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ABSTRACT

Wireless camera sensors networks are an emerging sensing

technology that could enable new applications in security, trans-

portation, and healthcare. Tracking and identifying moving
objects is a fundamental visual surveillance task and methods
that respect the energy and bandwidth constraints of a wire-
less sensor network are needed. This paper proposes a real-
time algorithm for tracking people and acquiring canonical
frontal face images in this setting.

Clusters of sensors collaborate to track individuals and
groups of people moving in an indoor environment. The sen-
sors are tasked to retrieve the best frontal face image for each
tracked individual according to a score based on face size and
orientation. The method exploits information about the tar-
get’s trajectory to retrieve an approximate best frontal face
image in an energy efficient manner. Frontal face images ac-
quired by this algorithm are suitable for standard face recog-
nition algorithms and would be valuable for identity manage-
ment.

To evaluate this approach on real data, a prototype surveil-
lance system called FaceNet was developed. FaceNet dis-
plays a compact summary of human activity by overlaying
a floorplan diagram with the 2D trajectories and a face image
for each track. A simple benchmark of FaceNet shows the
amount of data transmitted from the sensors can be reduced
by 97 percent compared to a naive centralized streaming ar-
chitecture and has the potential to significantly reduce the en-
ergy used by wireless nodes for this type of surveillance task.

Index Terms— Wireless Camera Sensor Networks, Sen-
sor Tasking, Tracking

1. INTRODUCTION

Today, networks of cameras are used to monitor transporta-
tion systems, businesses, and other important spaces. Wire-
less sensor technology could make such networks far more
pervasive by greatly reducing the cost of deployment and op-
eration. Networks of many cameras are particularly well suited
for cluttered real-world environments like buildings and ur-
ban areas. In such environments, only a small fraction of the
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region of interest is visible from any single vantage point be-
cause of occlusions. Using many simple camera sensors in-
stead of a few high quality cameras increases the probability
that an object of interest can be observed with a useful and
unoccluded view.

Yet the sensor network paradigm of distributed sensing,
processing, and storage requires very different architectures
and algorithms than those used in conventional systems. In
most conventional architectures, video is streamed from a sen-
sor to a central location where it can be monitored and stored.
In the wireless sensor networks paradigm, these tasks are done
in a distributed fashion and close to the source of the data. For
battery powered wireless sensors, the dominant design con-
straints are energy and the bandwidth of the wireless channel.
Simply broadcasting a constant stream of high bit-rate data
would quickly exhaust a sensor’s energy and saturate the net-
work’s communication capacity. In this situation, data should
be stored locally and processed to create high-level represen-
tations that are cheap to communicate.

This paper describes a method for tracking people in 2D
world coordinates and acquiring canonical frontal face im-
ages that fits the sensor network paradigm. Frontal face im-
ages are particularly desireable features for tracking and iden-
tity management because they are largely invariant to day-to-
day changes in appearance. Our primary contribution is to
show how sensing the trajectories of moving objects can be
exploited to acquire high quality canonical views while con-
serving node energy.

The paper is organized as follows. Section 2 describes a
lightweight method for visually tracking people in an indoor
environment. Section 3 describes a sensor tasking algorithm
for energy efficient canonical face image retrieval. Section 4
gives a description of the FaceNet system and some exper-
imental results. In section 5, related work is discussed and
section 6 concludes with a discussion of ideas for further in-
vestigation.



2. LIGHTWEIGHT PEOPLE TRACKING

2.1. Overview

Here we describe a method for fusing data from multiple cam-
eras to estimate the 2D trajectory of people moving in the ob-
served space. The method is lightweight in the sense that only
simple image processing steps are required on the resource
constrained camera sensor. In the following, we assume that
the cameras intrinsic and pose parameters have been mea-
sured as part of the network deployment process. Several
methods for calibrating a network of cameras have been pro-
posed in the literature and particularly applicable work in-
cludes [1] and [2]. Furthermore we assume that during the
initialization stage, cameras use their calibration information
to discover clusters of other cameras that observe the same
region of space and elect a cluster leader.

In normal operation, sensors in a cluster enter a low-power
state where they take turns watching the common observa-
tion space. When a moving object is detected, nodes in the
cluster are alerted and begin sending a compact summary of
foreground regions detected in their view to a cluster leader.
The cluster leader calculates an approximate 2D visual hull
using the foreground regions and known camera geometry.
A Bayesian filter is applied to the noisy visual hull data to
produce an occupancy probability map. Peaks in the occu-
pancy probability map are tracked across time to estimate the
trajectories of moving targets. The approach requires only
very simple processing at the camera sensors and greatly re-
duces the amount of data that must be transmitted across the
wireless network compared to transmitting raw or even com-
pressed image data.

2.2. Compact vector-based foreground image

Each camera generates a compact vector representation of the
foreground region in its view as follows. A simple Gaussian
background model is used to create a foreground probability
image for the current camera frame. This image is thresh-
olded at different levels to generate a set of foreground confi-
dence masks. The outer contours of each confidence mask are
simplified to polygons with a small number of vertices. This
set of polygons is then used as a compact vector representa-
tion of the foreground likelihood image. Using more than two
confidence masks allows the system to avoid making noisy bi-
nary decisions about the presences or absence of a foreground
region that might introduce large errors in the visual hull cal-
culation that will follow. Additionally, the degree of polygon
simplification can be tuned to achieve the best trade-off be-
tween the faithfulness and the compactness of the foreground
representation. This can be seen as a generalization of the
compact scan-line representation used in [3] which removes
the tight restrictions on horizontal camera placement.

Fig. 1. Calculation of the 2D visual hull by 1.) forming
a compact foreground probability image and 2.) projecting
the foreground image from the camera image plane onto the
ground plane and 3.) multiplying projected images

2.3. Occupancy map data fusion

The vector-based foreground images from multiple cameras
are fused at the cluster leader by calculating the visual hull of
the observed objects. Since we are interested in the location
of the objects on the ground plane, a 2D slice of the 3D visual
hull parallel to the ground plane is sufficient. As described in
detail in [3] and [4], the calculation of this 2D slice can be per-
formed by projecting the foreground probability images from
the camera’s image plane onto a plane parallel to the ground
and then multiplying these projected images. This process is
illustrated in Figure 1.

The resulting visual hull can not be used directly for track-
ing objects because it may contain connected components that
do not correspond to any object in reality. These extra regions
are called phantoms because they tend to appear and disap-
pear from thin air. These are discussed in more detail in [3].
By considering the visual hull to be a noisy measurement of
the space actually occupied by people, a Bayesian filter with
a simple human motion model can be applied to estimate the
occupied space. Using a simple random walk model of mo-
tion, the probability of location at the next time step is dis-
tributed as a Gaussian centered at the current location with
variance proportional to the object’s expected speed. The re-
sult of this simple filtering step is an occupancy probability
map whose peaks correspond to space that is likely to be oc-
cupied by a person.

2.4. Extraction of tracks

The occupancy probability map is thresholded to extract blobs
that are likely to be occupied by a person. These blobs are
tracked across time using a Kalman filter with a simple near-
est neighbor heuristic for data association. Examples of tracks



generated with this lightweight tracking algorithm are shown
in Figure 3.

3. TASKING FOR CANONICAL FACE IMAGE
CAPTURE AND LAZY RETRIEVAL

The most direct method of finding the best canonical face im-
age for each individual moving in the observed space might be
to transmit the video data to a central processing node which
can track the individuals in world coordinates and inspect all
the data for this best image. Clearly transmitting the video
stream from the sensor is not feasible in this context since
this would easily exceed the bandwidth and energy available
to a node. On the other extreme, each node can locally search
for face images in its own view. This approach wastes a lot of
energy because only a small fraction of views can contain a
good quality face image of an individual at a given time. Fur-
thermore this method does not provide associations of face
images to individuals. It is not clear how a node can know
when the global sensing task of acquiring a canonical face
image for each individual has been completed so that it may
return to a low power state.

The proposed method described below avoids both prob-
lems by fusing some lightweight data from multiple sensors
in realtime to observe global properties of the objects. This
information can be used to continuously task a small subset of
the cameras to cache images in local storage. The locations of
the best views are determined and the actual image data can
be retrieved in a lazy fashion.

First we need to define what makes one face image bet-
ter than another. Clearly a large image is more useful than
a smaller one for the purpose of recognition. Also an im-
age from a consistent frontal viewpoint is desireable because
it can be used with standard face recognition algorithms like
EigenFaces [5]. Thus an image in which the person is more
directly facing the camera is better. Though estimating head
orientation from images has been studied in the literature [6],
we use a simpler method using information already available
from the tracker. We observe that people typically face the
direction in which they are walking and simply use the direc-
tion of motion as a cheap but noisy approximation of head
orientation.

To formally quantify the notion of view quality, a function
S is introduced to score the view from camera C; of the face
of person P; at time ¢ as follows. Let v; be the velocity of
person P; at time ¢ and V; be the unit vector in the direction
of v;. Let d;; be a unit vector pointing from the person P;
towards camera C;. Also let focc = ei"gcv be the fraction of
the field of view of camera C; occluded by the head of person
P; as illustrated in Figure 2. The view scoring function is
defined as:

if ScoreValid
otherwise

S(Czapj,t) = { (V] 'doij)focc
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Fig. 2. The camera-to-person view quality score S(C;, P}, t)
has two components. The variables of the head orientation
component and head size components are illustrated on the
left and right respectively. On the left, the person is mov-
ing along the curved path and the head orientation is approx-
imated by the tangent to the path. On the right, f,.. is the
fraction of the camera’s field of view subtended by the per-
son’s head.

The ScoreValid condition is satisfied when the tracked
person is moving faster than some minimum speed and there
is no other person between person P; and camera C; that can
occlude the view. The minimum speed condition is needed
because the approximation of head orientation by motion is
reasonable only when the person is walking. The score con-
sists of the following two terms. The first term is maximized
when the direction to the camera and the direction of travel
are the same. When the head orientation assumption holds,
this gives higher scores to direct frontal face images than to
others. The second term is largest when the face region fills
the entire camera field of view and thus gives preference to
images in which the face appears larger.

Given this view scoring function, the tasking algorithm
works as follows. After the cluster leader begins tracking a
new person, it starts a face acquisition process for that track.
The process monitors the trajectory of the target and calcu-
lates a score according to the above metric for each camera.
At a regular interval, the cameras with the highest scores are
commanded to cache their video stream in local storage. The
process monitors the trajectory during a period of observa-
tion until the object leaves, or until it is requested to provide
the current best face image. The process then examines the
history of scores and selects the camera and instant of time
associated with the highest score (i.e. a likely best canoni-
cal image). The process requests that the camera extracts the
portion of this best shot from its cached video and verify the
existence of a frontal face image. The camera sensor does this
by running the Viola-Jones face detection algorithm [7] on the
small patch that should contain the head of the tracked person
(which is easily calculated from the known camera geome-
try). This face detection operation is performed infrequently



for verification of the predicted face location and is not run
continuously on full images to search for a face. By veri-
fying the predicted face location with the face detector, the
algorithm can detect when the head orientation approxima-
tion was wrong and try again. The FaceNet camera tasking
algorithm is outlined in Algorithm 1.

Algorithm 1 Sensor Tasking for Face Image Retrieval

while P; is tracked do
bestCamld « arg max S(C;, Pj, t)

bestCamScore < S(Chestcamid; Pj,t)
if bestCamScore > taskingThreshold then
command Chestcamid to cache images locally
taskingHistory([t].score = bestCamScore
taskingHistory[t].camld = bestCamlId
end if
t—t+1
waitUntilTime(t)
end while
while no face image for P; do
thest = findTimeOfBestScore(taskingHistory)
bestCamld = taskingHistory[thest].camld
checkForFaceInCachedImage(ChestCamids thest )
end while

4. RESULTS

4.1. Experimental Setup

To evaluate this approach on real data, we built a camera
network called FaceNet from off-the-shelf hardware. The
FaceNet deployment consists of sixteen web cameras con-
nected to eight shuttle PCs that communicate over an ether-
net network. The cameras are deployed horizontally at eye
level on the walls of a 6m x 7m room and arranged as de-
picted in Figure 3. This approach was used to facilitate fast
development and testing and to provide a platform where a
wide range of resource constraints (memory, bandwidth) can
be simulated. Intel’s OpenCV library was used for image pro-
cessing operations on the camera nodes and the open source
ICE middleware was used for distributed object communica-
tion.

In this simple configuration, all cameras observe the same
space and thus form a single logical cluster. One of the PC’s
serves as the cluster leader for data fusion and tasking. The
FaceNet GUI application displays a summary of human ac-
tivity in the form of trajectories and an associated face image
for each tracked person. The GUI display shown in Figure 3
shows two people being tracked in real-time.

% Display all current tracks.
7 object 40
objectaz
update bestshot
2 :

X Enable capture

Fig. 3. Plan view diagram of the single-room FaceNet de-
ployment - In this image, two people are tracked in real time
using the lightweight visual hull tracking algorithm and two
cameras have been tasked to cache images.

4.2. Evaluation of Lightweight Visual Hull Tracking

Reliable tracking in the prototype network has been achieved
for three or four people interacting in a natural way. In or-
der to resolve and track an individual, this method requires
that there exists at least one view in which the individual
can be isolated from other foreground objects. In moder-
ately crowded situations where blobs frequently merge and
split, identity management techniques as proposed in [8], [9],
[10] could be applied to extend short tracks into more use-
ful long tracks. In more crowded situations where the visual
hull fails to isolate individuals at all, a different tracking algo-
rithm would be required to track individuals instead of groups
of individuals.

4.3. Energy savings

To evaluate the energy that could be saved by this “smart
camera” method, we compare the performance with a con-
ventional “dumb camera” architecture where no image analy-
sis is done locally. In the comparison architecture, data must
sent to a central point for processing to complete the same
tracking and face image selection task. To be generous, as-
sume the cameras in the comparison system can aggressively
compresses video to a 37.5 KB/s stream and send data only
when motion is detected (perhaps when triggered by a passive
infrared sensor). To make the comparison independent of the
platform, we compare the required communication in bytes
since this is the dominate factor in this wireless application.
The table below compares the communication costs of the
two methods for the trial shown in Figure 3. In this trial, two
people are tracked in realtime using the visual hull tracking al-
gorithm over a period of five minutes. Motion was detected in
76 percent of the video frames during the observation period



leading to an average data rate of 28.5 KB/s from each cam-
era in the centralized processing system. To compare with
FaceNet, we calculate the data rate for both image retrieval
and tracking tasks (including transmitting the compact fore-
ground representations). Because only 14 small images are
transmitted from the FaceNet cameras, the cost of transmit-
ting image data is very small. For this example, the FaceNet
method reduces the total amount of data transmitted from the
cameras by 97 percent.

Average data sent per camera | FaceNet | Centralized
Image data rate (bytes/s) 7.4 28500
Tracking data rate (bytes/s) 967 0
Total data rate (bytes/s) 974.15 28500

4.4. Evaluation of Tasking Algorithm

To evaluate the proposed sensor tasking algorithm on its own
in a challenging real-world setting, we conducted a trial in-
volving 11 people interacting in the FaceNet room for 4 min-
utes. The setting was a “social mixer” type event where peo-
ple circulated around the room while talking and eating. Be-
cause the performance of the tasking algorithm depends on
the accuracy of the tracking data it uses, we will evaluate the
tasking algorithm independently from the visual hull track-
ing algorithm described above. Wide-angle cameras mounted
on the ceiling were used to record video that was processed
offline to estimate ground truth tracks. These ground truth
tracks were provided as input to the tasking algorithm for the
following evaluation.

4.4.1. Face Image Acquisition Failure

The goal of this section is to evaluate how effectively the task-
ing algorithm finds a canonical face image for each track. To
do this, we define some measures of system performance, ex-
plain the primary parameters influencing performance, and
present some measurements of the effect of these parameters.

To measure performance, we define two kinds of failures.
A false positive failure occurs when the system selects an im-
age that is either not a face or is the wrong face. Alternatively,
a false negative error occurs when the system fails to find a
face image for a track when some camera did in fact have
a suitable view. For example, a false positive failure could
occur if Sam leans forward to tie his shoe at the wrong mo-
ment and the system accidentally acquires the face of Sally
who was standing behind him. A false negative might oc-
cur if Sam starts walking backwards to defeat the system. In
this case, any cameras opposite the direction of motion have
a clear view of the face but are never tasked to cache images.
Thus the system fails to find a face image when one is poten-
tially available.

Next we describe several important system parameters and
their associated performance trade-offs.

Sensor Memory: Each camera sensor has a limited amount
of memory in which to cache images locally. If the camera is
out of memory, it discards an old image to cache a new one.
If the amount of video a camera can store is shorter than the
duration of a track, useful images of that track may be lost.
In this case, the false negative rate could increase and the se-
lected image quality may decrease. This parameter controls a
trade-off between sensor hardware cost and performance.

Tasking Threshold: For a camera to be tasked to acquire
images of a track, the view quality score for a camera-track
pair must be above a threshold taskingThreshold (See Algo-
rithm 1). Setting this value low reduces the likelihood that we
fail to cache a potential good image, but increases the frac-
tion of the time a camera sensor must be active and capture
images. This parameter controls a trade-off between energy
consumption and performance.

Number of Cameras: Using more cameras can increase
the diversity of viewpoints and increases the likelihood of
capturing a good face image when there are many occluders.
This parameter controls a trade-off between deployment cost
and system performance.

Figures 4, 5, and 6 show the effect of these parameters on
the failure rates for the trial with 11 people described above.
In general, the false positive failures are independent of these
parameters. False positive failures were generally caused by
errors in the estimated location of the target which caused the
predicted face region to accidentally include the face of some-
one behind the target individual. Figure 4 indicates that in-
creasing the number of images that a camera can store beyond
75 frames does not significantly improve the performance.
With the cameras operating at 15 FPS, this corresponds to
a capacity of 5 seconds of video (corresponding to the du-
ration of many tracks). Figure 5 indicates that the tasking
threshold can be increased from 0.01 up to 0.05 to save power
before performance begins to degrade. To evaluate the effect
of the number of cameras on performance, the tasking algo-
rithm was run using several subsets of the full 16 cameras.
The results shown in Figure 6 indicate that relatively good
performance can be obtained using just 5 of the 16 cameras
in this trial. The successful use of a much smaller number of
cameras is likely due to the high mobility of the targets in this
trial.

4.5. Face image quality

Figure 7 shows a series of face images acquired by FaceNet
and sorted by their predicted view quality score. In general, it
seems that the the view quality prediction made by the scor-
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Fig. 4. False positive and negative failure rates as a function
of the number of frames a sensor can store
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Fig. 5. False positive and negative failure rates as a function
of the tasking threshold
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Fig. 7. A series of retrieved face images sorted by their pre-
dicted view quality score

ing function does correspond to an intuitive sense of image
quality. However the last two images show that differences
in face orientation are not necessarily reflected in the score
(because of the simple approximation used).

To evaluate the quality of the returned face image, we
compare the selected face image with one chosen by a human.
To do this, a volunteer manually inspected all the recorded
video of each track from all cameras and picked the best frontal
face image. The volunteer was directed to pick the largest
frontal face images possible. Figure 8 is a side-by-side com-
parison of the human and algorithm selected canonical frontal
images for 10 samples from the 64 tracks in the trial. In gen-
eral, the manually selected images are larger than the auto-
matically selected images but have similar head orientations.
The larger size is to be expected since the set of images avail-
able to the human includes images when the person is not
moving which are not considered by the algorithm. It is inter-
esting that in 6 out of the 10 samples, FaceNet chose an image
nearly identical to that chosen by a human.

5. RELATED WORK

The task of tracking and identifying people from video data
has long been a topic of interest in the field of computer vi-
sion. The literature on tracking from single and multiple views
is large and the VSAM project is just one of many noteable
projects in the area of automated visual surveillance [11]. Most
classical approaches assume that processing of image data is
done in a centralized fashion and that large computational and
communication resources are available for the task. With the
increasing availability of small and low cost cameras, stor-
age, and processing hardware, there is growing interest in
performing some visual surveillance operations in a wireless
sensor network. The Panoptes project [12] investigated ways
of indexing and searching video data collected by many wire-
less cameras and studied the power usage of a 802.11 wireless
platform. The Meerkats project [13] also developed an 802.11
based wireless platform (the Meerkat node) to study tradeoffs
between energy and performance in the context of tasks like
sensing moving people.

The visual hull is used in various settings for 3D recon-
struction. A probabilistic framework for reconstruction of 3D
objects is given in [4] where a camera is modeled as a proba-
bilistic space occupancy sensor along a ray. In our approach,
we are satisfied with calculating just a 2D slice of the full 3D
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Fig. 8. Comparison of manually and automatically selected best frontal face images for 10 tracks.

visual hull. Our approach to tracking people using a 2D vi-
sual hull lies on a continuum between the very lightweight
approach used in [3] and the approach used in [14]. In [3]
a compact “scanline” representation of the foreground is cre-
ated by summing the columns of a binary thresholded fore-
ground image. However, using the scan-line representation
for people tracking imposes restrictions on camera placement
and is not well suited for information rich overhead views, for
example. In [14] a foreground probability image is computed
for each view and this image is then projected onto a plane
parallel to the ground. Tracking is done offline by segment-
ing out coherent “snakes” traced by blobs moving through
the space time volume formed by stacking the visual hull im-
ages. The advantage of this method is that it pushes back the
foreground segmentation into the fusion step which reduces
the effect of noisy foreground segmentation. The foreground
representation used here represents a variable resolution fore-
ground probability image that can be made nearly as compact
as the scan-line method of [3] or a very close approximation
to the full probability image used in [14].

6. CONCLUSION

A method has been described for tracking people and acquir-
ing canonical face images which respects the requirements
of a network with energy constrained wireless camera sen-
sors. The FaceNet system saves energy by significantly re-
ducing the amount of data transmitted from the wireless sen-
sors. In a benchmark comparing FaceNet with a conventional
centralized approach to this surveillance task, the FaceNet ap-
proach transmits 97 percent less data. Trajectories tagged
with canonical images are a very compact and useful high-
level representation which generalizes to other targets of in-
terest (vehicles, animals).

A significant limitation of the lightweight visual hull based
tracking approach described above is that it does not scale
well to tracking many people in dense configurations. In or-
der to resolve and track an individual, this method requires
that there exists at least one view in which the individual can

be isolated from other foreground objects. Reliable tracking
in the prototype network has been achieved for up to three
or four people interacting in a natural way. Future work will
investigate extensions and alternative lightweight tracking al-
gorithms that can handle more realistic dense configurations
of moving targets.
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