e., when the stretch facteris 1, the load balancing ratio is For a set of request& and pathsP that satisfy R, the load
O(,/pn). Whenp is constant, it isD(y/n). Furthermore, all those ~ £(v) on v is the tofal size of the packets that pass.e. ((v) =
bounds are tight asymptotically in the worst case. When nodes areX-ve . r- Theload£(P) of P is then defined to beaxues £(v).
not evenly distributed, the average density is a more appropriateDefine£"(R) = minpr ((P) to be the optimal load for satis-
measure. We obtain similar tradeoffs in terms of the average den-¥ing 2 and(®(R) = minpra.(p)<c £(P) the optimal load by
sity. any c-short-path routing algorithm. For exampté(R) is the load
Our tradeoffs rely on the fact that the number of nodes inside créated by a shortest path routing algorithm. For a routing algo-
any disk is polynomial in the radius of the disk. Therefore, the re- fithm A, denote byA(R) the set of paths produced byto satisfy

sults naturally extend to higher dimensional unit ball graphs and to - Then.A’s approximation ratio (itA is Ozf(;!i?}g)) or competitive

A routing requests of the formr = (s,, t,, ¢») wheres,, t,, ¢»
represent the source, destination, and the packet size, respectively.
For a set of request®, a set of path$ satisfy R, denotedP =

R, if P = {P.|r € R} whereP, is a path betwees, andt,.

We define the stretch factar(P) of P to bemax,crw(P). A
routing algorithm is called a-short-path(or c-short) routing if it

only uses paths with stretch factor at mesFor example, shortest

graphs with restricted growth rate. We show that fat dimen- ratio (if A is on-line) is defined to bamaxr == 7;*. We generally
sional unit-ball graph with maximum density the load balancing  call it the load-balancing ratio In this paper, our goal is to study
ratio of the optimal routing algorithms with a stretch factois the tradeoff between the stretch factor and the load-balancing ratio
bounded byO((n/c)' ~'/*p'/*), and for a graph with growth rate  of routing algorithms in a network.

k, the load balancing ratio i9((n/c)*~/%). We now give definitions that are particular for wireless networks.

Another application of our results is in global routing in VLSI Let S be a set ofn points in the plane which represent wireless
design[26, 25]. In VLSI routing, given a graph (typically a mesh) nodes. Lefpq| denote the Euclidean distance between two nodes
which represents the physical wiring paths of a chip and a set of p, g. The communication graplof S is an unweighted unit-disk
vertex pairs, one needs to connect every pair by a path in the graphgraphU (S) = (S, E) of S, where(p, q) € Eiff |pq| < 1. We say



two pointsp, ¢ seeeach other ifipg| < 1. Themaximum density As a special case of the above theorem, when the set of nodes
(or density in short)p(S) of S, is defined as the maximum number has constant bounded density, then the load-balancing ratio of the
of nodes inS covered by any unit disk (disk with radidy. For optimal c-short path routing is bounded &y(+/n/c). In another
eachp € S, denote byp(p) the number of pointg sees (including special case; = 1, the load-balancing ratio for shortest path rout-

pitself). Define theaverage density(S) of Stobe g p(p)/n. ing is O(,/pn). So shortest path routing on nodes with constant
Clearly,5(S) < p(S). The following facts will be useful later. density achieves a load balancing ratio®f,/n). We first prove
the above theorem for the case of shortest path routing and extend
Lemma 1. For any diskB with radiusr > 1, the technique to prove Theorem 2.
1. |BNS|=0(p(S)r?); Theorem 3. For anyn nodes with the maximum densipyand any
2. BN S| = O(ry/np(9)). set of requestR, (' (R) /¢*(R) = O(\/pn).

PROOF Suppose that is the node with the maximum load if we
use shortest path routing. Without loss of generality, we can assume
that all the requests iR are routed througp by shortest path rout-
ing, because otherwise we can safely delete those requests that do
not — this does not change the maximum load by shortest path rout-
ing but can only decrease the maximum load of the optimal routing
algorithm. Suppose that the set of request®is= {r1,...,7m}
wherer; = (s;,t:,¢;) is arequest froms; to ¢; with packet size;.

PROOF. SinceB can be covered b (r?) unit disks, we have
|BN S| = O(p(S)r?). For the second claim, suppose that there
arez points in B N S. We can partitionB N S into O(r?) dis-
joint subsets such that all the points in one subset are mutually vis-
ible’. Suppose that those sets &g ..., Sy, and letn; = |S;|.
Therefore,Zinz2 < np(S). By the Cauchy-Schwartz inequality,
we have that® = (Y-, n:)° < m(},n7) < mnp(S). Since

— O(r2) 7 — fperaay
m = 0(r), z = O(ry/np(5)). = We denote by’* the maximum load of the optimal load balanced
routing algorithm¢*(R). Since all the requests iR pass through
3 Tradeoffs in wireless network routing p in shortest path routing scheme, the maximum load of shortest

ath routing/*(R) = £ = 3.7 ., £;. We now wish to upper-bound
If we consider the general case, it is only possible to obtain a weakz — o)1, 9 (R) 2z PP

tradeoff between the stretch factor and the load-balancing ratio.
The simple example in Figure 1 shows that if we insist on using
short paths, then the load-balancing ratio can be as baxnag:).
There are3c + 1 spots on a loop. Each spot containé: wireless
nodes, except one spot has only one nod&he total number of
nodes is3n + 1. Only the nodes in adjacent spots are visible. If we

The intuition of the proof is that shortest path routing is optimal
in the sense of the total loads it creates. If the loagh anhigh, the
total load a shortest path routing creates is also necessarily high.
This causes the optimal algorithm to create high total loads as well.
The average load therefore cannot be too low, even if those loads

maken/c requests, each from a distinct node on gptat a distinct can be evenly distributed. This intuition is made concrete by the

node on spoy. Any path that doesn’t pass througlhas length at foIIowmg Iemma. ) .
least3c, i.e., is notc-short path. Therefore, aryshort routing al- We first give some notations. For each pajn€ 5, denote by

gorithm has to route the requests throughe. o has loadd(n/c). R(q) all the requests that originate @&nd by/(q) the total size
On the other hand, the optimal load balancing routing algorithm Of those packets, i.€(q) = >_, () ¢i- Write 5(q) = £(q)/¢,
can route the requests evenly along the path on the longer arc suchvhere? = 37", ¢;. Clearlyy" ((q) = 1.

that each node only pass@$1) packets. . . ) .
Lemma 4. Suppose thab- is the disk with radius > 1 centered

atp, theaneDT B(q) < copt/a, for some constant, > 0.

PROOF We partitionD.- into a set ofog 7 disjoint setsBy, 0 <
k < log T, whereBqy is the unit disk centered atand fork > 1,
B is an annulus with an inner radius f~! and an outer radius
of 2. See Figure 2. Consider the g} of the requests originating

Figure 1. Each spot contains/c nodes. The loop ha% + 1 spots. The e
packets from spap to ¢ either go through node, thus causing the node
to be heavily loaded, or route along a long path with lerigth /c).

The above configuration uses a point set with high density. The
main result of this paper is to show that there is a tradeoff between
the stretch factor and the load-balancing ratio dependent on the den-
sity of the point set. In this section, we first present a tight tradeoff
based on the maximum density. Then, we show a slightly weaker
bound dependent on the average density.

3.1 Tradeoff based on the maximum density

Our main result for the maximum density is as follows: Bz

Theorem 2. For anyn nodes with the maximum densityand any
set of requestR, (°(R)/¢*(R) = O(min(\/pn/c,n/c)). This
bound is tight in the worst case.

Figure 2. Division of D into a set of disjoint set®;. All the traffic pass
through the centep by shortest path routing.

LIt's possible that two points in different subsets are visible. at some pointimB;, and arequest; = (s;,t;,¢;) € Ri. Since the



shortest path between; and¢; passes the point the length of the
shortest path betweesy andt¢; is at least the shortest path length
betweerp ands;, i.e.,7(s;,t;) > 7(p,s;) > |ps;| > 2F~". Now,
suppose thaP; is the path froms; to ¢; produced by the optimal
load-balanced routing algorithm. The number of pointsris at
least2"~!. Let A; be the first2*~! points onP;. Denote bysS,

the union of all thed;, i.e., Sk = U”eRk A;. We study the total
load produced by the optimal load balanced routing algorithm on
the nodes insidé&},. Firstly we have

dbw)= D 4l =21 N

vESy T;ERy T;ERY

1)

On the other hand, for any poiate Aj;, |pal < |ps;| + |as;| <

2F 4 2F=1 — 3.2%=1 Thatis, all the points in; are inside a disk
with radius3 - 2°~! centered ap. Since the nodes have maximum
densityp, |Sk| = O(p(3 - 2°71)?). Since each node has load at
most{* = ¢/, we have that

S 60) < St < cop(2* 1?1/ a,

vESE

)

for some constanty > 0. Combining (1) and (2), we have that

Z l; < cop2" /o

r;ER

ThusY:, g, Bi = X, cr, i/l < cop2" ™ a, for1 < k <
log 7. For the unit diskB,, we have that

2qene Bla) =2 gen, H@) /€ < |Boll”/L
<pl*/t=pla.
By summing up over all thé’s, we have that
Ygen, B@) =D en, Bla) + T

<pla+ 5T
< copt/a.

ereRk ﬁ]'
cop2k71/a

d

The last inequality is due to th3f ., 8(¢) > 1/6. Hence, the
optimal load balancing routing algorithm can do no better than dis-
tributing these loads evenly on thenodes. That is(* > 47" /6n,

ie.

a=0/l"<6n/T". 4)
By combining (3) and (4), we have that
a < min(2copt™, 6n/77) < c1y/pn,
for ¢; = \/12co. This proves Theorem 3. O

Now, we extend the result i@short routing.

PROOF OF THEOREM 2. We show that, for any set of requests
R, we can construct a set efshort paths that achieve the claimed
upper bound. Consider the optimal routing that minimizes the max-
imum load. We divideR into two subsets?; and R», whereR;
contains the requests that are routed:4short paths in the optimal
algorithm, andR- contains those requests routed by neshort
paths. We construct a set of patRsas follows. We include irP

the paths that the optimum algorithm produced for requesi®; in

For each request i, we add toP (any) shortest path between
the source and the destination of that request. Clearly, all the paths
in P arec-short. We now show that the maximum load caused by
‘P is at mostO (min(+/pn/c,n/c)*(R)).

For each poiny € S, denote by/i(q), ¢5(g), the loads ory
caused by, respectively, routing®; and R»> by the optimal algo-
rithm. Let?] = maxq ¢1(q) andf; = maxq €5(q). Clearly,¢* >
max ({7, 05) > (£ +£5)/2. For each poing € S, denote by»(q)
the loads org caused by routind?2 by using shortest path routing.
Let 2 (R) = max, £2(q). Clearly,£°(R) < £(P) < 4] + £2(R).

We now bound’z(R)/¢3 by using almost the same argument as
in the proof of Theorem 3. The only difference is that all the paths
used to route requests iR. by the optimal algorithm are nat
short. Therefore, all the requests originating at nodes outside the
disk D generate a total load of 1, ¢(q) - ¢, which is equal or
greater tharfcr™ /6. Then we can replace (4) with the following

Now we proceed to prove Theorem 3. We can assume that forinequality

anyq € S, 8(q) < 1/3; otherwiset* > £(q) > £/3,i.e.a < 3.
Now, consider the smallest didR centered ap such that

> Ba) >1/2.

qeD

We assume that there is only one node on the boundary of

l>(R)/l5 < 6n/(cT™).
Since (3) is still valid, we have that

l2(R)/05 = min(2cop7™,6n/(cT™))

= O(min(y/pn/c,n/c)).

— otherwise we can perturb (conceptually) the nodes so that thehearefore

assumption is valid. Sincé(¢) < 1/3 for anyg, we have that

S Bla) = 1/6.

q¢D
Let 7" denote the radius dD. Then, by Lemma 4,

copt” Ja =Y Blg) > 1/2

qED

a < 2copt™ .

®)

On the other hand, for any poigt¢ D, |pq| > 7*. By the same
argument used in the proof of Lemma 4, for any algorithm, the
loads incurred by those requests originating ate at least(q)7".
Therefore, the total loads caused by such requests are at least

YUy = ] Blg)er” = 476

q¢ D q¢D

((R) < 0 + La(R) = O(min(y/pnfe,n/c) (6 + )
= O(min(y/pn/c,n/c)) - £*.

This proves the upper bound in Theorem 2.

In the following, we show a lower bound construction. We only
describe the lower bound construction far < n, i.e. \/pn/c <
n/c. The other case is similar. Consider the example illustrated
in Figure 3. The distance betweenv is 1. Take a parameter
m > 1 which will be determined later, we plade= pm points
p1,- .., Pk Onavertical line segment with length and distancen
away fromu. Similarly, we create, . . ., gr With respect taw. On
the horizontal line segment throughv, we place aboutm points
evenly. In addition, there is a path between every pgir;, @ndg; as
drawn in Figure 3. Each path is abalatn long and hadcm points
on it. Clearly, the maximum density of the point sei§p). The
shortest path between andg; goes through:, v and has length
at most3m. On the other hand, any other path connecting



for some constant, > 0. ThUSZTjGRk L; < con/pnt*, for
1 <k <logr. Wealso know thad_, . £; < pt* < \/pnt”,
sincep < n. By summing up for all thé's, we have that

log T

Olem) AR =0=Y 3 4 <t logn,
k=0 r;ERy
T P1 q1
m ol g for some constant; .
U v
i Dk qx - _
} 2m + 1 |

O(cm)

Figure 3. Lower bound of the load-balancing ratio for the optimaihort
routing with maximum density.

has to go through the outside loop with lengihm. So all thec-
short paths connecting;, ¢; have to pass andwv. Therefore, if
we request to send a unit packet frgmto ¢;, for1 < 7 < k,
then thec-short path routing causes load= pm onwu,v. On the
other hand, we can use the outer path to route each packet, creating
load1 on each point. Thus, the load-balancing ratio of arshort O(c)
path routing of this example &(pm). The total number of points
in the example is abou®((pm) - (cm)) = G)(pch). Setting Figu_re 4..Lower bound of_the load-balancing ratio for the optimadhort
m = \/n/(cp), we obtain the desired lower bound. 0 routing with average densig.

We should emphasize that in the proof of Theorem 3, we do not
restrict which shortest path to use when there are more than one As for the lower bound, consider the example shown in Figure 4.
shortest paths. That is, the bound holds no matter which shortestn the figure, the distance betweenv is 1. There arec verti-
paths are used when there exist multiple shortest paths. Howevercal bars with length, 2, .. ., ¢ and with distanc®.5,1.0, 1.5, . ..
the proof of Theorem 2 does use a setceghort paths produced away fromu. We placek nodes on each of the line segments
by the optimal algorithm. Therefore, the bound does not hold for evenly with & determined later. Symmetrically, we place nodes
arbitraryc-short paths. Actually, if we choose badhort paths, we with respect to the node. Label those nodes on the outside bars

may end up with a bound even worse than that of the shortest pathp,, ..., prx andqu, ..., qx, respectively, and those nodes on the

routing. In section 5, we will present an algorithm to discover a set bar closest ta:, v to bew, ..., ux, andvs, ..., vk, respectively.

of c-short paths with the maximum load within(log n) factor of Again, we place nodes to connect every pairg; as shown in the

the optimum load using-short paths. figure. The length of those paths@¥c). Now, we request to send
a packet fronp; to ¢;, for 1 < ¢ < k. Again, eache-short path

3.2 Tradeoff based on average density routing has to use the path through the nodes causing a load of

tk onwu,v. On the other hand, the optimal algorithm can route the
requests through the outside paths and create onlyldadeach
node. Thus, the load-balancing ratio of asghort routing algo-
rithm is Q(k). The total number of nodes in the figure is bounded
by O(c - k). To bound the average density of the point set, we con-
Theorem 5. Given a set of nodesS in the plane with average  sider two types of points. For a pointon a vertical bar with length

We now show the tradeoff based on the average density of the poin
set. The benefit of considering average density is clear — it is ap-
plicable to a wider family of point sets, in particular to the point
sets with uneven distribution.

densityp, for any set of requests, h, the number of points it sees is ab@k/h). Thus,
(" (R)/¢* = O(min(y/pnlogn,n)). c
In addition, there exists example such that > o) =O6(Y_ K /h) = O(max(1,logc) - k%) .
x h=1

°(R)/ = Q(y/pn/ max(1,logc)) .
PrROOF The proof for the upper bound is similar to the proof of
Theorem 3. We use the notation in the proof of Lemma 4. We take

7 to be the diameter of the communication graph= O(n). So o 11 24 ek (k -0 11 2
D, a disk with radiug- centered ap, covers all the: nodes. Then (max(1,log.c) k" +ck(k/c))/n) (max(, log ¢)-k7/n).

For a pointy on the outside pattn(y) = ©(k/c). Therefore, the
average density is

we partitionD- into a set oflog 7 disjoint setsBy, 0 < k < log T, Thatis,k = ©(,/pn/ max(1, log c)), and the load-balancing ratio
where By is the unit disk centered atand fork > 1, By is an is Q(+/pn/ max(L, log ¢)) 0
annulus with an inner radius @f ! and an outer radius @F. The P 1108C))-

only difference is that with the average density, by Lemma 1, we
can only bound Uy cr, A;| = O(y/pn2¥), for1 < k < log.

Since each node has load at méstwe have that 4 Extensions

PA Z ; < co/pn2F e The above results naturally extend to other routing problems and to
7;€Ry a larger family of growth-restricted graphs.



4.1 VLSI routing

In VLSI routing, the task is to connect some given pairs of nodes
by paths on a mesh. One important goal is to reduce the line width,
i.e. the maximum number of paths that pass the same edge. Such
a problem has been studied extensieb; 27, 19, 6] A mesh can

be realized as a unit disk graph of a set of points with constant
bounded density. Thus, we have the following extension of our
result to bound the line width in VLSI routing.

r/2

Figure 5. The “comb” graph is a unit disk graph with constant bounded

) ) density. Therefore it's a graph with growth rate It is not a metric with
Corollary 6. If we are restricted to useshort paths to route wires  constant KR-dimension sindés,(v)| = ©(r2) and|B,(v)| = O(r).

in a mesh, then the line width is withi®(\/n/c) factor of the And, it is not a metric with constant doubling dimension: the comb graph

optimum solution. In particular, if we use (any) shortest paths, the has diametegr, it can not be covered by a constant number of balls with
approximation factor i§)(y/n). diameterr, since the diameter of a set including two teeth of the comb is at
leastr + 1.

4.2 Unit ball graph in higher dimensions

Similar results hold for unit ball graphs in higher dimensions. The
definitions in Section 2 extend naturally to points in higher dimen-
sions. We can apply the same technique to obtain the following.

One general approach for approximation is by the randomized
rounding techniqu§s, 25]. But that technique cannot be directly
applied to our case because of the restriction on the stretch factor
— it will make the size of the linear programming problem expo-
nentially large. But we show that the on-line virtual circuit routing
algorithm by Aspnegt al. [3] applies to our problem to obtain an
O(log n) approximation ratio.

Theorem 7. Forn point inR¥ with maximum density, the load-
balancing ratio of the optimatshort routing isO((n/c)' ~1/* p*/*).
In particular, the load-balancing ratio of (any) shortest path routing

; 1-1/k 1/k
isO(n P Theorem 9. There is a polynomial time on-lineshort routing al-

. gorithm with load balancing competitive rati?(log n) when com-
4.3 Growth restricted graphs pared to the optimal off-line-short routing algorithm. The com-

If we examine the proof of Theorem 2, we can see that the only petitive ratio is tight in the worst case.

property we needed for the proof is that there@(gr?) nodes in- PROOF. We apply the method if8] with slight modification. In

side any Qisk with radius. Thus, the result .e>.<t.ends immediatelyto  {pe algorithm in3], a weight is assigned to each edge (or vertex in

graphs with small growth rate. In our definition, a graph tes- our case) according to the current load on the edge and the size of

sity p andgrowth ratek (or grgwth dimensiort) if for any vertexv the request. Then for any new request, the lightest?paith re-

and anyr > 1, [ B (v)| < pr”, whereB, (v) = {u|r(u,v) <1}, spect to this weighting function is used to satisfy the request. Sim-

the ball with radius- centered ab. By using exactly the same jjarly, for c-short routing, we use the lightest path among all the

argument, we have that c-short paths. We just need to show that this modification can be
done in polynomial time, and it does find us @flog n) approxi-

Theorem 8. For a graph with density and growth raté, the load-
balancing ratio of the optimatshort routing isO((n/c)' ~1/* p*/*).

In particular, the load-balancing ratio of (any) shortest path routing
for a graph with constant density and growth riatis O (n'=1/*).

mation.

To see the former, we can use dynamic programming: given a
pair of nodes(s, t), we iteratively compute, for every nodein
the graph, the lightest path frogto u with length exactlyL (this

We should note that there are several other definitions for cap-Ma include non-simple paths) fér= 1,2,...,c - 7(s,t), where
turing metrics with slow growth. For example, [ir], a metric has 7(s,t) denotes the shortest distance betwegn This will give us

expansion raté: (or KR-dimensioriog k) if |Ba, (v)| < k| By (v)]; the lightestc-short path connectingandt in polynomial time.
and in[2], a metric hasloubling constank (or doubling dimension The proof of theO(log n) competitive ratio follows from the
log k) if Ba,-(v) is contained in the union of at moktballs with argument in the proof of Theorem 5.2[8). By a close examination

radiusr. Both definitions imply that the size @8, is bounded by of that proof, we can see that it still holds even if we associate each

o(klogr) — 0(7«10% ’V), On the other hand, we can construct a fam- request- with a subset of path®, such that only a path i®. can

ily of graphs, e.g. the comb graphs as shown in Figure 5, with con- be used to satisfy. Therefore, restricting all the paths to behort

stant density and growth rate but unbounded KR-dimension and un-is just a special case.

bounded doubling dimension. Therefore, our definition is broader  The lower bound construction iff] can be used to show that

in the sense that any graph with KR-dimension or doubling dimen- even in a mesh, any on-lineshort routing algorithm i§2(log n)

siond also has a growth dimensiah competitive compared to the optimakhort routing algorithm. Ac-
tually, we can show a stronger result where any on-line algorithm

; ; _ is 2(logn) competitive even when compared against the optimal
5 Algorlthm for short path load balancmg rout off-line algorithm that only uses the shortest paths. The details will

Ing appear in the full version. O
In the previous section, we showed a combinatorial bound on the ) ) )
load balancing ratio for the optimalshort routing algorithm. How- The above algorithm only discovers the paths but doesn't deal

ever, itis NP-hard to compute the seteghort paths (actually even  With the scheduling in the routing, for examples, the queueing prin-
the shortest paths) that minimizes the maximum load. Here, we de-CiPle when multiple packets need to be delivered from the same

Sqrit?e an algorithm that computeshort paths with maximumload 2y call it the lightest path, to be distinguished from the shortest path in the
within anO(log n) factor of the optimum. graph.




node at the same time, or the interference resolution when multiple7  Conclusion
nearby nodes transmit packets. The methods8ghor [22] can be

used for such scheduling after the path selection step. In this paper, we study the tradeoff between two important quality
measures of routing algorithms for wireless networks and growth-

. . . restricted networks: the stretch factor for measuring the path length
6 Load-balancing ratio of routing on spanners  and the load balancing ratio for measuring the load balance. We

. . . show several tradeoffs based on the maximum and the average den-
One important method to reduce the complexity of routing in wire- gj, of the wireless nodes. There is still a gap for the tradeoff when

less network is to construct a sparse spanner graph and route on thg,siqering average density. Besides, all of our results are based on
spanner grapf12, 20} A sub-graplty of a unit-disk grapt/(.5) is the worst case analysis. It would be interesting to study the tradeoff

ac-spanner if the shortest path between any two points'is c- under some reasonable traffic model. The issue of interference be-
short compared with/(S). Since a spanner graph has fewer edges yyeen wireless communication links is not considered in this paper.

than the unit-disk graph, the load balancing ratio on a spanner grapha ftre direction is to study the tradeoff under proper interference
might be high. The following theorem provides a worst case tight ., 4els such as the one[ze].

bound. .
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Theorem 10. Supposés is a set oh, points in the plane with den- ;
this paper.

sity p, andG is ac-spanner ot/ (S), for any requestr, (5, (R) /¢* =
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