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ABSTRACT

A graph has growth ratek if the number of nodes in any subgraph
with diameterr is bounded byO(rk). The communication graphs
of wireless networks and peer-to-peer networks often have small
growth rate. In this paper we study the tradeoff between two quality
measures for routing in growth restricted graphs. The two measures
we consider are the stretch factor, which measures the lengths of the
routing paths, and the load balancing ratio, which measures how
evenly the traffic is distributed. We show that if the routing algo-
rithm is required to use paths with stretch factorc, then its load bal-
ancing ratio is bounded byO((n/c)1−1/k), wherek is the graph’s
growth rate. We illustrate our results by focusing on the unit disk
graph for modeling wireless networks in which two nodes have di-
rect communication if their distance is under certain threshold. We
show that if the maximum density of the nodes is bounded byρ,
there exists routing scheme such that the stretch factor of routing
paths is at mostc, and the maximum load on the nodes is at most
O(min(

√
ρn/c, n/c)) times the optimum. In addition, the bound

on the load balancing ratio is tight in the worst case. As a special
case, when the density is bounded by a constant, the shortest path
routing has a load balancing ratio ofO(

√
n). The result extends to

k-dimensional unit ball graphs and graphs with growth ratek. We
also discuss algorithmic issues for load balanced short path routing
and for load balanced routing in spanner graphs.
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algorithms and problem complexity—Tradeoffs between Complex-
ity Measures
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1 Introduction

The study on routing in communication networks has a long history.
Among all the routing algorithms, two most notable families are
probably shortest path routing algorithms[9] and the load balanced
routing algorithms[5, 8]. These two families can be regarded as to
minimize two quality measures: the stretch factor of the paths, de-
fined to be the worst case ratio between the length of the path used
by the algorithm and the length of the shortest path, and the load
balancing ratio, defined to be the worst case ratio between the max-
imum load incurred by the algorithm and that of the optimal load
balancing routing algorithm. Both a small stretch factor and a small
load balancing ratio are desirable properties for routing. However,
these two properties have been studied separately in the past. This
probably should not be so surprising as they are conflicting goals
to some extent: for a general graph, one can easily construct exam-
ples such that a shortest path routing algorithm necessarily creates
heavily loaded nodes, and a load balancing routing algorithm nec-
essarily uses long paths.

In this paper, we study the tradeoffs between those two mea-
sures for the family ofgrowth restrictedgraphs. In our definition,
a graph has bounded growth ratek if the number of nodes in any
subgraph with diameterr is bounded byO(rk). Graphs with re-
stricted growth rate arises in many practical networks, either due to
physical constraints such as in wireless networks and VLSI layout
networks, or due to geographical constraints such as in peer-to-peer
overlay networks[23, 24, 16, 17]. For example, the unit disk graph
has been used extensively to model a wireless network, which con-
sists of a set of nodes with direct communication between those
pairs of nodes within distance1 from each other. When the maxi-
mum density of the nodes, i.e., the maximum number of nodes cov-
ered by a unit disk, is a constant, the unit disk graph has growth rate
2. As another example[23], the Internet network distance defined
by round-trip propagation and transmission delay forms a metric
with restricted growth rate. Therefore, many algorithms for peer-
to-peer networks, such as media file sharing on Internet, content
addressable overlay networks, exploit this property[24, 16, 17]. In
this paper we show that for growth restricted graphs, there exists
a tradeoff between the stretch factor and load balancing ratio with
a dependency on the growth rate. Since the direct motivation of
our work is from wireless networks, we will illustrate our results
by using wireless network routing and then show the extension to
general growth restricted networks.

The nodes in a wireless network are usually energy constrained
as they are normally powered by batteries. Therefore it is crucial to



balance the load on the nodes because an uneven use of the nodes
may cause some nodes die much earlier, thus creating holes in the
network. In addition, unbalanced use of the nodes may discourage
them to participate in the routing. For these reasons, there has been
extensive work on energy-aware routing in wireless networks[15,
14]. But most previous work focus on minimizing the overall en-
ergy consumption. In this paper, we are more concerned about min-
imizing the maximum energy consumption of nodes in the network.
Since a major amount of energy consumed by a wireless node is on
communication, we measure the load of a routing scheme to be the
maximum total size of packets that pass any node in the network.
Then the load balancing problem can be formulated as minimizing
the load and is exactly the classic load balancing routing for con-
nections with permanent duration[8].

The ideal algorithm would be the one that achieves good per-
formance in terms of both the stretch factor and the load balanc-
ing ratio. In some special cases, for example when the nodes are
aligned on a line or in a narrow band[13], it is possible to design
a routing algorithm achieving both a constant stretch factor and a
constant load balancing ratio. This is however impossible in gen-
eral — it is not difficult to construct a set of nodes and routing
requests such that any routing algorithm limited to using paths with
stretch factorc (or c-short paths) necessarily causes some node to
haveΩ(n/c) loads while the optimal load-balancing algorithm only
loadsO(1) packets on each node. Such an example, however, uses
highly crowded nodes. In this paper, we show that if the nodes
are not so crowded, then it is impossible to construct such a bad
example. We use two metrics to measure the density of wireless
nodes: themaximum densityof a set of nodes is defined as the
maximum number of nodes covered by any unit disk in the plane,
and theaverage densityas the average number of nodes covered by
the unit disks centered at the nodes in the set. Both definitions ap-
pear naturally in analyzing wireless networks. In practice, we can
expect the density of the wireless nodes to be low. Indeed, using
multi-hop peer-to-peer communication to reduce the deployment
and communication cost is exactly a goal of a wireless network. In
a dense network, techniques such as clustering are often used to re-
duce routing complexity by routing on a smaller set of “backbone”
nodes. The “backbone” nodes usually have constant density[11,
12].

In this paper, we show tradeoffs between the stretch factor and
the load balancing ratio with a dependency on the density of the
wireless nodes. Specifically, if the maximum density of a point set
isρ, then ac-short path routing can achieve a load balancing ratio of
O(min(

√
ρn/c, n/c)). In particular, if we use shortest path rout-

ing, i.e., when the stretch factorc is 1, the load balancing ratio is
O(
√

ρn). Whenρ is constant, it isO(
√

n). Furthermore, all those
bounds are tight asymptotically in the worst case. When nodes are
not evenly distributed, the average density is a more appropriate
measure. We obtain similar tradeoffs in terms of the average den-
sity.

Our tradeoffs rely on the fact that the number of nodes inside
any disk is polynomial in the radius of the disk. Therefore, the re-
sults naturally extend to higher dimensional unit ball graphs and to
graphs with restricted growth rate. We show that for ak dimen-
sional unit-ball graph with maximum densityρ, the load balancing
ratio of the optimal routing algorithms with a stretch factorc is
bounded byO((n/c)1−1/kρ1/k), and for a graph with growth rate
k, the load balancing ratio isO((n/c)1−1/k).

Another application of our results is in global routing in VLSI
design[26, 25]. In VLSI routing, given a graph (typically a mesh)
which represents the physical wiring paths of a chip and a set of
vertex pairs, one needs to connect every pair by a path in the graph.

The goal is to minimize the line width on each vertex. The semi-
nal work of Raghavan and Thompson[26] shows that by using the
randomized rounding technique, one can approximate the optimal
solution within a factor ofO(log n/ loglog n). However, in[1],
it is shown that if we only use a restricted set of paths, i.e. the
paths that only make one bend, then the line width can be of an
Ω(
√

n) factor more than the optimal solution. Since the graph in
VLSI routing is a graph with restricted growth rate due to physical
constraint, ourO(

√
n) upper bound implies that the construction

in [1] is actually the worst possible case. Further, the bound holds
as long as the underlying graph is similar to the unit disk graph
with constant-bounded node density, which is the case due to the
physical constraint.

In addition to the combinatorial bounds, we also observe that the
on-line algorithm for virtual-circuit routing developed in[3, 4] can
be adapted to obtain an on-linec-short-path routing algorithm that
is O(log n) competitive in terms of load balancing ratio, compared
with the optimalc-short-path routing algorithm. Another common
approach of reducing routing complexity in the wireless network is
to extract a sparse spanner graph[10] from the unit-disk graph and
only route packets on the spanner[12, 20]. We also consider the
load-balancing ratio of routing on spanner graphs compared to the
optimal algorithm on the unit-disk graph and show a tightΘ(ρc2)
competitive ratio when the stretch factor of the spanner graph isc.

2 Preliminaries
Given an unweighted graphG = (S, E), we denote by|P | the
number of points on a pathP in the graphG. We assume thatG is
connected, otherwise we can consider each connected component
individually. For any two pointsp, q ∈ S, denote byτ(p, q) the
length of the shortest path betweenp andq. For any pathP between
p, q, thestretch factorω(P ) of P is defined to be|P |/τ(p, q). P is
calledc-short if ω(P ) ≤ c. We sayG has growth ratek if for any
p ∈ S and anyr ≥ 1, the number of nodes inB = {q|τ(p, q) ≤ r}
is bounded byO(rk).

A routing requestis of the formr = (sr, tr, `r) wheresr, tr, `r

represent the source, destination, and the packet size, respectively.
For a set of requestsR, a set of pathsP satisfyR, denotedP |=
R, if P = {Pr | r ∈ R} wherePr is a path betweensr and tr.
We define the stretch factorω(P) of P to bemaxr∈R ω(Pr). A
routing algorithm is called ac-short-path(or c-short) routing if it
only uses paths with stretch factor at mostc. For example, shortest
path routing algorithm is a1-short path routing algorithm.

For a set of requestsR and pathsP that satisfyR, the load
`(v) on v is the total size of the packets that passv, i.e. `(v) =∑

v∈Pr
`r. Theload`(P) ofP is then defined to bemaxv∈S `(v).

Define `∗(R) = minP|=R `(P) to be the optimal load for satis-
fying R and`c(R) = minP|=R∧ω(P)≤c `(P) the optimal load by
anyc-short-path routing algorithm. For example,`1(R) is the load
created by a shortest path routing algorithm. For a routing algo-
rithmA, denote byA(R) the set of paths produced byA to satisfy
R. ThenA’s approximation ratio (ifA is off-line) or competitive
ratio (ifA is on-line) is defined to bemaxR

`(A(R))
`∗(R)

. We generally
call it the load-balancing ratio. In this paper, our goal is to study
the tradeoff between the stretch factor and the load-balancing ratio
of routing algorithms in a network.

We now give definitions that are particular for wireless networks.
Let S be a set ofn points in the plane which represent wireless
nodes. Let|pq| denote the Euclidean distance between two nodes
p, q. The communication graphof S is an unweighted unit-disk
graphU(S) = (S, E) of S, where(p, q) ∈ E iff |pq| ≤ 1. We say



two pointsp, q seeeach other if|pq| ≤ 1. Themaximum density
(or density in short),ρ(S) of S, is defined as the maximum number
of nodes inS covered by any unit disk (disk with radius1). For
eachp ∈ S, denote byρ(p) the number of pointsp sees (including
p itself). Define theaverage densitȳρ(S) of S to be

∑
p∈S ρ(p)/n.

Clearly,ρ̄(S) ≤ ρ(S). The following facts will be useful later.

Lemma 1. For any diskB with radiusr ≥ 1,

1. |B ∩ S| = O(ρ(S)r2);

2. |B ∩ S| = O(r
√

nρ̄(S)).

PROOF. SinceB can be covered byO(r2) unit disks, we have
|B ∩ S| = O(ρ(S)r2). For the second claim, suppose that there
arex points inB ∩ S. We can partitionB ∩ S into O(r2) dis-
joint subsets such that all the points in one subset are mutually vis-
ible1. Suppose that those sets areS1, . . . , Sm, and letni = |Si|.
Therefore,

∑
i n2

i ≤ nρ̄(S). By the Cauchy-Schwartz inequality,
we have thatx2 = (

∑
i ni)

2 ≤ m(
∑

i n2
i ) ≤ mnρ̄(S). Since

m = O(r2), x = O(r
√

nρ̄(S)). ¤

3 Tradeoffs in wireless network routing
If we consider the general case, it is only possible to obtain a weak
tradeoff between the stretch factor and the load-balancing ratio.
The simple example in Figure 1 shows that if we insist on usingc-
short paths, then the load-balancing ratio can be as bad asΩ(n/c).
There are3c + 1 spots on a loop. Each spot containsn/c wireless
nodes, except one spot has only one nodeo. The total number of
nodes is3n + 1. Only the nodes in adjacent spots are visible. If we
maken/c requests, each from a distinct node on spotp to a distinct
node on spotq. Any path that doesn’t pass througho has length at
least3c, i.e., is notc-short path. Therefore, anyc-short routing al-
gorithm has to route the requests througho, i.e.o has loadΘ(n/c).
On the other hand, the optimal load balancing routing algorithm
can route the requests evenly along the path on the longer arc such
that each node only passesO(1) packets.

p q

o

Figure 1. Each spot containsn/c nodes. The loop has3c + 1 spots. The
packets from spotp to q either go through nodeo, thus causing the nodeo
to be heavily loaded, or route along a long path with lengthΩ(n/c).

The above configuration uses a point set with high density. The
main result of this paper is to show that there is a tradeoff between
the stretch factor and the load-balancing ratio dependent on the den-
sity of the point set. In this section, we first present a tight tradeoff
based on the maximum density. Then, we show a slightly weaker
bound dependent on the average density.

3.1 Tradeoff based on the maximum density
Our main result for the maximum density is as follows:

Theorem 2. For anyn nodes with the maximum densityρ and any
set of requestsR, `c(R)/`∗(R) = O(min(

√
ρn/c, n/c)). This

bound is tight in the worst case.
1It’s possible that two points in different subsets are visible.

As a special case of the above theorem, when the set of nodes
has constant bounded density, then the load-balancing ratio of the
optimal c-short path routing is bounded byO(

√
n/c). In another

special case,c = 1, the load-balancing ratio for shortest path rout-
ing is O(

√
ρn). So shortest path routing on nodes with constant

density achieves a load balancing ratio ofO(
√

n). We first prove
the above theorem for the case of shortest path routing and extend
the technique to prove Theorem 2.

Theorem 3. For anyn nodes with the maximum densityρ and any
set of requestsR, `1(R)/`∗(R) = O(

√
ρn).

PROOF. Suppose thatp is the node with the maximum load if we
use shortest path routing. Without loss of generality, we can assume
that all the requests inR are routed throughp by shortest path rout-
ing, because otherwise we can safely delete those requests that do
not — this does not change the maximum load by shortest path rout-
ing but can only decrease the maximum load of the optimal routing
algorithm. Suppose that the set of requests isR = {r1, . . . , rm}
whereri = (si, ti, `i) is a request fromsi to ti with packet sizè i.
We denote bỳ ∗ the maximum load of the optimal load balanced
routing algorithm`∗(R). Since all the requests inR pass through
p in shortest path routing scheme, the maximum load of shortest
path routing,̀ 1(R) = ` =

∑m
i=1 `i. We now wish to upper-bound

α = `/`∗.
The intuition of the proof is that shortest path routing is optimal

in the sense of the total loads it creates. If the load onp is high, the
total load a shortest path routing creates is also necessarily high.
This causes the optimal algorithm to create high total loads as well.
The average load therefore cannot be too low, even if those loads
can be evenly distributed. This intuition is made concrete by the
following lemma.

We first give some notations. For each pointq ∈ S, denote by
R(q) all the requests that originate atq and by`(q) the total size
of those packets, i.e.̀(q) =

∑
ri∈R(q) `i. Write β(q) = `(q)/`,

where` =
∑m

i=1 `i. Clearly
∑

q β(q) = 1.

Lemma 4. Suppose thatDτ is the disk with radiusτ ≥ 1 centered
atp, then

∑
q∈Dτ

β(q) ≤ c0ρτ/α, for some constantc0 > 0.

PROOF. We partitionDτ into a set oflog τ disjoint setsBk, 0 ≤
k ≤ log τ , whereB0 is the unit disk centered atp and fork ≥ 1,
Bk is an annulus with an inner radius of2k−1 and an outer radius
of 2k. See Figure 2. Consider the setRk of the requests originating

B0

B1

p

21

22sj

B2

Figure 2. Division of Dτ into a set of disjoint setsBi. All the traffic pass
through the centerp by shortest path routing.

at some point inBk and a requestrj = (sj , tj , `j) ∈ Rk. Since the



shortest path betweensj andtj passes the pointp, the length of the
shortest path betweensj andtj is at least the shortest path length
betweenp andsj , i.e.,τ(sj , tj) ≥ τ(p, sj) ≥ |psj | ≥ 2k−1. Now,
suppose thatPj is the path fromsj to tj produced by the optimal
load-balanced routing algorithm. The number of points onPj is at
least2k−1. Let Aj be the first2k−1 points onPj . Denote bySk

the union of all theAj , i.e.,Sk =
⋃

rj∈Rk
Aj . We study the total

load produced by the optimal load balanced routing algorithm on
the nodes insideSk. Firstly we have

∑
v∈Sk

`(v) ≥
∑

rj∈Rk

`j |Aj | = 2k−1
∑

rj∈Rk

`j . (1)

On the other hand, for any pointa ∈ Aj , |pa| ≤ |psj | + |asj | ≤
2k +2k−1 = 3 ·2k−1. That is, all the points inAj are inside a disk
with radius3 · 2k−1 centered atp. Since the nodes have maximum
densityρ, |Sk| = O(ρ(3 · 2k−1)2). Since each node has load at
most`∗ = `/α, we have that

∑
v∈Sk

`(v) ≤ |Sk|`∗ ≤ c0ρ(2k−1)2`/α , (2)

for some constantc0 > 0. Combining (1) and (2), we have that
∑

rj∈Rk

`j ≤ c0ρ2k−1`/α .

Thus
∑

rj∈Rk
βj =

∑
rj∈Rk

`j/` ≤ c0ρ2k−1/α, for 1 ≤ k ≤
log τ . For the unit diskB0, we have that

∑
q∈B0

β(q) =
∑

q∈B0
`(q)/` ≤ |B0|`∗/`

≤ ρ`∗/` = ρ/α .

By summing up over all thek’s, we have that
∑

q∈Dτ
β(q) =

∑
q∈B0

β(q) +
∑log τ

k=1

∑
rj∈Rk

βj

≤ ρ/α +
∑log τ

k=1 c0ρ2k−1/α
≤ c0ρτ/α .

¤

Now we proceed to prove Theorem 3. We can assume that for
anyq ∈ S, β(q) ≤ 1/3; otherwisè ∗ ≥ `(q) > `/3, i.e.α < 3.
Now, consider the smallest diskD centered atp such that

∑
q∈D

β(q) ≥ 1/2 .

We assume that there is only one node on the boundary ofD
— otherwise we can perturb (conceptually) the nodes so that the
assumption is valid. Sinceβ(q) ≤ 1/3 for anyq, we have that

∑

q /∈D

β(q) ≥ 1/6 .

Let τ∗ denote the radius ofD. Then, by Lemma 4,

c0ρτ∗/α ≥
∑
q∈D

β(q) ≥ 1/2

i.e.

α ≤ 2c0ρτ∗ . (3)

On the other hand, for any pointq /∈ D, |pq| ≥ τ∗. By the same
argument used in the proof of Lemma 4, for any algorithm, the
loads incurred by those requests originating atq are at least̀(q)τ∗.
Therefore, the total loads caused by such requests are at least

∑

q /∈D

`(q)τ∗ =
∑

q /∈D

β(q)`τ∗ ≥ `τ∗/6 .

The last inequality is due to that
∑

q /∈D β(q) ≥ 1/6. Hence, the
optimal load balancing routing algorithm can do no better than dis-
tributing these loads evenly on then nodes. That is,̀∗ ≥ `τ∗/6n,
i.e.

α = `/`∗ ≤ 6n/τ∗ . (4)

By combining (3) and (4), we have that

α ≤ min(2c0ρτ∗, 6n/τ∗) ≤ c1
√

ρn ,

for c1 =
√

12c0. This proves Theorem 3. ¤

Now, we extend the result toc-short routing.

PROOF OF THEOREM 2. We show that, for any set of requests
R, we can construct a set ofc-short paths that achieve the claimed
upper bound. Consider the optimal routing that minimizes the max-
imum load. We divideR into two subsetsR1 andR2, whereR1

contains the requests that are routed byc-short paths in the optimal
algorithm, andR2 contains those requests routed by non-c-short
paths. We construct a set of pathsP as follows. We include inP
the paths that the optimum algorithm produced for requests inR1.
For each request inR2, we add toP (any) shortest path between
the source and the destination of that request. Clearly, all the paths
in P arec-short. We now show that the maximum load caused by
P is at mostO(min(

√
ρn/c, n/c)`∗(R)).

For each pointq ∈ S, denote bỳ ∗
1(q), `

∗
2(q), the loads onq

caused by, respectively, routingR1 andR2 by the optimal algo-
rithm. Let `∗1 = maxq `∗1(q) and`∗2 = maxq `∗2(q). Clearly,`∗ ≥
max(`∗1, `

∗
2) ≥ (`∗1 +`∗2)/2. For each pointq ∈ S, denote bỳ 2(q)

the loads onq caused by routingR2 by using shortest path routing.
Let `2(R) = maxq `2(q). Clearly,`c(R) ≤ `(P) ≤ `∗1 + `2(R).

We now bound̀ 2(R)/`∗2 by using almost the same argument as
in the proof of Theorem 3. The only difference is that all the paths
used to route requests inR2 by the optimal algorithm are notc-
short. Therefore, all the requests originating at nodes outside the
diskD generate a total load of

∑
q /∈D `(q) · cτ∗, which is equal or

greater thaǹ cτ∗/6. Then we can replace (4) with the following
inequality

`2(R)/`∗2 ≤ 6n/(cτ∗) .

Since (3) is still valid, we have that

`2(R)/`∗2 = min(2c0ρτ∗, 6n/(cτ∗))
= O(min(

√
ρn/c, n/c)) .

Therefore,

`c(R) ≤ `∗1 + `2(R) = O(min(
√

ρn/c, n/c))(`∗1 + `∗2)
= O(min(

√
ρn/c, n/c)) · `∗ .

This proves the upper bound in Theorem 2.

In the following, we show a lower bound construction. We only
describe the lower bound construction forρc ≤ n, i.e.

√
ρn/c ≤

n/c. The other case is similar. Consider the example illustrated
in Figure 3. The distance betweenu, v is 1. Take a parameter
m > 1 which will be determined later, we placek = ρm points
p1, . . . , pk on a vertical line segment with lengthm and distancem
away fromu. Similarly, we createq1, . . . , qk with respect tov. On
the horizontal line segment throughu, v, we place about2m points
evenly. In addition, there is a path between every pair ofpi andqi as
drawn in Figure 3. Each path is about4cm long and has4cm points
on it. Clearly, the maximum density of the point set isO(ρ). The
shortest path betweenpi andqi goes throughu, v and has length
at most3m. On the other hand, any other path connectingu, v



m

qk

Θ(cm)

Θ(cm)

2m + 1

· · ·

· · ·· · ·

1
u v

pk

p1 q1

Figure 3. Lower bound of the load-balancing ratio for the optimalc-short
routing with maximum densityρ.

has to go through the outside loop with length4cm. So all thec-
short paths connectingpi, qi have to passu andv. Therefore, if
we request to send a unit packet frompi to qi, for 1 ≤ i ≤ k,
then thec-short path routing causes loadk = ρm on u, v. On the
other hand, we can use the outer path to route each packet, creating
load1 on each point. Thus, the load-balancing ratio of anyc-short
path routing of this example isΩ(ρm). The total number of points
in the example is aboutΘ((ρm) · (cm)) = Θ(ρcm2). Setting
m =

√
n/(cρ), we obtain the desired lower bound. ¤

We should emphasize that in the proof of Theorem 3, we do not
restrict which shortest path to use when there are more than one
shortest paths. That is, the bound holds no matter which shortest
paths are used when there exist multiple shortest paths. However,
the proof of Theorem 2 does use a set ofc-short paths produced
by the optimal algorithm. Therefore, the bound does not hold for
arbitraryc-short paths. Actually, if we choose badc-short paths, we
may end up with a bound even worse than that of the shortest path
routing. In section 5, we will present an algorithm to discover a set
of c-short paths with the maximum load withinO(log n) factor of
the optimum load usingc-short paths.

3.2 Tradeoff based on average density
We now show the tradeoff based on the average density of the point
set. The benefit of considering average density is clear — it is ap-
plicable to a wider family of point sets, in particular to the point
sets with uneven distribution.

Theorem 5. Given a set ofn nodesS in the plane with average
densityρ̄, for any set of requestsR,

`1(R)/`∗ = O(min(
√

ρ̄n log n, n)) .

In addition, there exists example such that

`c(R)/`∗ = Ω(
√

ρ̄n/ max(1, log c)) .

PROOF. The proof for the upper bound is similar to the proof of
Theorem 3. We use the notation in the proof of Lemma 4. We take
τ to be the diameter of the communication graph.τ = O(n). So
Dτ , a disk with radiusτ centered atp, covers all then nodes. Then
we partitionDτ into a set oflog τ disjoint setsBk, 0 ≤ k ≤ log τ ,
whereB0 is the unit disk centered atp and fork ≥ 1, Bk is an
annulus with an inner radius of2k−1 and an outer radius of2k. The
only difference is that with the average density, by Lemma 1, we
can only bound| ∪rj∈Rk Aj | = O(

√
ρ̄n2k), for 1 ≤ k ≤ log τ .

Since each node has load at most`∗, we have that

2k−1
∑

rj∈Rk

`j ≤ c0

√
ρ̄n2k−1`∗ ,

for some constantc0 > 0. Thus
∑

rj∈Rk
`j ≤ c0

√
ρ̄n`∗, for

1 ≤ k ≤ log τ . We also know that
∑

rj∈R0
`j ≤ ρ̄`∗ ≤ √

ρ̄n`∗,
sinceρ̄ ≤ n. By summing up for all thek’s, we have that

`1(R) = ` =

log τ∑

k=0

∑
rj∈Rk

`j ≤ c1

√
ρ̄n`∗ log n ,

for some constantc1.
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Figure 4. Lower bound of the load-balancing ratio for the optimalc-short
routing with average densitȳρ.

As for the lower bound, consider the example shown in Figure 4.
In the figure, the distance betweenu, v is 1. There arec verti-
cal bars with length1, 2, . . . , c and with distance0.5, 1.0, 1.5, . . .
away fromu. We placek nodes on each of the line segments
evenly with k determined later. Symmetrically, we place nodes
with respect to the nodev. Label those nodes on the outside bars
p1, . . . , pk and q1, . . . , qk, respectively, and those nodes on the
bar closest tou, v to beu1, . . . , uk, andv1, . . . , vk, respectively.
Again, we place nodes to connect every pairpi, qi as shown in the
figure. The length of those paths isΘ(c). Now, we request to send
a packet frompi to qi, for 1 ≤ i ≤ k. Again, eachc-short path
routing has to use the path through the nodesu, v, causing a load of
k on u, v. On the other hand, the optimal algorithm can route the
requests through the outside paths and create only load1 to each
node. Thus, the load-balancing ratio of anyc-short routing algo-
rithm is Ω(k). The total number of nodes in the figure is bounded
by O(c · k). To bound the average density of the point set, we con-
sider two types of points. For a pointx on a vertical bar with length
h, the number of points it sees is aboutΘ(k/h). Thus,

∑
x

ρ(x) = Θ(

c∑

h=1

k2/h) = Θ(max(1, log c) · k2) .

For a pointy on the outside path,ρ(y) = Θ(k/c). Therefore, the
average densitȳρ is

Θ((max(1, log c) ·k2 +ck(k/c))/n) = Θ(max(1, log c) ·k2/n) .

That is,k = Θ(
√

ρ̄n/ max(1, log c)), and the load-balancing ratio
is Ω(

√
ρ̄n/ max(1, log c)). ¤

4 Extensions

The above results naturally extend to other routing problems and to
a larger family of growth-restricted graphs.



4.1 VLSI routing
In VLSI routing, the task is to connect some given pairs of nodes
by paths on a mesh. One important goal is to reduce the line width,
i.e. the maximum number of paths that pass the same edge. Such
a problem has been studied extensively[26, 27, 19, 6]. A mesh can
be realized as a unit disk graph of a set of points with constant
bounded density. Thus, we have the following extension of our
result to bound the line width in VLSI routing.

Corollary 6. If we are restricted to usec-short paths to route wires
in a mesh, then the line width is withinO(

√
n/c) factor of the

optimum solution. In particular, if we use (any) shortest paths, the
approximation factor isO(

√
n).

4.2 Unit ball graph in higher dimensions
Similar results hold for unit ball graphs in higher dimensions. The
definitions in Section 2 extend naturally to points in higher dimen-
sions. We can apply the same technique to obtain the following.

Theorem 7. Forn point inRk with maximum densityρ, the load-
balancing ratio of the optimalc-short routing isO((n/c)1−1/kρ1/k).
In particular, the load-balancing ratio of (any) shortest path routing
is O(n1−1/kρ1/k).

4.3 Growth restricted graphs
If we examine the proof of Theorem 2, we can see that the only
property we needed for the proof is that there areO(ρr2) nodes in-
side any disk with radiusr. Thus, the result extends immediately to
graphs with small growth rate. In our definition, a graph hasden-
sityρ andgrowth ratek (or growth dimensionk) if for any vertexv
and anyr > 1, |Br(v)| ≤ ρrk, whereBr(v) = {u|τ(u, v) ≤ r},
the ball with radiusr centered atv. By using exactly the same
argument, we have that

Theorem 8. For a graph with densityρ and growth ratek, the load-
balancing ratio of the optimalc-short routing isO((n/c)1−1/kρ1/k).
In particular, the load-balancing ratio of (any) shortest path routing
for a graph with constant density and growth ratek is O(n1−1/k).

We should note that there are several other definitions for cap-
turing metrics with slow growth. For example, in[16], a metric has
expansion ratek (or KR-dimensionlog k) if |B2r(v)| ≤ k|Br(v)|;
and in[2], a metric hasdoubling constantk (or doubling dimension
log k) if B2r(v) is contained in the union of at mostk balls with
radiusr. Both definitions imply that the size ofBr is bounded by
O(klog r) = O(rlog k). On the other hand, we can construct a fam-
ily of graphs, e.g. the comb graphs as shown in Figure 5, with con-
stant density and growth rate but unbounded KR-dimension and un-
bounded doubling dimension. Therefore, our definition is broader
in the sense that any graph with KR-dimension or doubling dimen-
siond also has a growth dimensiond.

5 Algorithm for short path load balancing rout-
ing

In the previous section, we showed a combinatorial bound on the
load balancing ratio for the optimalc-short routing algorithm. How-
ever, it is NP-hard to compute the set ofc-short paths (actually even
the shortest paths) that minimizes the maximum load. Here, we de-
scribe an algorithm that computesc-short paths with maximum load
within anO(log n) factor of the optimum.

r/2

r/2

v r

Figure 5. The “comb” graph is a unit disk graph with constant bounded
density. Therefore it’s a graph with growth rate2. It is not a metric with
constant KR-dimension since|B2r(v)| = Θ(r2) and |Br(v)| = Θ(r).
And, it is not a metric with constant doubling dimension: the comb graph
has diameter2r, it can not be covered by a constant number of balls with
diameterr, since the diameter of a set including two teeth of the comb is at
leastr + 1.

One general approach for approximation is by the randomized
rounding technique[26, 25]. But that technique cannot be directly
applied to our case because of the restriction on the stretch factor
— it will make the size of the linear programming problem expo-
nentially large. But we show that the on-line virtual circuit routing
algorithm by Aspneset al. [3] applies to our problem to obtain an
O(log n) approximation ratio.

Theorem 9. There is a polynomial time on-linec-short routing al-
gorithm with load balancing competitive ratioO(log n) when com-
pared to the optimal off-linec-short routing algorithm. The com-
petitive ratio is tight in the worst case.

PROOF. We apply the method in[3] with slight modification. In
the algorithm in[3], a weight is assigned to each edge (or vertex in
our case) according to the current load on the edge and the size of
the request. Then for any new request, the lightest path2 with re-
spect to this weighting function is used to satisfy the request. Sim-
ilarly, for c-short routing, we use the lightest path among all the
c-short paths. We just need to show that this modification can be
done in polynomial time, and it does find us anO(log n) approxi-
mation.

To see the former, we can use dynamic programming: given a
pair of nodes(s, t), we iteratively compute, for every nodeu in
the graph, the lightest path froms to u with length exactlyL (this
may include non-simple paths) forL = 1, 2, . . . , c · τ(s, t), where
τ(s, t) denotes the shortest distance betweens, t. This will give us
the lightestc-short path connectings andt in polynomial time.

The proof of theO(log n) competitive ratio follows from the
argument in the proof of Theorem 5.2 in[3]. By a close examination
of that proof, we can see that it still holds even if we associate each
requestr with a subset of pathsPr such that only a path inPr can
be used to satisfyr. Therefore, restricting all the paths to bec-short
is just a special case.

The lower bound construction in[7] can be used to show that
even in a mesh, any on-linec-short routing algorithm isΩ(log n)
competitive compared to the optimalc-short routing algorithm. Ac-
tually, we can show a stronger result where any on-line algorithm
is Ω(log n) competitive even when compared against the optimal
off-line algorithm that only uses the shortest paths. The details will
appear in the full version. ¤

The above algorithm only discovers the paths but doesn’t deal
with the scheduling in the routing, for examples, the queueing prin-
ciple when multiple packets need to be delivered from the same

2we call it the lightest path, to be distinguished from the shortest path in the
graph.



node at the same time, or the interference resolution when multiple
nearby nodes transmit packets. The methods in[18] or [22] can be
used for such scheduling after the path selection step.

6 Load-balancing ratio of routing on spanners

One important method to reduce the complexity of routing in wire-
less network is to construct a sparse spanner graph and route on the
spanner graph[12, 20]. A sub-graphG of a unit-disk graphU(S) is
a c-spanner if the shortest path between any two points inG is c-
short compared withU(S). Since a spanner graph has fewer edges
than the unit-disk graph, the load balancing ratio on a spanner graph
might be high. The following theorem provides a worst case tight
bound.

Theorem 10. SupposeS is a set ofn points in the plane with den-
sityρ, andG is ac-spanner ofU(S), for any requestsR, `∗G(R)/`∗ =
O(ρc2), wherè ∗

G(R) (`∗) is the maximum load resulted by the op-
timal load-balancing routing algorithm onG (U(S)). The bound is
tight in the worst case.

PROOF. For a set of requestsR, consider the optimal solution
P∗ on the unit-disk graphU . We now construct a solution onG
from P∗. For an edgeuv on a path inP∗, if it is not in G, then
there must exist a path with lengthc in G becauseG is ac-spanner.
We can then reroute the packet on that path. Clearly, this way we
obtain a set of pathsP ′ in G that satisfyR. Now, consider a point
p ∈ S. A packet can be redirected to it only if it is routed in the
optimal solution through a pointu which is at most distancec away
from p. Or, u is in the disk with radiusc and centered atp. There
areO(ρc2) such points. Therefore, the load onp is O(ρc2`∗).

c

o c

Figure 6. Lower boundΩ(c2) on the competitive ratio of load balanced
routing algorithms onc-spanners.

As for the lower bound, we use the classic H-tree construction[21].
We only show the construction for points with constant density. The
extension to points with other density is easy – we just putρ copies
on each grid node. ConsiderΘ(c2) points positioned on a grid as
shown in Figure 6. Each little square of the grid has side length
1/2. The spannerG is composed of an H-tree and a “complement”
skeleton joined by a single edge at the center of the grido. So any
path from a node on the H-tree to a node in the complement H-tree
has to go througho. Clearly,G is aΘ(c)-spanner graph. Now we
make a request from each leaf point of the H-tree to its nearby point
on the complement part of theH-tree (see little arrow in Figure 6).
The optimal solution can send the requests directly. However, inG,
all the requests have to be routed through the pointo. Therefore, the
load-balancing ratio of the routing on thisc-spanner isΩ(c2). ¤

7 Conclusion

In this paper, we study the tradeoff between two important quality
measures of routing algorithms for wireless networks and growth-
restricted networks: the stretch factor for measuring the path length
and the load balancing ratio for measuring the load balance. We
show several tradeoffs based on the maximum and the average den-
sity of the wireless nodes. There is still a gap for the tradeoff when
considering average density. Besides, all of our results are based on
the worst case analysis. It would be interesting to study the tradeoff
under some reasonable traffic model. The issue of interference be-
tween wireless communication links is not considered in this paper.
A future direction is to study the tradeoff under proper interference
models such as the one in[22].
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