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ABSTRACT
We extend the classic notion of well-separated pair decom-
position [10] to the (weighted) unit-disk graph metric: the
shortest path distance metric induced by the intersection graph
of unit disks. We show that for the unit-disk graph metric
of n points in the plane and for any constant c ≥ 1, there
exists a c-well-separated pair decomposition with O(n log n)
pairs, and the decomposition can be computed in O(n log n)
time. We also show that for the unit-ball graph metric in
k dimensions where k ≥ 3, there exists a c-well-separated
pair decomposition with O(n2−2/k) pairs, and the bound is
tight in the worst case. We present the application of the
well-separated pair decomposition in obtaining efficient algo-
rithms for approximating the diameter, closest pair, nearest
neighbor, center, median, and stretch factor, all under the
unit-disk graph metric.
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[Theory of Computation]: analysis of algorithms and
problem complexity—non-numerical algorithms and prob-
lems; G.2.2 [Discrete Mathematics]: graph theory—graph
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1. INTRODUCTION
Well-separated pair decomposition, introduced by Calla-

han and Kosaraju [10], has found numerous applications
in solving proximity problems for points in the Euclidean
space [7, 10, 9, 5, 4, 28, 24, 18, 14]. A pair of point sets (A, B)
is c-well-separated if the distance between A, B is at least
c times the diameters of both A and B. A well-separated
pair decomposition of a point set consists of a set of well-
separated pairs that “cover” all the pairs of distinct points,
i.e. any two distinct points belong to the different sets of
some pair. In [10], Callahan and Kosaraju showed that for
any point set in an Euclidean space and for any constant
c ≥ 1, there always exists a c-well-separated pair decom-
position with linearly many pairs. This fact has been very
useful in obtaining nearly linear time algorithms for many
problems such as computing k-nearest neighbors, N -body
potential fields, geometric spanners, approximate minimum
spanning trees etc. Well-separated pair decomposition is
also shown very useful in obtaining efficient dynamic, par-
allel, and external memory algorithms [7, 9, 10, 8, 17].

The definition of well-separated pair decomposition can be
naturally extended to any metric space. Curiously enough
however, there has been no work for such an extension. One
reason is probably that a general metric space may not admit
a well-separated pair decomposition with a sub-quadratic
size. Indeed, even for the metric induced by a star tree with
unit weight on each edge1, any well-separated pair decom-
position requires quadratically many pairs. This makes the
well-separated pair decomposition useless for such a metric.
In this paper, we will show that for a certain metric, there
do exist well-separated pair decompositions with almost lin-
ear size, and therefore many proximity problems under that
metric can be solved efficiently. The metric we investigate
is the so called unit-disk graph metric.

For a point set S in the plane, its unit-disk graph [12] is
formed by connecting two points p, q in S if the Euclidean
distance d(p, q) is at most 1. A unit-disk graph can also be
viewed as the intersection graph of a set of unit disks cen-
tered at the points in S. We consider the weighted unit-disk
graphs where each edge (p, q) receives the weight d(p, q).
Such graphs have been used extensively to model the com-
munication or influence between objects [26, 20] and studied
in many different contexts [12, 6, 21, 15]. Recently, there
have been many applications of unit-disk graphs in wireless
networks [22, 29, 30], as two wireless nodes can directly com-
municate with each other only if they are within certain dis-

1A metric induced by a graph (with positive edge weights)
is the shortest path distance metric of the graph.



tance. In this paper, we call the well-separated pair decom-
position in the Euclidean space the geometric well separated
pair decomposition, to be distinguished from the decompo-
sition in graph metrics.

In this paper, we show that for the metric induced by the
unit-disk graph on n points and for any constant c ≥ 1,
there does exist a c-well-separated pair decomposition with
O(n log n) pairs, and such a decomposition can be com-
puted in O(n log n) time. We also show that the bounds
can be extended to higher dimensions: for k ≥ 3, there al-
ways exists a c-well-separated pair decomposition with size
O(n2−2/k) for the unit-ball graph metric on n points, and
the bound is tight in the worst case. The construction time
is O(n4/3 polylog n) for k = 3 and O(n2−2/k) for k ≥ 4.

The difficulty in obtaining a well-separated pair decom-
position for unit-disk graph metric is that two points that
are close in the space are not necessarily close under the
graph metric. We first prove the bound for the point set
with constant-bounded density, i.e. a point set where any
unit disk covers only a constant number of points in the set,
by using a packing argument similar to the one in [19]. For
a point set with unbounded density, we apply the clustering
technique similar to the one used in [16] to the point set and
obtain a set of “clusterheads” with a bounded density. We
then apply the result for bounded density point set on those
clusterheads. Then, by combining the well-separated pair
decomposition for the bounded density point sets and for
the Euclidean metric, we are able to show that the bound
holds for any point sets.

For a pair of well-separated sets, the distance between two
points from different sets can be approximated by the “dis-
tance” between the two sets or the distance between any pair
of points in different sets. In other words, a well-separated
pair decomposition can be thought as a compressed rep-
resentation to approximate the Θ(n2) pairwise distances.
Many problems that require to check the pairwise short-
est distances can therefore be approximately solved by ex-
amining those distances between the well-separated pairs of
sets. When the size of the well-separated pair decomposition
is sub-quadratic, it often gives us more efficient algorithms
than examining all the pairwise distances. Indeed, this is the
intuition behind many applications of the geometric well-
separated pair decomposition. By using the same intuition,
we show the application of well-separated pair decomposi-
tion in several proximity problems under the unit-disk graph
metric.

Specifically, we consider the following natural proximity
problems. Assume that S1 ⊆ S.

• Furthest neighbor, diameter, center. The fur-
thest neighbor of p ∈ S1 is the point in S1 that max-
imizes the distance to p. Related problems include
computing the diameter, the maximum pairwise short-
est distance for points in S1, and the center, the point
that minimizes the maximum distance to all the other
points.

• Nearest neighbor, closest pair. The nearest neigh-
bor of p ∈ S1 is the point in S1 with the minimum
distance to p. Related problems include computing
the closest pair, the pair with minimum shortest dis-
tance, and the bichromatic closest pair, the pair that
minimizes distance between points from two different
sets.

• Median. The median of S is the point in S that
minimizes the average (or total) distance to all the
other points.

• Stretch factor. For a graph G defined on S, its
stretch factor with respect to the unit-disk graph met-
ric is defined to be the maximum ratio πG(p, q)/π(p, q)
where πG, π are the distances induced by G and by the
unit-disk graph, respectively.

All the above problems can be solved or approximated ef-
ficiently for points in the Euclidean space. However, for the
metric induced by a graph, even for planar graphs, very little
is known other than solving the expensive all-pairs shortest
path problem. For computing diameter, there is a simple lin-
ear time method that achieves a 2-approximation and a 4/3-
approximate algorithm with running time O(m

√
n log n +

n2 log n), for a graph with n vertices and m edges, by Aing-
worth et al. [2]. By using the powerful tool of the well-
separated pair decomposition, we are able to obtain, for all
the above problems, nearly linear time algorithms for com-
puting 2.42-approximation2 and O(n

√
n log n/ε3) time algo-

rithms for computing (1+ε)-approximation for any ε > 0. In
addition, the well-separated pair decomposition can be used
to obtain an O(n log n/ε4) space distance oracle so that any
(1+ε) distance query in the unit-disk graph can be answered
in O(1) time.

While the existence of almost linear size well-separated
pair decomposition has reduced the number of pairs needed
to examine when solving many proximity problems, we still
need good approximation of the distances between those
pairs. Our construction algorithm only produces well sepa-
rated pair decompositions without knowing an accurate ap-
proximation of the distances. For approximation algorithms,
we need accurate estimation of shortest distances between
O(n log n) pairs of points in the unit-disk graph. Indeed, the
approximation ratio and the running time of our algorithms
are dominated by the efficiency of such algorithms. Once the
distance estimation has been made, the rest of computation
only takes almost linear time.

For a general graph, it is unknown whether O(n log n)
pairs shortest path distances can be computed significantly
faster than all pairs shortest path distances. For the planar
graph, one can compute O(n log n) pairs shortest path dis-
tance in O(n

√
n log n) time by using separators with O(

√
n)

size [3]. This method extends to the unit-disk graph with
constant bounded density since such graphs enjoy similar
separator property as the planar graphs [27, 31]. As for ap-
proximation, Thorup [33] recently discovered an algorithm
for planar graphs that can answer any (1 + ε)-shortest dis-
tance query in O(1/ε) time after almost linear time prepro-
cessing. Unfortunately, Thorup’s algorithm uses balanced
shortest-path separators in planar graphs which do not ob-
viously extend to the unit-disk graphs. On the other hand,
it is known that there does exist planar 2.42-spanner for a
unit-disk graph [25]. By applying Thorup’s algorithm to that

2For a minimization problem, a quantity ˆ̀ is a c-

approximation of ` if ` ≤ ˆ̀ ≤ c`. An object Ô is a c-
approximation of O with respect to a cost function f if

f(O) ≤ f(Ô) ≤ cf(O). For a maximization problem, ˆ̀

is a c-approximation of ` if `/c ≤ ˆ̀ ≤ `, and Ô is a c-

approximation of O if f(O)/c ≤ f(Ô) ≤ f(O).



planar spanner, we can compute 2.42-approximate shortest
path distance for O(n log n) pairs in almost linear time.

Another application of well-separated pair decomposition
is that we are able to obtain an almost linear size data struc-
ture to answer (1 + ε)-approximate shortest path query in
O(1) time. Approximate distance oracles have been studied
where the emphasis is often on the size of the oracles (for a
survey, see [36]). For general graphs, it has been shown that
it is possible to construct a (2k − 1)-approximate distance

oracle with size O(kn1+1/k) [34]. It is also shown in [34] that
this bound is tight for some small k’s and is conjectured to
be tight for all the k’s. For planar graphs, Thorup [33] and
Klein [23] have shown that there exists (1 + ε)-approximate
distance oracle by using almost linear space for any ε > 0.
As mentioned before, their results do not extend to the unit-
disk graph. In addition, the query time of their algorithm
is O(1/ε). Recently, Gudmundsson et al. showed that when
a geometric graph is an Euclidean spanner, there does exist
an almost linear time (and therefore almost linear space)
method to construct (1 + ε)-approximate and O(1) query
time distance oracles [18]. Again, a unit-disk graph is not
necessarily an Euclidean spanner with bounded stretch fac-
tor, and their technique does not extend.

2. DEFINITIONS
Unit-disk graphs. Denote by d(·, ·) the Euclidean met-
ric. For a set of points S in the plane, the unit-disk graph
I(S) = (S, E) is defined to be the weighted graph where an
edge e = (p, q) is in the graph if d(p, q) ≤ 1, and the weight
of e is d(p, q). Likewise, we can define the unit-ball graph
for points in higher dimensions.

Metric space. Suppose that (S, π) is a metric space where
S is a set of elements and π the distance function defined
on S × S. For any subset S1 ⊆ S, the diameter Dπ(S1) (or
D(S1) when π is clear from the context) of S is defined to be
maxs1,s2∈S1 π(s1, s2). The distance π(S1, S2) between two
sets S1, S2 ⊆ S is defined to be mins1∈S1,s2∈S2 π(s1, s2).

Any connected graph G containing edges with positive
weights induces a metric πG on its nodes where the distance
between any two nodes is defined to be the length of the
shortest path between them. In this paper, we are inter-
ested in the unit-disk graph metric π = πI(S) induced by
the unit-disk graph of a set of points S in the plane.

Well-separated pair decomposition. For a metric space
(S, π), two non-empty subsets S1, S2 ⊆ S are called c-well-
separated if π(S1, S2) ≥ c ·max(Dπ(S1), Dπ(S2)).

Following the definition in [10], for any two sets A and B,
a set of pairs P = {P1, P2, · · · , Pm}, where Pi = (Ai, Bi), is
called a pair decomposition of (A, B) (or of A if A = B) if

• for all the i’s, Ai ⊆ A, and Bi ⊆ B;

• Ai ∩Bi = ∅;
• for any two elements a ∈ A and b ∈ B, there exists a

unique i such that a ∈ Ai, and b ∈ Bi. We call (a, b)
is covered by the pair (Ai, Bi).

If in addition, every pair in P is c-well-separated, P is
called a c-well-separated pair decomposition (or c-WSPD in
short). Clearly, any metric space admits a c-WSPD with
quadratic size by using the trivial family that contains all
the pairwise elements.

3. WELL-SEPARATED PAIR DECOMPOSI-
TION FOR UNIT-DISK GRAPH METRIC

We start with the point set with constant bounded den-
sity. Then, by combining with geometric well-separated pair
decomposition, we show the extension of the result to arbi-
trary point sets. We will focus our discussion on points in
the plane, but most results extend to higher dimensions,
resulting sub-quadratic size well-separated pair decomposi-
tion. We also show that our bounds in Rk for k ≥ 3 are
tight.

3.1 Point sets with constant bounded density
The density α of a point set S is defined to be the max-

imum number of points in S covered by a unit disk. S has
constant bounded density if its density is O(1). We assume
that the unit-disk graph on S is connected; otherwise, we
can consider each connected component separately.

To construct a well-separated pair decomposition, we first
compute the unit-disk graph I(S) of S and then a spanning
tree T of I(S) where the maximum degree of T is 6. This
can be done by computing the relative neighborhood graph
of S [35] and keeping those edges with length at most 1. Let
G be the resulted graph. It is well known that G is con-
nected, and the degree of G is at most 6. We then compute
a spanning tree of G. This step takes O(n log n) time [32]. It
is also known that any n-vertex tree with maximum degree
β−1 can be divided into two parts by removing a single edge
so that each subtree contain at least n/β vertices. We now
recursively apply the balanced partitioning to obtain a bal-
anced hierarchical decomposition of T . The decomposition
can be represented as a rooted binary tree T ′ where each
node v ∈ T ′ corresponds to a (connected) subtree T (v) of
T . The root of T ′ corresponds to T , and for a node v ∈ T ′,
v’s two children v1, v2 represent the two connected subtrees
T (v1) and T (v2) obtained by removing an edge from T (v).
We denote by S(v) the set of points in the subtree in T (v).
For a node v ∈ T ′, denote by P (v) the parent node of v in
T ′. We also use P (S(u)) to denote S(P (u)). The height of
the tree T ′ is obviously O(log n).

Now, we describe a procedure to produce a c-WSPD of
S. For each node v ∈ T ′, we pick an arbitrary point from
S(v) as a representative of S(v) and denote it by σ(S(v))
(or σ(v)). We place in a queue the pair (S(r), S(r)) where
r is the root of T ′. We run the following process until the
queue becomes empty: repeatedly remove the first element
(S(v1), S(v2)) from the queue. There are two cases:

• d(σ(v1), σ(v2)) ≥ (c+2) ·max(|S(v1)|− 1, |S(v2)|− 1).
In this case, we include the pair to P.

• d(σ(v1), σ(v2)) < (c+2) ·max(|S(v1)|− 1, |S(v2)|− 1).
If |S(v1)| = |S(v2)| = 1, then it must be the case that
S(v1) and S(v2) contain the same point. In this case,
we simply discard the pair. Otherwise, suppose that
|S(v1)| ≥ |S(v2)| and that u1, u2 are two children of
v1. We add to the queue two pairs (S(u1), S(v2)) and
(S(u2), S(v2)).

The above process is very similar to the collision detec-
tion algorithm in [19] except that here a pair is produced
when they are c-well-separated. We now make the following
claims.



Lemma 3.1. P is a c-WSPD of S. Furthermore, each or-
dered pair of distinct points (p, q) is covered by exactly one
pair in P.

Proof. By the construction, a pair (S(v1), S(v2)) is in-
cluded in P only if d(σ(v1), σ(v2)) ≥ (c + 2) ·max(|S(v1)| −
1, |S(v2)| − 1). Since for any v ∈ T ′, S(v) is connected,
Dπ(S(v)) ≤ |S(v)| − 1. In addition, π(p, q) ≥ d(p, q). Thus,
we have that

π(S(v1), S(v2))
≥ π(σ(v1), σ(v2))− (Dπ(S(v1)) + Dπ(S(v2))
≥ d(σ(v1), σ(v2))− 2max(|S(v1)| − 1, |S(v2)| − 1)
≥ c ·max(|S(v1)| − 1, |S(v2)− 1|)
≥ c ·max(Dπ(S(v1)), Dπ(S(v2))) .

That is, every pair in P is a c-well-separated pair. The
process clearly ends. To argue that P covers all the pairs
of distinct points, we observe that we begin with the pair
(S(r), S(r)) that covers all the pairs, and each time when we
split a node, the union of the pairs covered remain the same.
The pairs we discard are of the form ({p}, {p}). Thus, all
the ordered pairs of distinct points are covered by P. Since
the splitting produces two disjoint sets, each ordered pair is
covered exactly once. ¤

The following lemma shows that the sizes of two sets in
the same pair do not differ too much.

Lemma 3.2. Each pair (A, B) that ever appears in the
queue satisfies 1/β ≤ |A|/|B| ≤ β.

Proof. The proof is done by induction. Clearly, it is true
for the pair (S(r), S(r)). Now, consider the splitting that
generates the pair (A, B). Without loss of generality, assume
that we split P (B), the parent node of B. By the splitting
rule, we have that |A| ≤ |P (B)|. By induction hypothesis,
|A| ≥ |P (B)|/β ≥ |B|/β. Since the splitting is balanced,
|B| ≥ |P (B)|/β ≥ |A|/β. Therefore 1/β ≤ |A|/|B| ≤ β. ¤

Now, we bound the size of of P.

Lemma 3.3. If (A, Bi) ∈ P, i = 1, · · ·m(A), then Bi∩Bj =
∅, and m(A) = O(c2|A|).

Proof. By Lemma 3.1, each pair of points can only be
covered once, thus Bi ∩ Bj = ∅ if both (A, Bi) and (A, Bj)
are in P.

If (A, Bi) ∈ P, then (P (A), P (Bi)) is not in P. So we
have that d(σ(P (A)), σ(P (Bi))) < (c + 2) · max(|P (A)| −
1, |P (Bi)| − 1). Set R = β|P (A)| ≤ β2|A|. If we split P (Bi)
to get the pair (A, Bi), then (A, P (Bi)) appeared in the
queue, by Lemma 3.2, we have |P (Bi)| ≤ β|A| ≤ β|P (A)| =
R. If we split P (A) to get the pair (A, Bi), then |Bi| ≤
|P (A)|, so |P (Bi)| ≤ β|Bi| ≤ β|P (A)| = R. Then,

d(σ(P (A)), σ(P (Bi))) < (c + 2)R, Dπ(P (Bi)) ≤ R .

Then all the points in Bi must be inside a disk of ra-
dius (c + 3)R centered at σ(P (A)). Therefore we have that

|∪m(A)
i=1 Bi| = O((c+3)2R2) because S has constant bounded

density. By Lemma 3.2, we know that |Bi| ≥ |A|/β ≥
|P (A)|/β2. Thus, |Bi| ≥ R/β3. Then, we have that m(A) =
O((c + 3)2R2/(R/β3)) = O(c2R) = O(c2|A|). ¤

Lemma 3.4. |P| = O(c2n log n).

Proof. Define Vi = {v ∈ T ′ | |S(v)| ∈ [2i, 2i+1)}, for 0 ≤
i ≤ log n. Clearly, |Vi| = O(n/2i). Define Σi = {(S(v), B) ∈
P | v ∈ Vi}. Denote by m(S(v)) the total number of pairs in
which S(v) is involved. By Lemma 3.3, we have that

|Σi| =
∑

v∈Vi
m(S(v)) =

∑
v∈Vi

O(c2|S(v)|)
= O(c22i+1 · n/2i) = O(c2n) .

Thus, |P| = ∑log n
i=0 |Σi| = O(c2n log n). ¤

Combining the above result, we now have that

Theorem 3.1. For any n points with constant-bounded den-
sity in the plane and any c ≥ 1, there exists a c-WSPD with
O(c2n log n) pairs, which can be computed in O(c2n log n)
time.

Proof. Clearly, the time needed is proportional to the
number of pairs that ever appear in the queue. We can
represent the construction as a tree: each pair corresponds
to a node in the tree, and when a pair is split, we treat those
two resulting pairs as the children of the pair. Clearly, the
leave of the tree correspond to those pairs included in P
and the pairs discarded. All the discarded pairs have the
form ({p}, {p}), and there are O(n) such pairs. Thus, the
total number of nodes in the tree is bounded by O(|P|) =
O(c2n log n). Each split costs O(1). Therefore, the total
computation cost is O(c2n log n). ¤

The result can be easily extended to the point set with
maximum density α.

Corollary 3.5. For a point set with maximum density α,
for any c ≥ 1, a c-WSPD with O(αc2n log n) pairs can be
constructed in O(αc2n log n) time.

Proof. If the point set has maximum density α, Lemma 3.3
still holds if we change m(A) to O(αc2|A|). Plug it in
Lemma 3.4, we have that |P| = O(αc2n log n). The claim
then follows from Theorem 3.1. ¤

By a similar argument, we can extend the result to higher
dimensions.

Theorem 3.6. Given a point set in Rk, where k ≥ 3, with
constant bounded density and any constant c ≥ 1, there

exist a c-WSPD with O(n2− 2
k ) pairs for the unit-ball graph

metric. This bound is tight in the worst case. And the

decomposition can be computed in O(n2− 2
k ) time.

Proof. We first compute a spanning tree of S with con-
stant maximum degree βk, a constant dependent on k only.
This can be done by using the technique in [4]. We then
follow the same process as we described above. The up-
per bound follows from the same packing argument as in
Lemma 3.4. Lemma 3.3 can be changed so that the number
of pairs associated with a node A is m(A) = O(|A|k−1). In
addition, by Lemma 3.2, for any pair (A, B) ∈ P , 1/βk ≤
|A|/|B| ≤ βk. Thus, m(A) = O(n/|A|). Define Vi as in
Lemma 3.4, |Vi| = O(n/2i). When 0 ≤ i ≤ 1

k
log n, |Σi| =∑

v∈Vi
m(S(v)) = O(

∑
v∈Vi

|S(v)|k−1) = O(2i(k−1) ·n/2i) =

O(n2i(k−2)). When i > 1
k

log n, |Σi| =
∑

v∈Vi
m(S(v)) =

O(
∑

v∈Vi
n/|S(v)|) = O((n/2i)2). Therefore,

|P| =
∑

0≤i≤ 1
k

log n

n2i(k−2) +
∑

1
k

log n<i≤log n

O(n2/22i)

= O(n2−2/k) .



As for the lower bound, consider the points on the k-
dimensional grid [0, n1/k)× . . .× [0, n1/k). Define a graph G
with edges between the pairs of points (x1, . . . , xi, . . . , xk)
and (x1, . . . , xi + 1, . . . , xk) for i = 1, or x1 = 0 and i ≥ 2.

A point (n1/k − 1, x2, . . . , xk) for 0 ≤ xi < n1/k is called a
tip point. Intuitively, G can be thought as a graph where
the tip points dangle down from a k − 1 dimensional mesh.
Clearly, we can perturb the point set so that its unit-ball
graph has the same topology as G. The metric defined by G
has the following property: (i) the diameter of G is kn1/k;

(ii) the distance between any two tip points is at least 2n1/k.
Therefore, when c > k/2, a c-WSPD cannot have two tip

points in the same set of a pair. Since there are Θ(n1−1/k)

tip points, Ω(n2− 2
k ) pairs are needed, only to separate those

tip points.
By the same argument as in Theorem 3.1, it is easily seen

that the c-WSPD can be computed in O(n2−2/k) time. ¤

3.2 Arbitrary point sets
The packing argument fails for the unit-disk graph of

point sets with unbounded density. However, we can reduce
the problem to the constant density case by first cluster-
ing the points and then considering those crowded points
separately by using geometric well-separated pair decompo-
sitions.

For 0 ≤ δ ≤ 1, a point p is δ-covered (or simply covered)
by a point s if d(s, p) ≤ δ. Denote by U(s) the set of points
δ-covered by s. A subset X ⊆ S is called a δ-cover of S if
any point in S is δ-covered by some point in X. We call
the points in a δ-cover X clusterheads. For each point in S,
we assign it to the nearest clusterhead. Thus X induces a
partitioning of S into sets C(s) = S ∩ Vor(s), where Vor(s)
denotes the Voronoi cell of s in X. Clearly, for any p ∈ C(s),
d(s, p) ≤ δ, i.e. C(s) ⊆ U(s). A δ-cover is called minimal if
no two points in X are within distance δ to each other. For
any set A ⊆ X, denote by Â the set Â = ∪s∈AC(s).

To deal with an arbitrary point set S, we first compute a
minimal cover X of S with an appropriately chosen δ. We
then apply our results on constant-bounded density point
sets to X. Note that we can not use the unit-disk graph
on X because it may not have the same connectivity as the
unit-disk graph on S. For any two points s1, s2 in X, they
are neighbors if d(s1, s2) > 1, and there exist two points
p1 ∈ C(S1) , and p2 ∈ C(s2) such that d(p1, p2) ≤ 1. We
call the pair (p1, p2) a bridge between s1 and s2. For each
neighboring pair, we only pick one bridge arbitrarily. Let Y
denote the set of all bridge points. Consider the point set
Z = X ∪Y . Let π′ denote the unit-disk graph metric on the
set Z. Now, we claim that

Lemma 3.7. X has O(1/δ2)-density. Z can be computed
in O(n log n/δ2) time.

Proof. For any two points s1, s2 in a minimal cover X,
they are of at least distance δ away from each other. There-
fore, there are O(1/δ2) points of X inside any unit disk. So
X has O(1/δ2) density.

To compute X, we can use a greedy algorithm with the
assistance of a dynamic point location data structure of unit
disks [11]. The algorithm runs in O(n log n) time. To com-
pute all the neighboring pairs, we can enumerate all the pairs
(s1, s2) where s2 is inside the square centered at s1 and with
side-length 2(1 + 2δ). There are O(n/δ2) such pairs accord-
ing to Lemma 3.7 and can be computed in O(n log n/δ2)

time by using a standard rectangular range searching data
structure. Call such pairs candidate pairs. Clearly, only
a candidate pair can possibly be a neighboring pair. To
find a bridge between two clusterheads s1, s2 of a candidate
pair, we can compute the bichromatic closest pair between
two sets C(s1), C(s2). In the plane, this can be done in
O(|U(s1) ∪ U(s2)| log n) time. Since we only need to exam-
ine each clusterhead against O(1/δ2) clusterheads, the total
computation time is bounded by O(n log n/δ2). ¤

Now, we show that π′ approximates π well on the set X.

Lemma 3.8. For any two points p, q ∈ X,

π(p, q) ≤ π′(p, q) ≤ (1 + 12δ)π(p, q) + 12δ .

Proof. Since Z ⊆ S, π(p, q) ≤ π′(p, q). On the other
hand, assume that p0p1 · · · pm, where p0 = p and pm = q, is
the shortest path between p and q in the unit-disk graph of
S. For 0 ≤ i ≤ m, suppose that si is the clusterhead that
covers pi. Note that s0 = p and sm = q as p, q ∈ X.

Consider two consecutive points pi, pi+1. If si = si+1,
then we have that d(pi, pi+1) ≤ 2δ. Otherwise, suppose
that si 6= si+1. If d(si, si+1) ≤ 1, then π′(si, si+1) =
d(si, si+1) ≤ d(pi, pi+1)+2δ. If d(si, si+1) > 1, then si, si+1

must be a neighboring pair since d(pi, pi+1) ≤ 1. In this
case, it is easy to verify that π′(si, si+1) ≤ d(pi, pi+1) + 6δ.
Thus,

π′(p, q) ≤ ∑m−1
i=0 π′(si, si+1)

≤ ∑m−1
i=0 d(pi, pi+1) + 6mδ ≤ π(p, q) + 6mδ .

Since p0p1 · · · pm is the shortest path, d(pi, pi+2) ≥ 1 for
any 0 ≤ i ≤ m − 2 because otherwise the path could be
shortened due to triangular inequality. That is, π(p, q) ≥
bm/2c > m/2 − 1, i.e. m < 2(π(p, q) + 1). Thus we have
that π′(p, q) ≤ (1 + 12δ)π(p, q) + 12δ. ¤

Before we describe the construction of c-WSPD for S, we
need a straight-forward extension of geometric well-separated
pair decomposition in [10] to two separable point sets.

Lemma 3.2. Suppose that A and B are two point sets that
can be separated by a line and have n points in total. For
any constant c ≥ 1, there exists a geometric c-well-separated
pair decomposition of (A, B) with O(n) pairs.

Proof. This can be done by modifying the algorithm
in [10] so that the first split of the point set of A ∪ B is by
the line that separates A and B. ¤

Now, we describe a process that produces a c-WSPD of
S for any c ≥ 1. Set δ = 1/(2c + 4), and c′ = 9(c + 14).
We first construct a minimal δ-cover X and the set Z as
described above. Next we compute a c′-well-separated pair
decomposition of the clusterheads X in the unit-disk graph
metric of point set Z. Specifically, we give weight 1 to points
in X and 0 to bridge points. We find the spanning tree T
of the unit-disk graph I(Z). T has total weight |X|. We
then recursively find balanced weighted decomposition of T :
by removing an edge, each subtree has weight at least 1/β
times the weight of the parent. Since X has a bounded den-
sity O(1/δ2), the packing argument is still valid and we can
compute a c′-well-separated pair decomposition for X. Sup-
pose the decomposition obtained is P = {P1, P2, . . . , Pm}
where Pi = (Ai, Bi), Ai ⊆ X, Bi ⊆ X. We now create a set
of pairs P ′ = P ′1 ∪ P ′2 ∪ P ′3 as follows.



1. For each Pi ∈ P, if |Ai| > 1 or |Bi| > 1, we include in

P ′1 the pair P ′i = (Âi, B̂i). Recall that Â = ∪s∈AC(s).

2. If |Ai| = |Bi| = 1, suppose that Ai = {a} and Bi =
{b}. If d(a, b) ≥ (2c + 2)δ, we then include in P ′1 the

pair P ′i = (Âi, B̂i). Otherwise, any pair of points in

Âi

⋃
B̂i are within distance (2c + 2)δ + 2δ = 1. Since

Âi ⊂ Vor(a), and B̂i ⊂ Vor(b), Âi and B̂i are separable
by a line. Per Lemma 3.2, we compute a geometric c-
WSPD of (Âi, B̂i) and include into P ′2 all the pairs
produced this way.

3. For every s ∈ X, we compute a geometric c-WSPD of
C(s) and include into P ′3 all the pairs produced.

Now, we claim that

Lemma 3.9. P ′ is a c-WSPD of S.

Proof. We first argue that P ′ is a pair decomposition
of S. For any pair of points s1, s2 ∈ S, suppose that the
clusterheads covering them are s′1 and s′2, respectively. If
s′1 6= s′2, then (s1, s2) is covered by a pair in P ′1 ∪ P ′2. Oth-
erwise, it is covered by a pair in P ′3. It is also easily verified
that each ordered pair is covered exactly once.

Now, we show that all the pairs in P ′ are c-well-separated
with respect to the unit-disk graph metric. Since δ = 1/(2c+
4), for all the pairs in P ′2, the Euclidean distance between

any two points in Âi∪B̂i is at most (2c+4)δ = 1. Therefore,

the unit-disk graph on the subset Âi ∪ B̂i is a complete
graph, i.e. every pair in P ′2 is c-well-separated under the
unit-disk graph metric. The same argument applies to P ′3
as the distance between two points in C(s) is at most 2δ ≤ 1.

Now, consider a pair (Âi, B̂i) ∈ P ′1. We distinguish two
cases.

(1). When |Ai| = |Bi| = 1. Then we must have π(Ai, Bi) ≥
(2c + 2)δ according to the construction rule, and thus

π(Âi, B̂i) ≥ π(Ai, Bi)− 2δ ≥ 2cδ = c/(c + 2) .

On the other hand, D(Âi), D(B̂i) ≤ 2δ = 1/(c + 2). There-

fore, (Âi, B̂i) is c-well-separated.

(2). When |Ai| > 1 or |Bi| > 1. In what follows, we use
D and D′ to denote Dπ, Dπ′ , respectively. Clearly,

π(Âi, B̂i) ≥ π(Ai, Bi)− 2δ , and D(Â) ≤ D(A) + 2δ .

Since Ai or Bi contains at lease two clusterheads, it must
be true that max(D(Ai), D(Bi)) ≥ δ as the distance between

two clusterheads is at least δ. So, max(D(Âi), D(B̂i)) ≥
δ, and max(D(Âi), D(B̂i)) ≤ max(D(Ai), D(Bi)) + 2δ ≤
3max(D(Ai), D(Bi)).

As Ai, Bi are c′-well-separated under π′, π′(Ai, Bi) ≥ c′ ·
max(D′(Ai), D

′(Bi)). Therefore,

π(Âi, B̂i) ≥ π(Ai, Bi)− 2δ
≥ (π′(Ai, Bi)− 12δ)/(1 + 12δ)− 2δ

by Lemma 3.8
≥ c′/(1 + 12δ) ·max(D′(Ai), D

′(Bi))− 14δ
≥ c′/(1 + 12δ) ·max(D(Ai), D(Bi))− 14δ

≥ (c′/(3(1 + 12δ))− 14) ·max(D̂(Ai), D̂(Bi))

≥ c max(D(Âi), D(B̂i)) .
by c ≥ 1, δ = 1/(2c + 4), and c′ = 9(c + 14).

In both cases, Âi, B̂i are c-well-separated, i.e. all the pairs
in P ′1 are c-well-separated. ¤

Now, we are ready to claim that

Theorem 3.10. For any set S of n points in the plane and
any c ≥ 1, there exists a c-WSPD P of S under the unit-disk
graph metric where P contains O(c4n log n) pairs and can
be computed in O(c4n log n) time.

Proof. By combining Corollary 3.5 and Lemma 3.7, we
have that |P ′1| ≤ |P| = O(c2n log n/δ2) = O(c4n log n). If
|Ai| = 1, then the number of pairs (Ai, Bi) ∈ P ′2 where
|Bi| = 1 is bounded by O(1/δ2) = O(c2). Since the size
of the geometric well-separated pair decomposition is lin-
ear in terms of the number of points [10], |P ′2| = O(c2n).
Clearly, |P ′3| = O(n). Sum them up, we have that |P ′| =
O(c4n log n).

By Theorem 3.1 and Lemma 3.7, it is easy to see that the
total time needed is O(c4n log n). ¤

Similarly, in higher dimensions, we have that

Corollary 3.11. For any set S of n points in Rk, for k ≥ 3,
and for any constant c ≥ 1, there exist a c-WSPD P of S un-
der the unit-ball graph metric where P contains O(n2−2/k)

pairs and can be constructed in O(n4/3 polylog n) time for

k = 3 and in O(n2−2/k) time for k ≥ 4.

Proof. For simplicity of computation, we use boxes in-
stead of balls to find clusterheads with constant bounded
density. A point p is covered by a point s if p is inside the box
with size 2δ centered at s. Finding the minimal cover can be
done by using a dynamic rectilinear range search tree in k-
dimension [11]. The running time is O(n polylog n). Notice
that every point can be covered by at most a constant num-
ber of clusterheads, thus we can find the nearest clusterhead
for every point in linear time in total. To find a bridge be-
tween two clusterheads s1, s2, we compute the bichromatic
closest pair between two sets C(s1), C(s2). Let m1 = |C(s1)|
and m2 = |C(s2)|. According to [1], when k = 3, it takes

O((m1m2)
2/3 polylog n) time; and when k = 4, it is

O((m1m2)
1−1/(dk/2e+1)+ε + m1 log m2 + m2 log m1)

= O((m1m2)
1−1/k + m1 log m2 + m2 log m1) .

Since each set is only involved in O(1) bichromatic closest

pair computation, the total time is O(n4/3 polylog n) when

k = 3 and O(n2−2/k) for k ≥ 4. Computing the WSPD on

the clusterheads takes O(n2−2/k) time, according to Theo-
rem 3.1. ¤

3.3 Estimating distance between pairs
In the above, we showed how to construct well separated

pair decomposition for unit-disk and unit-ball graphs. As
mentioned in the introduction, to apply WSPD in solving
proximity problems in the unit-disk graphs, we first need
to estimate the shortest path distances between O(n log n)
pairs of the WSPD. Note that in our construction for the
point sets with constant bounded density, we use Euclidean
distance as a lower bound for the unit-disk graph distance
and the size of the point set as an upper bound for the diam-
eter. While these approximations are sufficient for bounding
the size of WSPD’s, it is too coarse for obtaining good ap-
proximation. Recall that σ(A) is an (arbitrary) point picked
from a set A. For a c-well-separated pair (A, B), we can use
the estimated distance π̂(σ(A), σ(B)) to approximate all the
pairwise distances between points in A and points in B. In



this section, we show several tradeoffs for measuring the dis-
tance between m pairs of points in the unit-disk graph.

Denote by τ(n, c, m) the time needed to compute m-pairs
c-approximate distance in a unit disk graph. In what follows,

we set c0 = 2.42 > 4
√

3
9

π and c1 a number slightly smaller

than c0 but greater than 4
√

3
9

π. We have that:

Lemma 3.12. 1. τ(n, c1, m) = O(n log3 n + m).

2. τ(n, 1+ε, m) = O(n2/(εr)+mr/ε), for any 1 ≤ r ≤ n.

Proof. 1. We first construct a planar 4
√

3
9

π-spanner of
the unit disk graph. Such spanner exists and can be com-
puted in O(n log n) time [25]. Now, we apply Thorup’s
construction of (1 + ε)-approximate distance oracle [33] to
that planar spanner, for a sufficiently small constant ε > 0.
The bound follows immediately from the preprocessing and
query time bounds of Thorup’s algorithm.

2. We again cluster the points and consider the set of clus-
terheads, X. Suppose that we have constructed a (1+ ε/2)-
approximate shortest distance oracle for X. For two query
points q1, q2, if d(q1, q2) ≤ 1, we return d(q1, q2). Other-
wise, we find the clusterheads s1, s2 that cover q1 and q2,
respectively, and return π̂(q1, q2) = π′(s1, s2) + 2δ as an ap-
proximation of π(q1, q2). It is easily verified that π̂(q1, q2)
is a (1 + ε)-approximation for δ = O(ε). The density of
X is O(1/δ2) = O(1/ε2). The graph formed by connecting
neighboring pairs in X is an O(1/ε2)-overlap graph as de-
fined in [27] and therefore admits a balanced separator with
size O(

√
n/ε). Furthermore, it can be computed in deter-

ministic linear time by the method in [13].
Now, it is easy to extend the shortest distance algorithm

for planar graphs in [3] to the above geometric graph on X.
By using the same technique, we can obtain a tradeoff with
O(n2/(εr)) preprocessing time and O(r/ε) query time for
any 1 ≤ r ≤ √

n. ¤

4. APPLICATIONS
In this section, we show the application of the well sep-

arated pair decomposition in obtaining efficient algorithms
for approximating the furthest neighbor (diameter, center),
nearest neighbor (closest pair), median, and stretch factor,
all under the unit-disk graph metric. Since the running
time of the algorithms for computing c0-approximate and
(1 + ε)-approximate distance are different, we will be de-
scribing the bounds for both approximations (recall that
c0 = 2.42). Roughly speaking, our algorithms for computing
c0-approximation is about linear and for computing (1+ ε)-
approximation is about O(n

√
n), dominated by the distance

estimation.
We should note that for the problems of computing di-

ameter and center, there is a simple linear time method
to achieve 2-approximation. It is therefore not interesting
to present algorithms to obtain c0-approximation for those
problems. For the other problems, it is still interesting as
we are not aware of any algorithms that achieve comparable
approximation ratio in sub-quadratic time, even for planar
graphs.

We need to first describe the well-separated pair decom-
position we will be using. In what follows, we also include
the time for measuring the distances between pairs into the
construction time. For c0-approximation, we construct a c-
well-separated pair decomposition P1 for sufficiently large

constant c and, for each pair (A, B) in the WSPD, com-
pute c1-approximate distance π̂1(A, B) between σ(A) and
σ(B) according to Lemma 3.12.1. For (1+ε)-approximation,
we compute a c-well-separated pair decomposition P2 for
c = O(1/ε) and, for each pair (A, B), compute the (1 +
ε/2)-approximate distance π̂2(A, B) between (σ(A), σ(B))

by Lemma 3.12.2 and by setting r = ε2
√

n/ log n. The fol-
lowing is immediate.

Lemma 4.1. P1 contains O(n log n) pairs and can be com-
puted in O(n log3 n) time. P2 contains O(n log n/ε4) pairs
and can be computed in O(n

√
n log n/ε3) time. For any pair

of points (p, q), suppose that its covering pair in P1(P2)
is (A, B), then π̂1(A, B) (π̂2(A, B)) is a c0-approximation
((1 + ε)-approximation) of π(p, q).

In the process of producing a well-separated pair decom-
position, we constructed several trees, the balanced hier-
archical decomposition tree for constant bounded density
points and the fair split trees for geometric well-separated
pair decomposition [10]. For presentation simplicity, we treat
them as a single tree T ′1 and T ′2, for P1 and P2 respectively,
by joining the trees created in the geometric well-separated
pair decomposition to the clusterheads appropriately. In
what follows, P, T ′, π̂ mean that they could be either case.

4.1 (1 + ε)-distance oracle
While the computation for P2 takes time O(n

√
n log n/ε3),

the space needed is only O(n log n/ε4). We can use it to an-
swer (1 + ε)-approximate distance query between any two
points (p1, p2) by first locating the pair (A, B) that covers
(p, q) and returning π̂(A, B). The query time is the time
needed to discover a pair in P2 that covers the query pair.
We show this can be done in O(1) time by using the prop-
erties of WSPD.

Corollary 4.1. For a unit-disk graph on n points and for
any ε > 0, we can preprocess it into a data structure with
O(n log n/ε4) size so that for any query pair, a (1 + ε)-
approximate distance can be answered in O(1) time.

Proof. It suffices to prove it for constant-bounded den-
sity point sets. We store all the pairs in P in a hash table
indexed by the pairs. We will show that for each query pair
(p, q), we can find O(1) candidate pairs that are guaranteed
to contain the pair in P that covers (p, q). Then, we sim-
ply query the hash table using those candidate pairs and
discover the one that does cover (p, q).

We modify our construction in Section 3.1 so that we
are more careful on deciding when to include a pair in P.
We use a c1-approximate distance oracle as constructed in
Lemma 3.12.1. When producing P, we include a pair in P if
π̂(A, B) > (cc1+2) max(|A|−1, |B|−1). Then there is a con-
stant c2 > 0, such that for any c ≥ 2 and any pair (A, B) ∈
P, cc1s ≤ π(A, B) ≤ cc2s, where s = max(|A| − 1, |B| − 1).

Now, to answer a query (p, q), we first use the c1-approxi-
mate distance oracle to compute an approximation ` of π(p, q),
i.e. π(p, q) ≤ ` ≤ c1π(p, q). Suppose that (A, B) ∈ P is the
pair that covers (p, q). Without loss of generality, let us
assume that |A| ≥ |B|, i.e. s = |A| − 1. Then, we have

s ≤ π(A, B)/(cc1) ≤ π(p, q)/(cc1) ≤ `/(cc1) .

On the other hand s ≥ π(A, B)/(cc2) ≥ (π(p, q)−2s)/(cc2).
That is, s ≥ π(p, q)/(cc2 + 2) ≥ `/(c1(cc2 + 2)).



Set ˆ̀= `/(cc1). Then, for (A, B) to cover (p, q), A has to
be an ancestor of p in T ′, and the size of A is sandwiched by
ˆ̀/(c2+1) and ˆ̀. Notice that c1, c2 are constants independent
of c. There are only O(1) such nodes in T ′. Since |A|/β ≤
|B| ≤ |A| for a constant β, there are only O(1) such B’s
as well. We now simply form the O(1) candidate pairs by
joining every possible A and B. ¤

4.2 Furthest neighbor
Suppose that S1 ⊆ S. For any p, define the (relative) fur-

thest neighbor of p to be ξ(p) = arg maxq∈S1
π(p, q) in S1.

Then the diameter of S1 is D(S1) = maxp∈S1 π(p, ξ(p)). The
center of S1 is the point that minimizes the maximum dis-
tance to the other points, i.e. arg minp∈S1

π(p, ξ(p)). There-
fore, once we have compute approximate furthest neighbors
for all the p’s, we also obtain approximate diameter and
center.

Consider any WSPD. To compute the furthest neighbor
of S1, we traverse the balanced hierarchical decomposition
tree T ′ and mark all the nodes v ∈ T ′ where S(v) ∩ S1 6= ∅.
This can be done in O(n) time in a post-order visit of the
tree. A pair P = (S(u), S(v)) is called marked if both u and
v are marked. Let

R1(u) = max{π̂(S(u), B)|(S(u), B) is marked} ,

and 0 if there is no such pair. With each node u, we also
record `(u), the node that achieves R1(u).

For any p ∈ S1, consider the path P in T ′ from p to the
root. Suppose that u is the node that maximizes R1(u)
among all the nodes on P . Now, we pick any point, say q,
from S(`(u)) ∩ S1 (since `(u) is marked, S(`(u)) ∩ S1 6= ∅)
and claim that it is an approximate furthest neighbor with
the approximation ratio 2.42, if the above process is applied
to P1, or 1+ε, if applied to P2. For the correctness, consider
the (marked) pair in P that covers (p, ξ(p)). Suppose it is
(S(u), S(v)). Then R1(u) ≥ π̂(S(u), S(v)). Since the pairs
are well-separated, it is easy to see that q is an approximate
furthest neighbor of p with the approximation ratio deter-
mined by the WSPD we use. After we have computed the
approximate furthest neighbor, it is simple to compute the
diameter and the center. Therefore, we have that

Corollary 4.2. For any set S of n points in the plane and
any S1 ⊆ S, we can compute

• c0-approximate furthest neighbor for all the points in
S1 in O(n log3 n) time; and

• (1 + ε)-approximation, for any ε > 0, of the furthest
neighbor, the diameter of S1, and the center of S1 in
O(n

√
n log n/ε3) time.

Remark. We did not list c0-approximation for the di-
ameter and the center because there is a simple linear time
2-approximate algorithm.

4.3 Nearest neighbor, closest pair
Computing the nearest neighbor or closest pair in S under

the unit-disk graph metric is trivial — it is the same as under
the Euclidean metric as long as the graph is connected. How-
ever, the problem becomes harder if we restrict our attention
to a subset S1 ⊆ S, i.e. computing the nearest neighbor in S1

for each point in S1 or computing the closest pair between
points in S1. For any two sets S1, S2, we can also define the
bichromatic closest pair to be arg minp∈S1,q∈S2

π(S1, S2).

By using the same technique in the previous section, we
are able to show:

Corollary 4.3. For any set S of n points in the plane, and
any S1, S2 ⊆ S, we can compute

• c0-approximation for the nearest neighbor for all the
points in S1, the closest pair in S1, the bichromatic
closest pair of S1, S2, in time O(n log3 n); and

• (1 + ε)-approximation for the same problems in time
O(n

√
n log n/ε3).

Remark. We should note that by applying the technique
in [10], we can actually enumerate O(n) pairs of points that
is guaranteed to include the closest pair. However, since
our distance oracle is approximate, we can only compute
approximate closest pair, unlike in the geometric case.

4.4 Median
Similar to the definition of center, median is defined to be

the point that minimizes the average (or total) distance to
all the other points. Let ρ(p) =

∑
q∈S1

π(p, q). Then the

median of S1 is the point that minimizes ρ(p).
By using similar technique, we can show that

Corollary 4.4. For any planar point set S with n points
and S1 ⊆ S, a c0-approximate median of S1 can be com-
puted in O(n log3 n) time, and for any ε > 0, a (1 + ε)-
approximation can be computed in O(n

√
n log n/ε3) time.

Proof. Computing approximate median is similar to com-
puting the furthest neighbor. The only difference is that
instead of computing R1(u), we compute

R2(u) =
∑

(S(u),B)∈P
π̂(S(u), B) · |B| ,

and then for each point p and the path P from p to the root,
compute ρ̂(p) =

∑
u∈P R2(u)/(n− 1), as an approximation

of ρ(p). The correctness is guaranteed by the property of
pair decomposition that every pair of points is covered by
a unique pair in the decomposition. Again, we pick the
point with the minimum ρ̂(p) to be the approximate median.
The approximation ratio and running time bounds follow
immediately. ¤

4.5 Stretch factor
For a graph G defined on S, the stretch factor of G with re-

spect to π is defined as maxp,q∈S πG(p, q)/π(p, q). Narasimhan
and Smid [28] gave an algorithm to approximate the stretch
factor of a geometric graph to the Euclidean metric using
the geometric well-separated pair decomposition. By fol-
lowing the same argument we can approximate the stretch
factor of an arbitrary graph G with respect to the unit-disk
graph metric. Again, we consider the well-separated pair de-
composition P. For each pair (A, B) ∈ P, we pick any two
points (p, q) where p ∈ A and q ∈ B and compute the ap-
proximate shortest path π̂G(p, q) in G and π̂(p, q) in I. The
maximum ratio of π̂G(p, q)/π̂(p, q) over all pairs in P is an
approximation to the stretch factor by the same argument
in [28].

Corollary 4.5. For any graph G on S, we can compute an
O(1)-approximate stretch factor of G in time O(τ ′1(n log n))
where τ ′1(m) is the time to compute m O(1)-approximate



shortest path queries in G. In particular, if G is a sub-
graph of I, an O(1)-approximate can be computed in time
O(n log3 n). Similarly, we can compute for any ε > 0, a (1+
ε)-approximate stretch factor of G in time O(τ ′2(n log n/ε4)+
n
√

n log n/ε3), where τ ′2(m) is the time to compute m (1+ε)-
approximate shortest path queries in G. When G is a sub-
graph of I, this can be done in O(n

√
n log n/ε3) time.

5. EXTENSIONS
There are several direct extensions of our techniques. Here,

we outline the extension to the intersection graph of disks
with bounded radii ratio and to the unweighted unit-disk
graph.

When the size of the disks are not uniform, it is generally
not possible to obtain sub-quadratic well-separated pair de-
composition of the metric induced by the intersection graph.
This can be shown by the example where there is a big disk
and n − 1 pairwise disjoint small disks intersecting it. In-
deed, the intersection graph of this example is a tree with
one internal node and n− 1 leaves.

However, if the ratio between the radii of any two disks
(or balls) is upper bounded by a constant, then the packing
property (Lemma 3.3) still holds. We can obtain similar
results for the intersection graph of disks (or balls in high
dimensions) with bounded radii ratio.

In the paper, we only consider weighted unit-disk graphs.
There are applications in which people are interested in the
unweighted unit-disk graph. Our results for point set with
constant bounded density can be directly extended to un-
weighted unit-disk graphs. If the density is unbounded, then
it is impossible to obtain a sub-quadratic size well-separated
pair decomposition as shown by the example of the un-
weighted complete graph. But again we can apply the clus-
tering technique to reduce it to the problem for point sets
with constant unbounded density. The clustering will in-
creases the approximation ratio by a multiplicative factor of
3. This gives us almost linear time algorithms to find 3c0-
approximate solutions to the following problems: the fur-
thest neighbor, nearest neighbor, closest pair, bichromatic
closest pair, median, and stretch factor, all with respect to
the unweighted unit-disk graph metric. Again, we did not
list the problems of computing diameter and center because
there are trivial 2-approximate algorithms.

6. CONCLUSION
In this paper, we extend the well-separated pair decompo-

sition, originally developed in the Euclidean metric, to the
unit-disk and unit-ball graph metrics. This allows us to ob-
tain almost linear time 2.42-approximate and sub-quadratic
time (1 + ε)-approximate algorithms for several proximity
problems where no efficient methods were previously known.
The combinatorial bounds in Rk for k ≥ 3 are also tight.

The most notable open problem is the gap between Ω(n)
and O(n log n) on the number of pairs needed in the plane.
Also, the time bound for (1+ε)-approximation is still about
O(n

√
n) because of the lack of efficient method for com-

puting (1 + ε)-approximate shortest distance between O(n)
pairs of points. Any improvement to the algorithm for that
problem will immediately lead to improvement to all the
(1 + ε)-approximate algorithms presented in this paper.
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