6-DOF VR Videos with a Single 360-Camera

Jingwei Huang*
Stanford University
Adobe Research

USA USA

ABSTRACT

Recent breakthroughs in consumer level virtual reality (VR) head-
sets are creating a growing user-base in demand for immersive, full
3D VR experiences. While monoscopic 360-videos are perhaps the
most prevalent type of content for VR headsets, they lack 3D in-
formation and thus cannot be viewed with full 6 degree-of-freedom
(DOF). We present an approach that addresses this limitation via a
novel warping algorithm that can synthesize new views both with
rotational and translational motion of the viewpoint. This enables
the ability to perform VR playback of input monoscopic 360-videos
files in full stereo with full 6-DOF of head motion. Our method
synthesizes novel views for each eye in accordance with the 6-DOF
motion of the headset. Our solution tailors standard structure-from-
motion and dense reconstruction algorithms to work accurately for
360-videos and is optimized for GPUs to achieve VR frame rates
(>120 fps). We demonstrate the effectiveness our approach on a
variety of videos with interesting content.

Index Terms: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Virtual reality; 1.2.10 [Artificial Intelli-
gence]: Vision and Scene Understanding—Video analysis 1.4.8
[Image Processing and Computer Vision]: Scene Analysis—
Motion

1 INTRODUCTION

We are witnessing an increasing interest in immersive, 360-degree
virtual environments triggered by the recent breakthroughs in con-
sumer level virtual reality (VR) hardware such as Oculus and Sam-
sung Gear VR headsets. 360-videos are by far one of the most
popular forms of content for such devices. Monoscopic 360-videos
are easy to capture for novice users with commodity hardware.
They can either be created by stitching footage from multiple reg-
ular cameras mounted in a custom-built rig or captured directly by
a one-click 360-camera like Samsung Gear 360 and Ricoh Theta.
The latter solution is gaining its popularity due to low cost and sim-
plicity.

However, a few challenges arise when viewing 360-videos in VR
headsets. First, with a monoscopic video, the same content is ren-
dered for both eyes, resulting in a lack of 3D depth sensation. Sec-
ond, monoscopic 360-videos can only respond to rotational motion
while most VR headsets support full 6 degree-of-freedom (DOF)
tracking which includes both the rotational and translational mo-
tion of the head. This limited DOF of the viewing experience is far
less engaging and immersive compared to other full 3D VR content
like games. Furthermore, the lack of DOF can also lead to more
motion sickness because visual feedback does not exactly match
the actual head movement. Unfortunately, capturing full 6-DOF
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360-videos requires more complex hardware setups like camera ar-
rays or light-field cameras that are not affordable and easy to use for
novice users. Furthermore, there is value in improving the viewing
experience of the large and growing collection of existing mono-
scopic 360-videos.

In this paper, we present an algorithm that enhances monoscopic
360-videos with a 6-DOF and stereoscopic VR viewing experience.
Given an input monoscopic 360-video, in an offline stage we infer
the camera path and the 3D scene geometry by adapting standard
structure-from-motion techniques to work with 360 videos. We
then playback the input video in a VR-headset where we track the
6-DOF motion of the headset and synthesize novel views that cor-
respond to this motion. We synthesize a new view for each eye in
parallel to achieve the stereoscopic viewing experience. Our main
contribution is a novel warping algorithm that synthesizes novel
views on the fly by warping the original content. Unlike any other
previous method, this warping technique directly works on the unit
sphere and therefore minimizes distortions when warping spherical
panoramas. Moreover, we optimize our warping solution for GPUs
and achieve VR frame rates (>120 fps). To summarize, our contri-
butions include:

e a novel spherical panorama warping method that minimizes
distortions,

e an optimized prototype that can synthesize novel views for
each eye at VR frame rates (>120 fps) on a mainstream graph-
ics card,

e tailoring state-of-the-art sparse and dense reconstruction algo-
rithms to work with monoscopic 360-videos.

2 RELATED WORK

The ability to re-render a recorded footage from novel viewpoints,
likely for free-viewpoint or stabilization purposes, has been an
active research area for a long time. We group the related work in
this area based on the target application and the sensors being used.

Free-Viewpoint Video.  Free-viewpoint video (FVV) refers
to the ability to playback a captured (dynamic) scene from any 3D
viewpoint. The research in this domain has been mainly pioneered
by the work of Kanade et al. [14] who have introduced the concept
of virtualized reality. This work used a dome of cameras to
compute a 3D reconstruction of the captured scene which was then
utilized for novel view synthesis. The follow up work [30, 19, 5]
has mainly utilized the same principle of using a set of synchro-
nized cameras and controlled capture setups. These approaches
utilize expensive and pre-calibrated capture stages to reconstruct
a detailed textured 3D reconstruction of the scene and directly
render this geometry from novel viewpoints.Another thread of
work utilizes image-based rendering techniques to synthesize
new views of an object [29] or a scene [4] from a high quality
reconstruction. Whether the data was captured in a controlled setup
or in the wild, all these approaches focus on accurate and detailed
3D reconstruction to produce high-quality synthesized views. In
comparison, we work with monoscopic 360-videos captured by
amateur consumers using inexpensive hardware in uncontrolled
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Figure 1: Given a 360-video captured by a single spherical panorama camera, in an offline pre-processing stage, we recover the camera motion
and the scene geometry first by performing structure-from-motion (SfM) followed by dense reconstruction. Then, in real-time we playback the
video in a VR headset where we track the 6-DOF motion of the headset and synthesize new views by a novel warping algorithm.

setup which often lead to noisy and incomplete 3D reconstructions.
Our contribution is a novel real-time image warping algorithm that
synthesizes new views by utilizing this imperfect reconstruction
only as a guidance.

Video Stabilization. Given a video sequence captured from
a single camera, stabilization research focuses on synthesizing
output frames along a new desired and possibly smoother camera
path. Early works in this domain [22] have utilized 2D motion
models due to their robustness and computational efficiency.
However, these models are often too simple to handle complex
motions leading to the development of 3D motion models [1]. Most
3D video stabilization algorithms work based on a 3-step approach.
First, the 3D camera motion of the original video is tracked along
with a sparse reconstruction of the scene. Next, the tracked path
is smoothed or adjusted based on a desired camera path. Finally,
new frames that would have been seen from viewpoints along the
new camera path are synthesized via a real-time image warping
algorithm.

Several 3D video stabilization algorithms have been introduced
recently that focus on smart warping algorithms for novel view syn-
thesis [16] or explore motion-specific constraints when recovering
the original camera motion [17, 18]. Most of these approaches,
however, work with narrow-field-of-view videos captured by stan-
dard perspective cameras. We extend these approaches to work with
360-videos. Moreover, our approach is applicable but not limited
to video stabilization. Our goal is to synthesize novel viewpoints
guided by the motion of the headset used to play back the video.

Closely related to our approach is the work of Kamali et al. [13]
who use a sparse reconstruction obtained by structure-from-motion
to stabilize omnidirectional videos. When synthesizing novel
views along a smoother camera path, they propose to use a
triangular grid sampled on the unit sphere of the camera instead
of a conventional square grid to guide the image warping. This is
beneficial as it provides a more uniform sampling in camera space.
However, the distortion is still measured in the image space. In
contrast, our warping field is directly generated on the unit sphere
leading to more accurate results. Moreover, they utilize only a
sparse 3D reconstruction which requires the new camera path to
be sufficiently close to the original camera path. In contrast, we
compute the dense scene geometry and show that this leads to more
accurate results when synthesizing novel views with full 6-DOF
head motion. We refer the reader to Section 5.2 for comparisons
and a more detailed discussion.

Structure-from-Motion. Most novel view synthesis approaches
are guided by a sparse or dense reconstruction of the captured scene
obtained via structure-from-motion (SfM) algorithms [11]. There
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is an extensive body of work on SfM with narrow-field-of-view
imagery [26, 9, 7]. More recently, algorithms that work with wide-
field-of-view cameras such as fish-eye lenses and omnidirectional
cameras have been proposed [3, 21, 23, 15, 24, 10, 2, 12]. Such
methods are complementary to our approach, since we utilize the
3D reconstruction obtained with an SfM algorithm to guide the
novel view synthesis.

3 OVERVIEW

We present a system that provides 6-DOF stereoscopic viewing of
monoscopic 360-videos in a head-mounted display. Our approach
consists of two main steps as shown in Figure 1. Given a mono-
scopic 360-video shot with a spherical panoramic camera, in an of-
fline stage, we first recover the motion of the camera and a dense 3D
reconstruction of the captured scene. We do this by first utilizing
a structure-from-motion (SfM) algorithm to compute the camera
motion and a sparse reconstruction of the scene. We then employ
a dense reconstruction algorithm to recover a dense 3D geometry
representation of the scene. We note that we accommodate both the
SfM and dense reconstruction algorithms to work with 360-videos.

Once the 3D geometry of the scene and the camera path has been
recovered offline, we allow online playback of the video in a head
mounted display in real time. During this playback, we track the
6-DOF motion of the headset and synthesize novel viewpoints for
each eye in real-time to provide a 6-DOF stereoscopic viewing ex-
perience. Novel view synthesis is done by a spherical image warp-
ing algorithm guided by the 3D scene geometry.

4 APPROACH
We now describe each stage of our solution in detail.

4.1 3D Scene and Motion Reconstruction

Sparse Scene Reconstruction. In order to recover the 3D scene
geometry, we first employ a structure-from-motion (SfM) algorithm
to compute the camera motion and a sparse 3D reconstruction. We
refer the readers to the work of Hartley and Zisserman [11] for a
detailed explanation of a standard SfM algorithm while we describe
how we adopt this algorithm to work with 360-videos.

The input to a standard SfM algorithm is a set of feature points
tracked in multiple images. Each tracked point is a subset of image
points which are believed to be the projection of the same 3D point.
The SfM algorithm recovers the position of each such 3D point
as well as the camera parameters of each image observing these
points. In order to track feature points in a panoramic video, we
first map every frame of the video onto six planes of a cube map and
then run a standard KLT tracker algorithm [20, 27] on each of these
6 image planes (Figure 2). However, an independent tracking of
feature points on each of these image planes can potentially lead to



artifacts due to feature points detected at the boundary of the faces
of the cube. Such points are likely to be mapped to different faces
of the cube at consecutive frames resulting in a tracking failure. To
address this issue, when mapping each frame of the video to a cube
map we utilize a field-of-view (FOV) greater than 45° (48° in our
experiments) to generate overlapping regions between image planes
corresponding to the neighboring faces of the cube. Once feature
tracking is completed on the six images of the current frame, each
feature tracked in the overlapping region is assigned back to the its
original corresponding image plane. As aresult, we can safely track
feature points that are close to the edges of the cube as long as the
camera motion between successive frames is not large.

unit sphere

cube map @

Y

Figure 2: For each consecutive frame f; and fi.;, we map the unit
spheres of the corresponding cameras to a cube map and perform
feature tracking on each of the six image planes of the cube (T-top,
B-bottom, L-left, R-right etc.) in parallel.

After we track a set of feature points across the duration of the
video, our next step is to run the SfM algorithm to compute the
sparse scene geometry and the camera parameters for each frame.
Since the duration of a video can be arbitrarily long, we first run
SfM on a set of keyframes (every 12/ frame in our experiments).
We employ an incremental approach for recovering the camera pa-
rameters of each keyframe where the camera of the next keyframe
is initialized with the camera parameters of the previous keyframe.
(The camera projection matrix of the first keyframe is initialized
as the identity matrix.) We then refine this initial camera guess by
minimizing the reprojection error of the already reconstructed 3D
points onto the new keyframe. Finally, at each step of this incre-
mental approach, we run a bundle adjustment step to optimize both
for the positions of the 3D points tracked so far and also the camera
parameters of all of the current keyframes.

After the orientation and position of the camera for each
keyframe is determined, we initialize the cameras of the in-between
frames with a linear interpolation between the camera parameters
of the neighboring keyframes (we interpolate the translation and
the quaternion representation of the rotation of the camera indepen-
dently). Similar to the case of keyframes, we first refine these initial
camera guesses by minimizing the reprojection error of the recon-
structed sparse 3D point cloud onto the in-between frames. We
then perform one final bundle adjustment step to further refine the
camera parameters of each frame (both keyframes and in-between
frames) and position of the sparse 3D points corresponding to the
tracked feature points. Finally, we note that given n 3D points and
m frames, the bundle adjustment step aims to refine the 3D position
of each point p; and the camera parameters of each frame ¢; such
that the reprojection error is minimized:

n

minZZT"vij(P(Pivcj)’xij)z'

Pi,¢j 1

1

p denotes the projection of a 3D point onto the unit sphere
of a camera. v;; is a binary variable to indicate whether the 3D
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point p; is tracked in frame j, and if so x;j; denotes the position
of the corresponding feature point on the unit sphere of frame j.
Measuring the reprojection error directly on the unit sphere instead
of the panorama image leads to more accurate results as it avoids
the additional distortions caused by the projection from the sphere
to the image space.

Dense Scene Reconstruction. Once we obtain the sparse
scene geometry and the camera motion, we adopt the method of
Shen et al. [25] to compute the dense scene geometry. This method
focuses on computing a depth map for each image by iteratively
performing a sequence of random assignment and propagation
operations. In our case, we initialize the depth map of each frame
using the sparse reconstruction obtained in the previous step.
Specifically, we map each 3D point reconstructed in the previous
step onto the unit sphere of each frame as vertices and perform
Delaunay Triangulation. We obtain the depth value for each point
inside a triangle by linearly interpolating the depth values of
its vertices. We obtain per-pixel depth values by rasterizing the
triangulation on the sphere onto the panorama image.

0,0 0 ¢
-
0]
* P(Px:Py)

Figure 3: A 3D point P, projects to the pixel p(py,py) in the (w x
h) panorama image and the point ps(cos8sing,sinOsing,cos¢) on the
unit sphere where 6 = 2zp,/w and ¢ = mp,/h. When computing the
matching cost of this point with neighboring views, we define a local
patch around p, on the unit sphere (in yellow) with axes directions
(—sinB,cos0,0) and (—cosOcosd, —sinOcosd,sing).

The propagation step aims to refine the depth value of each pixel
via the depth of its neighboring pixels such that a matching cost is
minimized. The matching cost evaluates the normalized cross cor-
relation (NCC) score of a local window centered around a pixel in a
reference image and its corresponding pixel in a neighboring image
(i.e., neighboring frames of the video with sufficient overlap based
on the relative camera transformations). For standard perspective
images, this window is simply defined as a square aligned with the
image axes. In our case, however, we define this local window di-
rectly on the unit sphere (see Figure 3) to uniformly capture the
neighborhood of a point irrespective of its location on the sphere.

Once the per-frame depth maps are computed, we merge them
into a single 3D point cloud representation of the scene. During
this merge step, we filter out the points that incur a high matching
cost and do not obey the visibility constraints to reduce the noise
and outliers in the final 3D scene geometry. We note that we use a
point cloud representation of the scene (see Figure 4) in stead of a
triangulated mesh as each 3D point is directly utilized to guide the
warping field as described next.

4.2 Real-time 6DOF Video Playback

After we pre-process the input video to compute the dense 3D scene
geometry and camera motion, we play it in a head-mounted dis-
play in a stereoscopic fashion in real time. During this playback,
we track the viewpoint corresponding to left and right eye as the
head moves (rotation and translation) and utilize it to generate a



input frame

reconstructed
3d point cloud

Figure 4: We show one frame of the input video and different parts of
the 3D scene geometry obtained by the dense reconstruction step.

novel view for each eye by warping the current frame. As a result,
the user can freely view each frame from a varying set of desired
views, sensing a full 3D experience.We warp the original content
by a novel warping algorithm that is specifically designed to work
with spherical panorama images and aims to minimize distortions.
We next describe this warping process for one eye and note that
in practice we perform this twice, one for each eye, in parallel to
generate a stereo pair. We use IPD provided by the VR headset to
adjust the camera locations corresponding to two eyes so that scale
of the scene looks true to life.

Our image warping is guided by a control triangular mesh G de-
fined on a unit sphere by icosahedron tessellation. When warping
a current frame to synthesize a novel view, we desire the motion
of this control mesh to well represent the relative motion between
the cameras, while being smooth to avoid distortions. Furthermore,
our goal is to ensure each vertex of the control mesh moves only
on the surface of the sphere. The vertex motion can simply be
parametrized by a linear combination of two orthogonal vectors
tangential to the spherical surface. While such orthogonal vectors
can be randomly picked for each vertex, this strategy makes it hard
to measure the motion consistency between neighboring vertices.
Therefore, we instead define the parameterization using a conju-
gate direction field [6] which ensures a small angle difference be-
tween direction vectors defined on adjacent faces and thus results
in a smooth parameterization of the sphere surface. More precisely,
we define a conjugate direction field on G so that the motion of

each vertex V; € G is defined by the two tangential vectors uj1 and

uj2 f(Vi)=a ju} +b jujz. Motion difference between neighboring
vertices is then simply computed as the difference between the co-
ordinates of the parameterization defined by the conjugate direction
vectors. We note that the control mesh and the conjugate direction
field is computed only once for a unit sphere and shared across all
the frames.

Given a reference current frame with camera orientation and
translation (R, t) and a desired novel viewpoint with orientation and
translation (R’,t'), our goal is to compute the parameters {a;,b;}
that warp the current frame to the desired frame. We setup an
optimization that minimizes an energy function composed of data
and regularization terms to compute this warping. While the data
term ensures the warping accurately captures the relative motion
between the views, the regularization term helps to avoid distor-
tions.

Given the 3D dense geometry of the captured scene, we project
each 3D point Qn to the unit spheres corresponding to the refer-
ence and the desired frames to obtain the projections qm and g,
respectively. Each such projected point falls inside a triangle of

2 u.
U#
\j J VJ ,Qm

reference panorama image novel panorama image

Figure 5: To synthesize a novel panorama image, we apply a warp
to the current reference image guided by a control mesh defined on
the unit sphere. This warping moves the projection of each 3D scene
point Q,, in the new frame (g),) to its corresponding projection point
in the reference frame (g,,). This movement, f(q,,), is defined by the
movement of the vertices of the triangle the point belongs to. Fur-
thermore, each triangle vertex V; is moved by its conjugate vectors
uj and u; (in blue) such that it is constrained to move only on the
surface of the sphere. We utilize the computed warping field to map
each pixel in the novel panorama image to its corresponding pixel in
the reference frame to transfer the color information.

the control mesh (see Figure 5). We denote the triangle that con-
tains q, by 7(q},) and the indices of the vertices of this triangle
are denoted as (qy,0), 1 (qp, 1), and (g, 2) respectively. During
warping, the movement of any projected point qj, is defined as a
linear combination of the movement of the vertices of its covering
triangle: f(qm) = Liefo,1.2) Wkmf (Vi(q,, k))> Where wy , denotes
the barycentric coordinates of the point. The data term E; forces
each point q/, to move in the desired frame to its corresponding
position qm in the reference frame:

Eq =Y lldm+f(dm) —aml,

qm
=Yllgn+( Y wimf Vi, 1)) — dmll*- (2
U

k€{0,1.2}

The regularization term E,, on the other hand, enforces that each
pair of vertices connected by an edge e(V;,V;) € G move similarly
to avoid distortions:

E= Y IfV)-rvl?
e(V;,V;))eG

= Y l(an]+bu}) —(ajuf +bju)|>. 3)
E(VivV.f>EG

We combine the data and regularization terms and optimize for
the warping parameters {a,b;} that minimize the resulting energy:
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where A denotes the relative weighting of the two terms (set to
50 in our experiments).

Once the warping parameters are computed, we utilize them
to synthesize the new desired frame. Specifically, for each pixel
in the desired panorama image, we first map its location onto
the unit sphere of the desired frame via inverse spherical projec-
tion (7~ 1) to obtain the point p§ (see Figure 5). Our goal is to
find the corresponding point on the unit sphere of the reference
frarne. We first find the triangle 7(p}) in the desired frame that
p belongs to and utilize the movement of the vertices of this tri-
angle ):ke{o 12y wrif (t(p}),k) to obtain the corresponding point

=pi+ Yhe{0,1,2) Wk, if(¢(p}),k) in the reference frame. Finally,
we map p; to t e panorama image of the reference frame via spher-
ical projection (7) and retrieve the color that should be transferred
to the desired panorama image. We note that since the mapping be-
tween a unit sphere and a panorama image is fixed, for each pixel
in a panorama image we pre-compute the triangle that contains
its inverse projection onto the unit sphere and the corresponding
barycentric coordinates.

While it is possible to warp the entire panorama image for each
frame, in practice only a certain region of this image is visible to
the user at any given time. Thus, at each frame we first identify
the region of interest in the panorama image visible to the user
and perform warping only for this region. Our experiments prove
that this optimization leads to nearly 35% computational efficiency
without any loss in the warping quality, as shown in Table 1.

Implementation Details. We implement the real-time warp-
ing algorithm on the GPU using OpenGL. Specifically, we first
stream the necessary data (i.e., the video frames and the control
mesh) to GPU. Equation 4 is then solved using the Jacobi method
implemented inside a GLSL compute shader. The results are
loaded into the fragment shader as an OpenGL texture where the
color of each visible pixel in the novel view is computed directly as
illustrated in Figure 5. This GPU implementation achieves frame
rates greater than 120 fps and results in a smooth VR experience.

5 [EVALUATION

We have evaluated our approach on a variety of input videos. We
first provide performance statistics and then discuss our main find-
ings in detail.

5.1 Performance Statistics

We have run our experiments on a computer with a Intel Xeon ES5-
2640 CPU and an NVIDIA Titan X graphics card. All the videos
are captured with a single Samsung Gear 360 camera with 4K res-
olution at 30 fps.

The SfM and dense reconstruction steps of our approach are im-
plemented on a CPU and run in an offline pre-processing stage. For
a video sequence of 240 frames, the SfM and dense reconstruction
steps take 28 and 114 seconds respectively. While the sparse scene
reconstruction contains 576 points, the dense reconstruction results
in a point cloud with 307k points.

During playback of the video on a VR headset, the warping al-
gorithm runs in realtime on the GPU. The viewpoint corresponding
to each eye as the head moves is tracked and provided by the VR
headset API. We then warp the current video frame for each eye in
parallel to achieve the stereoscopic experience. The computational
efficiency of the warping step mainly depends on the resolution of
the control mesh utilized to guide the warping. While a finer control
mesh results in more accurate results, it incurs more computational
cost. In Table 1, we provide timing statistics obtained with control

Table 1: We show the timings of the image warping algorithm with
control meshes of different resolutions. When warping only the visi-
ble region as opposed to the entire panorama image, we gain nearly
35% computational efficiency. Even when using a high resolution
control mesh, we achieve frame rates higher than 120 fps.

# triangles 5120 20480 81920
entire image | 6.892ms | 7.156 ms | 10.554 ms
visible region | 4.573 ms | 4.813 ms | 7.226 ms

original frame low-res control mesh high-res control mesh

(80 triangles) (5120 triangles)

Figure 6: We show warping results generated by utilizing control
meshes of different resolution. Notice that how a low-resolution con-
trol mesh creates significant distortions on the column.

meshes of different resolution for an input video with a 3D point
cloud of 307k points. We compare the visual quality of the warp-
ing results corresponding to different control mesh resolutions in
Figure 6. For the remaining of our experiments, we use a fixed
resolution control mesh with 10240 vertices and 20480 triangles.

5.2 Results

We illustrate some representative warping results in Figure 7 and
refer the reader to the supplementary video for a complete set of
results.

An important parameter affecting the quality of the novel view
synthesis results is the parameter A which denotes the relative

(b) Forward and backward motion

Figure 7: Anaglyph images of the same frame warped with different
camera motion. Note that 3D geometry guided warping generates
parallax effect.
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Figure 8: We show warping results with a fixed dense scene recon-
struction but varying regularization weight (A in Equation 4). While a
small A leads to local distortions (wavy patterns on the wall), a large
A results in global distortions (curvy brown edge). In our experiments
we use A = 50 which provides a good trade-off.

weighting between the data and regularization terms of the warp-
ing field optimization. In Figure 8, we demonstrate novel views
synthesized by different choices of A where an increase in A results
in a smoother warping field. While it is possible to adjust this pa-
rameter based on the quality of the 3D reconstruction of the scene
(e.g., ahigher A can be preferred for noisy reconstructions), we find
that setting A = 50 provides a good tradeoff between accuracy and
visual smoothness.
Comparisons. One of our main contributions in this work is to de-
fine the warping field directly on the unit sphere of a 360-camera.
In comparison, all other previous works define the warping energy
in the image space often with a simple rectangular grid. While Ka-
mali et al. [13] propose to use a triangular grid sampled on the unit
sphere, they still measure distortions in the image space. Due to
the non-linearity of the mapping from the unit sphere to the image
space, this leads to piecewise linear artifacts as seen in Figure 9. On
the contrary, our approach avoids such distortions by computing the
warp utilizing a conjugate vector field defined directly on the unit
sphere.

In contrast to Kamali et al. [13] who propose to use a sparse

W

spherical warping
(ours)

age-space warping
(Kamali et al.)

original frame

Figure 9: Even though Kamali et al. [13] utilize a triangular grid sam-
pled on the unit sphere for warping, they still measure distortions on
the image plane leading to artifacts. In contrast, by computing the
warp field directly on the sphere, we avoid such distortions.
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Figure 10: We show warping results generated by using the sparse
point cloud obtained by the SfM step, the uniformly down-sampled
(10%) dense point cloud, and the entire dense point cloud. Please
note that the distortion artifacts (in red) occurring when using a
sparse scene reconstruction are eliminated when the dense scene
geometry is utilized. Note that, to ensure equal relative weighting be-
tween the data and the regularization terms in Equation 4, we adjust
A based on the number of points in the utilized scene reconstruc-
tion (A = 50 * (# points in sparse reconstruction) / (# points in dense
reconstruction)).

scene representation for stabilizing omnidirectional videos, we
utilize a dense reconstruction to guide the novel view synthesis.
With a sparse reconstruction, many triangles of the control mesh
do not receive any 3D point projection and thus solely rely on
the regularization term which results in an over-smooth warping
field. While this may be suitable for video stabilization purposes
where relative camera motion is small, we observe that it leads
to distortion artifacts for 6-DOF viewing experience as shown
in Figure 10. In contrast, our warping algorithm can accurately
capture the 3D details of the scene while still running at VR frame
rates even when coupled with a high resolution control mesh (see
Table 1).

Applications.  While we focus on 6-DOF playback of
monoscopic 360-videos, our approach can easily be applicable to
video stabilization. Once the original camera path is recovered,
it can be smoothed to remove the shaking motion and novel
views along this new path can be synthesized. We refer the
reader to the supplementary video for such examples. Moreover,
since we support 6-DOF warping, it is also possible to stabilize
different components of the camera motion independently. For
example, vertical oscillations can be removed while keeping
off-vertical-axis motions if desired or translation of the camera can
be re-synthesized with constant speed to remove accelerations that
can lead to motion sickness.

Finally, many 360-videos are captured by a 360-camera carried
by a moving person or vehicle. The playback of such videos may
lead to strong motion sickness even after stabilization. An alter-
native to continuously updating the camera location during play-
back is to teleport between a set of fixed camera locations sampled
along the camera path. Our approach can be utilized to synthesize
novel views from these fixed camera locations as shown in Fig-
ure 11 and the supplementary video. For these examples, given the
input video, we manually select a set of fixed viewpoints along the
original camera path. We then segment the input video so that each
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Figure 11: Playback with a fixed viewpoint. In the original video (a),
the camera travels about 4 meters forward within the ice cave. In the
warped video (b), the camera is fixed at mid-point of its original path.
We can achieve the "teleporting” effect by fixing cameras at selected
locations along camera path.

frame in a particular segment can be re-rendered from the fixed
viewpoint closest in time with our warping method. We ensure the
segments overlap (we use an overlap period of 0.2 seconds in our
experiments) to enable smooth transitions between the fixed view-
points (see Figure 12). Specifically, for each frame in the over-
lap region associated with two fixed viewpoints, we perform linear
blending between the two warped views. We note that while we uti-
lize a simple heuristic to define the fixed viewpoints and segment
the input video, more advanced schemes taking into consideration
the distance between the original and new viewpoints and the re-
sulting warping error can be adapted.

User feedback. We invited a group of users to try our system
where we asked them to view the same 360 video both in its stabi-
lized monoscopic form and our 6-DOF stereoscopic version. The
group consisted of 5 users who only had limited experience with
mobile VR. The study was conducted with an Oculus Rift head
mounted display while users sitting on a chair. The users were told
that their motion did not need to be limited to the rotation of the
head. We observed that with our 6-DOF system, users constantly
moved around to explore the scene whereas with a monoscopic
video they limited their movement to head rotation only after re-
alizing the video did not respond to translational motion. The most

viewpoint 2

overlapping regions

Figure 12: Teleporting: Given an input video, we manually choose a
set of fixed viewpoints along the original camera path and form over-
lapping segments of the video. Each frame in a particular segment is
re-rendered from the viewpoint closest in time while for frames in the
overlapping regions we perform linear blending between two warped
views to ensure smooth transition between viewpoints.
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typical translational movement for 6-DOF display was leaning for-
ward to look closer at some objects. The users reported that doing
the same with monoscopic view caused discomfort. All the users
reported less motion sickness with our system and stated that they
prefer the 6-DOF viewing experience because of the extra freedom
of movement. However, users also reported that moving far away
from their initial position while standing up resulted in discomfort
due to large distortions in view warping. Overall, our limited and
informal user study shows that the 6-DOF stereoscopic experience
is more engaging and causes less motion sickness if user motion is
limited within a space about the size of a desk.

Limitations. Even though we have demonstrated our method on
various examples, evidently there are certain limitations. The qual-
ity of the synthesized novel views heavily depends on the quality
of the 3D reconstruction and how far the novel view is from the
original input view. During warping, multiple 3D points contribute
to the deformation of each vertex in the control mesh. Averag-
ing such contributions together with the regularization term (Equa-
tion 4) helps to avoid artifacts due to the noise in the reconstructed
point cloud as demonstrated in our examples of indoor and outdoor
scenes with many planar and linear structures. However, in case of
severe noise and holes (e.g., due to very large textureless regions,
occlusions, illumination changes), artifacts will be apparent when
warping from an original viewpoint to a novel viewpoint far away.
In our experiments we observe that we obtain visually plausible re-
sults as long as the difference between the original and novel view-
points are approximately below 1 meter. Finally, our current re-
construction algorithms assume the scene is static. Thus, dynamic
subjects such as moving people are perceived to be moving on the
static geometry.

6 CONCLUSION

We have presented an approach that enables the playback of mono-
scopic 360-videos in VR headsets with 6-DOF and in a stereoscopic
manner. Specifically, we have enhanced standard structure-from-
motion (SfM) and dense reconstruction algorithms to work with
360-videos. We have presented an image warping algorithm that
computes a warping field directly on the unit sphere to minimize
distortion artifacts. Finally, we have optimized our implementation
for GPUs to achieve VR frame rates (>120 fps) on mainstream
graphics cards.

While our system provides the first full 6-DOF stereoscopic
playback of 360-videos, there is still room for future improvements.
To begin with, we assume the input videos can perfectly be mapped
to a unit sphere. In reality, however, distortions due to lenses and
manufacturing inaccuracies cannot be avoided. Our future work
includes enhancing the SfM algorithm to account for such distor-
tion parameters. Moreover, we assume the input video contains
translational motion of the camera to provide sufficient baseline for
accurate 3D reconstruction. Extending recent approaches that han-
dle rotation-only camera motion [28] to work with 360-videos is a
promising direction. Finally, while dynamic scene reconstruction
is still an active research area, billboard-type representations com-
monly used for sports broadcasting [8] are worth exploring.
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