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ABSTRACT
We describe and evaluate a vision-based technique for track-
ing many people with a network of stereo camera sensors.
The technique requires lightweight local communication and
is suitable for crowded scenes where targets are frequently
occluded and where appearance based modeling techniques
fail. In our approach, multiple stereo sensors individually es-
timate the 3D trajectories of salient feature points on moving
objects. Sensors communicate a subset of their sparse 3D
measurements to other sensors with overlapping views. Each
sensor fuses 3D measurements from nearby sensors using a
particle filter to robustly track nearby objects. We evaluate
the technique using the MOTA-MOTP multi-target tracking
performance metrics on real data sets with up to 6 people and
on challenging simulations of crowds of up to 25 people with
uniform appearance. Our method achieves a tracking preci-
sion of 10-30 cm in all cases and good tracking accuracy even
in crowded scenes of 15 people.

Index Terms— Distributed tracking, camera sensor net-
work, particle filtering

1. INTRODUCTION

Multi-person tracking has applications in many fields includ-
ing security, human computer interaction, entertainment, and
even health care. Robust tracking is a basic building block for
a wide range of higher-level applications. Existing techniques
have not found widespread use because they rely on assump-
tions that are too strong for many real-world applications. For
this reason, the problem of tracking many people in dynamic,
cluttered, and uncontrolled environments is an active area of
research. We address some of the difficulties posed by uncon-
strained environments with the goal of bringing robust people
tracking out of the lab and into the real world.

Our technique is designed for a network of stereo camera
sensors with limited communication. During operation, each
sensor independently estimates 3D trajectories of a small set
of different surface features on moving objects as illustrated
in Figure 1. Sensors do not compute dense depth images,
but only estimate depth for a sparse set of the most reliable

Fig. 1. Multiple stereo-pair sensors independently estimate
3D trajectories of different sets of features on moving ob-
jects. Sensors communicate trajectories of features they ob-
serve to neighbor sensors with overlapping sensing volumes.
Each sensor fuses 3D trajectories using particle filter based
person trackers.

image features. Each sensor communicates the positions of
features it observes to other sensors with overlapping sensing
volumes. At each sensor, a data association module assigns
measurements to independent people trackers. Each tracker
uses a particle filter to estimate a person’s 2D position and
velocity in the world coordinate frame. We propose a for-
mulation of a particle filter that takes into account the shape
of a human, the visibility constraints of the camera, and the
velocity of the observed features.

Many existing techniques make assumptions which greatly
restrict the generality of the approach in real-world settings.
For example, common background modeling techniques as-
sume that the appearance of non-targets can be predicted well
from past observations. Furthermore, they assume that changes
in the scene are caused primarily by the presence of targets.
Yet in many interesting real-world settings, these assumptions
do not hold. Scenes often include many other dynamic ob-
jects, fast changes in lighting, and complex object interactions
like shadows and reflections that greatly influence the image.

In single-view tracking techniques, it is common to as-
sume that distinct targets have distinct appearances with re-
spect to color, texture, size, or contour features. This assump-
tion does not hold in many settings, for example when peo-
ple may be wearing uniforms. Single-view approaches also
face a fundamental limitation caused by occlusions. Such
techniques assume that static and dynamic occlusions are rare
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and can be handled as short-term special cases. However in
many real-world settings, it is not possible to place a camera
in the ideal location that minimizes occlusions (like a very
high overhead view) and a robust technique must handle fre-
quent and prolonged occlusions.

Multi-view techniques that perform correspondence be-
tween views assume that the appearance of a feature in one
view will be similar to its appearance in another view. This
assumption fails for widely separated views where the scene
geometry and lighting can result in a lack of commonly ob-
served features and very different appearances of the same
feature. Furthermore, communicating a description of a suffi-
cient number of potential features to establish reliable corre-
spondences may require a significant amount of communica-
tion. Thus the wide-baseline correspondence problem is dif-
ficult when using many cameras in a bandwidth-limited dis-
tributed setting.

Contribution

Our contribution is a distributed vision technique for tracking
moving objects in real-time given a sparse set of 3D feature
trajectories as observations. To the best of our knowledge, we
are the first to propose this formulation of a particle filter on
sparse 3D trajectories.

Our technique does not require the assumptions discussed
above which cause problems in unconstrained environments.
It uses stereo depth measurements which are generated with-
out modeling the appearance of targets or non-target objects.
Furthermore, it handles frequent and prolonged occlusions by
fusing observations from multiple viewpoints. By perform-
ing short-baseline stereo correspondence within the sensor,
the technique does not need to communicate to establish cor-
respondences between wide-baseline views. This makes the
approach scalable in a distributed setting because it requires
relatively little communication to send a small set of 3D tra-
jectories compared to image data.

The performance of this technique was evaluated using
the standard Multi-Object Tracking Precision (MOTP) and
Multi-Object Tracking Accuracy (MOTA) performance met-
rics described in [1]. The particle filters we propose perform
well using fewer than 100 particles and can track multiple tar-
gets in real time on commodity PC hardware.

The paper is structured as follows. Section 2 describe how
our approach compares to other distributed visual tracking
techniques. In Section 3, we give an overview of the sys-
tem by describing the input and output of the system com-
ponents and then describe each component in detail: sparse
stereo feature tracking in Section 4, data association and track
initialization in Section 5, and particle filter person tracking
in Section 6. In Section 7, we present an evaluation of the
system on real and synthetic data sets.

2. RELATED WORK

Vision based multi-target tracking has been studied exten-
sively in the literature. Previous work is vast and is sum-
marized well in [2]. The following is a discussion of only
the most closely related work for tracking multiple targets in
real-world settings.

Several techniques use multiple short-baseline stereo cam-
eras. A real-time people tracking system for an interactive en-
vironment is presented by Krumm et al.[3] which uses depth-
based background subtraction. The offline technique of Dar-
rell et al.[4] also uses depth based background subtraction
but proposes delaying segmentation until after sensor fusion
which is done by rendering 3D foregrounds from multiple
sensors in a common “plan view” image. The techniques pro-
posed by Harville [5] and Zhao et al.[6] also use the idea of
“plan views” of dense stereo data for tracking but not multi-
sensor fusion. These techniques are all different from ours
because they require that the objects in the scene have enough
texture for dense stereo reconstruction and build background
models that assume a static environment.

Like our technique, the M2Tracker system described by
Mittal and Davis [7] is designed to work in crowded settings
where targets are partially occluded in every view. Their region-
based stereo technique avoids many problems with wide-baseline
correspondence by matching regions instead of points. Yet
their approach is very different from ours because it requires
background modeling and assumes that everyone in the scene
is wearing uniquely colored clothing to perform the region
based correspondence.

Osawa et al.[8] track people with a particle filter by gen-
erating a 3D model of the environment and use a 3D ellipsoid
human model. The likelihood of a hypothesized state is eval-
uated by rendering images of the ellipsoid shape model in the
environment model to capture the effect of known occlusions.
They demonstrate tracking in a cluttered office environment
with two people but do not discuss the cost of rendering an
image from a 3D model per particle per time step. Unlike our
method, this technique requires a static scene and uses back-
ground modeling to segment the target.

Khan and Shah [9] and Lopez et al.[10] propose tracking
methods based on the visual hull. In [9] a 2D slice of the
visual hull around people’s feet is calculated and tracking is
done offline. In [10] particle filters track people using a voxel
representation of the 3D visual hull. Visual hull techniques
are sensitive to errors in foreground segmentation and are not
suited for environments with many occlusions because the vi-
sual hull becomes loose and can not resolve individuals.

The method of Tsutsui et al.[11] was used to track a single
person through occlusions using optical flow. Though they
estimate temporal correspondence and use multiple cameras,
they do not estimate 3D trajectories of surface features as in
our method. Our sparse stereo tracking technique amortizes
the expense of an initial correspondence search over many



Fig. 2. Each sensor captures and processes a stereo image pair
to produce 3D trajectories of a sparse set of features. Multiple
sensors collaborate by sharing 3D feature trajectories. The
feature trajectories are assigned to a particle filter tracker and
new trackers are generated. The people tracks generated by
the particle filter trackers are stored in a local database for use
by higher-level applications.

cheaper correspondence checks and could be considered a
simplification of the technique proposed by Tang et al.[12].
Our technique differs because it uses only images as input and
does not rely on the correct tracking of previous 3D features.

3. OVERVIEW

In the following, we give an overview of the technique by
describing the flow of information through the system com-
ponents shown in Figure 2. A sensing cycle begins when a
sensor captures a stereo image pair. The Sparse Stereo Fea-
ture Tracker module takes the image pair as input and outputs
the current 3D position of a small set of previously tracked
surface features. Each sensor then updates neighbor sensors
with the current position of features that fall inside their sens-
ing volume. The set of all 3D trajectories generated locally
or received from neighbors is then fed as input to the Tar-
get Detector and Data Association module. This module de-
tects new targets and generates as output an assignment of the
3D trajectory measurements to each tracker called an Obser-
vation Set. Next each Particle Filter takes the 3D trajecto-
ries in its Observation Set as input and generates an estimate
of the target’s 2D position and velocity in the world coordi-
nate frame. Finally, the tracking results are stored locally in
a database. Higher-level applications can then query the local
databases to perform their tasks.

We assume that the sensors’ intrinsic and extrinsic param-
eters have been estimated using existing techniques [13, 14].
Also, we assume the sensors have detected their 1-hop com-
munication neighbors. Using this information, sensors can
discover other sensors that may have overlapping fields of
view. Because of the limited resolution of the stereo sensors,
we assume the effective sensing volume is bounded. Thus

Fig. 3. A feature track update has two steps: In Step 1, the po-
sitions of image features in the left and right images are up-
dated independently using LKT feature tracking in the time
domain. The feature in the circle is correctly tracked while
the feature in the triangle is not. In Step 2, a very limited cor-
respondence search is performed in the spatial domain (the
scores indicated as a white graph). In Case 1, the good corre-
spondence is verified. In Case 2, no good correspondence is
found so the track is terminated.

sensors that observe the same region of space are likely to be
1-hop communication neighbors. This suggests locality in the
communication pattern between sensors.

4. TRACKING SPARSE 3D FEATURES

In this section, we describe a method for estimating the 3D
trajectories of a sparse set of surface features. The cost of es-
tablishing image correspondences in the time domain is offset
by a more efficient stereo correspondence search in the space
domain. We model the stereo depth estimation error as Gaus-
sian and track the features using a Kalman filter [15].

The feature tracking component starts by identifying good
features to track using the Harris corner detector [16]. To get
uniform coverage of features on moving objects, it restricts
the search to regions that are changing and are not close to
other tracked features. In each frame, it chooses the best Har-
ris corner in the left image and searches for a corresponding
point in the right image. To make this efficient, it rectifies the
images so that the epipolar lines correspond to the same rows
in the images. The correspondence search uses a forward-
backward constraint (mutual best match) and the sum of ab-
solute difference (SAD) error metric with a window size of
9×9 pixels on the RGB images. If it finds a match, it creates
a new feature-pair.

Next the feature tracking component extends the tracks
for existing feature-pairs by performing a time domain and
a space domain correspondence as shown in Figure 3. First
it tracks the left and right image features independently in
the time domain using Lucas-Kanade-Tomasi (LKT) feature



Fig. 4. Example feature-pair tracking results where the trajec-
tory of a feature is indicated by the same color path in the left
and right images. Cross-eyed stereoscopic viewing is possi-
ble.

tracking [17]. Because of accumulated errors, the features
tracked in the left and right images may drift over time. To
verify the same feature is being tracked, the component does
a limited correspondence search on a small window±6 pixels
at the image location predicted by the LKT feature tracking.
The feature track is extended if the check succeeds and is ter-
minated otherwise. The method is efficient because the cost
for finding correspondences in the temporal dimension is off-
set by the reduced cost of a stereo correspondence verification
instead of a full correspondence search. Figure 4 shows stereo
feature tracks generated by this technique.

Because of error in estimating the corresponding image
points, there will be error in the triangulated 3D positions. If
we model the error in the image points as Gaussian, the er-
ror for the triangulated point is not Gaussian because of the
non-linearity of the triangulation function. However a normal
distribution is a convenient approximation and can be calcu-
lated as described in [18]. Using the calculated distribution
for each triangulated measurement, the feature tracking mod-
ule performs Kalman filtering to estimate the 3D position and
velocity of the feature. The posterior distribution produced
by the Kalman filter will be used later in a particle filter to ef-
fectively fuse measurements from different sensors with very
different noise characteristics.

5. DATA ASSOCIATION AND TARGET DETECTION

Our technique uses a separate particle filter to track each per-
son and thus requires a data association step to assign 3D fea-
ture measurements to individual trackers. In the next section,
we describe how to assign measurements to trackers and how
new trackers are instantiated.

5.1. Data Association

To track a target, our technique first computes a mapping of
measurements to targets. To generate this mapping, the Data
Association Module calculates the probabilities p(m|Ti) that
a measurement m was generated by each existing track Ti. It
assigns a measurement to the most likely track, as long as the

probability of this assignment is above a threshold. If none of
the existing tracks explain the observation well, it marks the
observation as unassigned and considers it later during the
new track detection step.

Since we assume that a feature tracked over time was gen-
erated by the same moving object, information about past as-
signment likelihoods should be incorporated when predicting
the current assignment likelihood. For example if two tracks
A and B become very close, a feature that has always been
assigned to track A should not be assigned to track B even if
track B appears a more likely candidate at that instant. Thus to
compute the probability pt(m|Ti) for time t, the data associa-
tion module forms a weighted average of the probability at the
previous time pt−1(m|Ti) and the probability pt(m|sTi

) of
the measurement given a person in the current state of tracker
i as

pt(m|Ti) = αpt−1(m|Ti) + (1− α)pt(m|sTi
). (1)

Here α controls how fast the previous assignment probabil-
ities are forgotten. The probability pt(m|sTi

) is calculated
using Equation 4 described in the next section.

5.2. New Track Detection

The New Track Detection Module clusters measurements that
were marked as “unassigned” during the data association step
to find sets with similar position and velocity. These clusters
may represent a new person entering the sensing volume. It
searches for clusters by randomly choosing a 3D feature and
finding the set of neighbors with a similar velocity within a
vertical cylinder of radius r. We use r = 0.5 m to approxi-
mate a human shoulder span. The module instantiates a new
track for the largest cluster with at least 10 measurements.

6. PARTICLE FILTER PERSON TRACKING

Particle filtering is a sequential Bayesian inference technique
which represents non-parametric posterior distributions by a
set of random samples from the true distribution. See [19] for
an introduction to particle filtering. Isard and Blake demon-
strated the utility of this technique for 2D visual tracking in
the well known Condensation algorithm [20]. The robustness
of this technique in the face of ambiguity results from its abil-
ity to implicitly maintain multiple hypotheses through a non
parametric representation of the posterior distribution.

Let st represent the state of the target at time t, which we
wish to estimate. Here st = {xt, yt, ẋt, ẏt} is the target’s
2D position and velocity in world coordinates. Let zt repre-
sent the observation at time t. Then zt = {m1

t ,m
2
t , ...,m

nt
t }

consists of a set of feature measurements mi
t. Each mea-

surement mi
t is a multivariate normal distribution with mean

µit = {x, y, z, ẋ, ẏ, ż} and covariance Σit. The measurements
are obtained from the sparse stereo feature tracking algorithm
described in Section 4.



The particle filter tracker operates as follows. Each tracker
has N particles which represent the potential states of the tar-
get at time t (i.e. a possible 2D position and velocity). The
tracker simulates the evolution of each particle to time t + 1
according to a stochastic motion model described in Section
6.1. This is the prediction step. Next the tracker considers the
3D measurements and assigns an importance weight to each
particle where higher weights are given to particles that are
more likely given the measurements. The importance weights
are calculated from the observation model described in Sec-
tion 6.2. Finally the tracker resamples the particles by ran-
domly drawing (with replacement) N particles where each
particle is chosen with a probability proportional to its impor-
tance weight. This is the correction step. Next we define the
motion model and observation models used in the Bayesian
prediction and correction steps respectively.

6.1. Motion Model

We define a motion model p(st|st−1) to describe how the tar-
get’s state evolves from one time step to the next. We use a
simple dynamical model with Gaussian noise

p(st|st−1) ∼ N (µm,Σm), (2)

µm = (xt + ẋt∆t, yt + ẏt∆t, ẋt, ẏt)
T
,

where the covariance of the noise Σm is selected to reflect
how fast the targets maneuver.

6.2. Observation Model

The observation model p(zt|st) gives the probability of a par-
ticular observation zt given the object’s state is st. We define
it as the product of the probabilities of the individual 3D fea-
ture measurements in the observation each taken to the power
α:

p(zt|st) = Πnt
i=1p(m

i
t|st)α. (3)

This formulation is useful for combining measurements that
are not truly independent in the computationally convenient
form of a product as discussed in [21]. Using α < 1 accounts
for redundant information by discounting the contribution of
each measurement. This makes the model more accurate and
improves performance in practice. We chose α = 0.07 em-
pirically.

Next we define the probability of an individual measure-
ment given the state of a person:

p(m|st) = pshape(m|st) pvis(m|st) pvel(m|st). (4)

This probability is the product of three component probabili-
ties: shape, visibility, and velocity.

(a) Shape component (b) Visibility component

Fig. 5. (a) shows the iso-contours of a horizontal slice
through the shape model distribution (circles) and measure-
ment distributions (ellipses). The variance σmeas in Equation
5 is the variance of m in the direction to c. (b) The visibility
component incorporates knowledge of the camera position to
assign the ellipsoid on the right a low probability since the
black measurement point would not be visible to the camera
because of a self occlusion.

6.2.1. Shape

The shape component of the observation model encodes the
constraint that measured features should be near the surface
of the tracked object. Any geometric shape model could be
used, but models that allow efficient distance queries are de-
sirable. In this work, we use a simple axis-aligned ellipsoid.
A parametrized shape model could be used to fit variations in
the target class (e.g. height, width) by adding variables to the
estimated state. However in this work, we used a fixed size
model based on average adult proportions.

Given a shape model, we define a distance function dmeas(m, st)
from the 3D measurement m to the closest point c on the
shape model positioned at state st. The random variable D is
the distance from the measurement m to the point c as shown
in Figure 5(a). We model the true distance to the surface D as
the calculated distance plus normally distributed noise from
error in the shape model and error in the measurement as

D = dmeas(m, st) +N (0, σshape) +N (0, σmeas). (5)

Note that the variance σmeas is the variance of the measure-
ment in the direction to the closest point on the shape model
as shown in Figure 5(a). Finally the shape component of the
observation model is

pshape(m|st) = p(D = dmeas) ∼ N (0, σshape + σmeas).
(6)

6.2.2. Visibility

The visibility component incorporates knowledge that the cam-
era can not observe a surface if the line of sight to the surface
is broken. For example in Figure 5(b), a measurement located



between the two hypothesized states is equally likely to have
come from either state according to the shape component of
the observation model. However, the visibility component as-
signs the state on the right a low probability since that point
would not be visible to the camera because of a self occlusion.

First we define a visibility indicator function v(p, st) which
is 1 when the shape model positioned at st does not obstruct
the line of sight from the camera to the point p and zero other-
wise. Figure 5(b) shows a horizontal slice of the visibility in-
dicator function which corresponds to the shadow that would
be cast by the shape model if there was a light source at the
camera. Our technique approximates the visibility probability
by generating k samples pi from the measurement distribution
m and calculates the average number of visible sample points

pvis(m|st) =
1
k

k∑
i=1

v(pi, st). (7)

6.2.3. Velocity

The velocity component of the observation model states that
velocity of the 3D measurement should be the velocity of the
tracked object’s centroid plus Gaussian noise. The 3D mea-
surement velocity is projected to 2D for comparison to the
tracked object’s velocity and its probability is evaluated with
respect to the 2D Gaussian distribution

pvel(m|st) ∼ N
(

(sẋt
, sẏt

)T ,Σvel

)
. (8)

This very simple model assumes a rigid body undergoing pure
translation, but is sufficient to disambiguate feature trajecto-
ries that are close but have different velocities.

7. EVALUATION

To evaluate the proposed method, we generated a series of
real and synthetic data sets to simulate various configurations
of a stereo camera sensor network. Videos of the data sets and
tracking results are available at: http://www.stanford.
edu/˜heathkh/smpt.

We used the Multiple Object Tracking Precision (MOTP)
and Multiple Object Tracking Accuracy (MOTA) metrics pro-
posed in [1] to evaluate the performance of our tracker. The
metrics were designed to give a compact and intuitive sense
of a tracker’s performance and are used in large tracking re-
search initiatives including the CHIL [22] and Vace [23] projects.
The MOTP metric measures the trackers ability to estimate
precise positions. To calculate MOTP, a scoring program es-
tablishes a mapping between measured and ground truth tracks
and calculates total position error for matched object-hypothesis
pairs over all frames, divided by the total number of matches
made across all frames:

MOTP =
Σi,tdi,t

Σtct
. (9)

The MOTA metric expresses the ability to correctly estimate
the number of objects and give trajectories consistent labels.
The scoring program calculates MOTA by calculating the av-
erage number of targets missed efn, average number of targets
falsely detected efp, and average number of times targets have
their labels mismatched emm. The sum Σtg(t) in the denom-
inators is the sum over all frames of the number of people
present in each frame. In all evaluations, we use a radius pa-
rameter of 0.25 m in the computation of the MOTA/MOTP
metrics:

MOTA = 1− (efp + efn + emm) (10)

efn =
Σtefn(t)
Σtg(t)

, efp = Σtefp(t)
Σtg(t)

, emm =
Σtemm(t)

Σtg(t)
.

Experiment A - Single sensor in real scene
We collected real data sets by building stereo heads from un-
synchronized VGA firewire cameras with wide-angle lenses
(135◦ HFOV) arranged as stereo pairs with a 20 cm baseline.
Note that using a wide-angle lens provides a large sensing
volume but low depth resolution with a VGA image. We ob-
tained ground truth for the real data sets by marking the po-
sition of people’s feet on the ground plane from a calibrated
overhead view of the observation region. To achieve suffi-
ciently accurate ground truth, we asked the participants to
follow paths marked on the floor with colored tape. The an-
notation tool overlays the video with these ground plane paths
which allowed more accurate annotation and guided annota-
tion when the feet were occluded from view (which occurred
frequently).

In Experiment A, we mounted a single stereo camera sen-
sor facing down 3 m above the floor in a 6 m×7 m room. We
performed 6 four minute long trials with increasing numbers
of people walking at various speeds and continually enter-
ing and leaving the sensing volume. Note that many of the
simplifying assumptions discussed in the introduction do not
apply for this data set. In particular, four of the six people
are wearing nearly identical dark colored clothes, significant
occlusions occur frequently between multiple people for sev-
eral seconds, and the specularity of the floor causes the back-
ground appearance to change significantly as people move
making background modeling difficult. An image from the
last trial with six people is shown in Figure 6(a) and a mea-
sured track is compared with ground truth in Figure 6(b).

Table 1 shows the MOTA and MOTP metrics for these
trials. The tracking precision (MOTP) is around 20 cm for
all trials. The tracking accuracy (MOTA) degrades in trials
with more people. We found that much of the false posi-
tive and false negative errors that reduce the MOTA score
result from the delay in instantiating and terminating tracks
when people enter or leave the scene. These tracking results
compare favorably to those reported in [10] (MOTP=18.5 cm,
MOTA=81.2%) for a similar scenario with up to 6 people
which used 5 higher-resolution cameras.



(a) Camera view (b) Example track

Fig. 6. (a) In Experiment A, a single stereo sensor tracks up to
6 people. This frame shows an occlusion between four people.
(b) A comparison of a track from Experiment A (thin black
line) with ground truth (thick gray line). The grid indicates 1
m squares.

Table 1. Tracking performance in Experiment A

People MOTP cm efn% efp% emm% MOTA %
1 19 7.51 6.81 0 85.7
2 18 6.37 4.81 0.39 88.4
3 16 9.45 5.91 0.23 84.4
4 19 8.61 6.53 1.21 83.7
5 17 6.96 6.18 0.97 85.9
6 17 9.80 9.19 2.50 78.5

Experiment B - Four sensors in real scene

In Experiment B, we mounted four stereo camera sensors in
the corners of a 6 m×8 m room at an angle approximately 45◦

from horizontal. We chose a cluttered office environment with
occlusions caused by desks and bookshelves. Figure 7 shows
images from the four sensors. We performed a one minute
long trial where four participants brush by each other while
walking a narrow circuit marked on the floor. The MOTP and
MOTA metrics are shown in Table 2.

The tracking precision (MOTP) is about 10 cm worse than
in Experiment A. This is expected because the targets were
farther from the stereo sensors and noise in the depth estima-
tion has a greater effect on the 2D position estimate when the
sensors have a more horizontal view compared to the down-
ward view of the scene in Experiment A. The tracking ac-
curacy also decreased because of a pair of false positive and
false negative tracks.

Table 2. Tracking performance in Experiment B

People MOTP cm efn% efp% emm% MOTA %
4 28 14.8 12.48 1.76 70.1

Fig. 7. In Experiment B, four stereo sensors observed people
walking in a cluttered office environment.

(a) Sensor placement in Exp. C (b) Sensor view

Fig. 8. (a) In Experiment C, a game engine is used to simulate
video from six sensors arranged in a corridor in an outdoor
market setting. (b) A view from a sensor in Experiment C.

Experiment C - Tracking simulated crowds with
limited communication

In Experiment C, we used the Delta3D game engine to gener-
ate simulated video of crowds of 5, 15 and 25 people with uni-
form appearance walking in an outdoor market. Using a sim-
ulation approach allowed us to obtain accurate ground truth
for larger crowds than was feasible in our physical testbed.
Figure 8(a) shows the configuration of the 6 sensors used in
this experiment and Figure 8(b) shows a view from one of the
sensors. The sensors were positioned horizontally at eye level
and configured with a 15 cm baseline, an 80 degree field of
view, and a resolution of 640 × 480.

In this experiment we evaluated the effect of a limited
communication budget on tracking performance for different
target densities. We use the following simple communica-
tion protocol. At each time step, a sensor is allowed a fixed
number of bits to transmit. For example a sensor allocated
50 kbps transmission rate could send roughly 100 feature po-
sition updates at 15 hz (where we assume features are en-
coded as pixel coordinates + disparity in 33 bits). A sensor
selects which subset of observed features to share by drawing
randomly from the set of features that fall inside the sensing



(a) 5 people (b) 25 people

Fig. 9. Comparison of generated tracks (thin black lines)
with ground truth tracks (thick gray lines) from Experiment
C. The grid indicates 1 m squares.

Impact of Bandwidth and Crowd Density
on Tracking Performance
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Fig. 10. Average tracking accuracy and precision in Exp. C
for scenarios with 5, 15, and 25 people under 4 different com-
munication budgets.

volume of its neighbors. For each crowd size of 5, 15, and
25 people we performed tracking under four communication
budgets: no communication, 50 kbps, 200 kbps, and an un-
limited budget where all tracked features are communicated
to each neighbor. Figure 9 shows example tracks and Figure
10 shows the MOTA and MOTP performance metrics for each
trial.

Tracking precision ranged from 12.9 cm down to 8.6 cm
and consistently improved as the communication budget was
increased. As expected, tracking accuracy improved with larger
communication budgets and decreased as the number of tar-
gets increased. For the scenario with 5 people, a good track-
ing accuracy of 92% was achieved with a small communica-
tion budget of 50 kbps. For the scenario with 15 people, a
tracking accuracy of 80% was achieved with a communica-
tion budget of 200 kbps. This compares favorably to the ac-
curacy reported in [10] in which only 6 people were tracked.
It is interesting to note that nearly the same tracking accuracy
was obtained when sensors exchanged only a much smaller
random subset of their observations as when exchanging all
their observations in the 5 and 15 person scenarios.

The best achieved tracking accuracy dropped from 92%
in the scenario with 5 people to 77% in the scenario with
25 people. Tracking accuracy was reduced at higher target
densities because there were fewer features tracked on targets
in the center of the crowd. This suggests that the 6 sensor
deployment used in this experiment is suitable for tracking
up to about 15 targets but additional sensors with different
viewpoints should be deployed to provide accurate tracking
at higher target densities.

8. CONCLUSION

We presented a distributed vision-based technique for track-
ing multiple people with multiple cameras suitable for clut-
tered and dynamic environments. The approach is designed
for scenes where background modeling is difficult and signif-
icant occlusions can occur. The particle filter tracking tech-
nique we propose performs well using fewer than 100 parti-
cles per person and can track multiple people in real-time on
commodity PC hardware. In evaluations on real and simu-
lated scenes, it achieves a tracking precision of 10-30 cm and
good tracking accuracy even in crowded scenes of 15 people.

In future work, we plan to investigate how sensors can
more efficiently share feature trajectory measurements with
their neighbors using selection and compression and also how
to estimate the number of sensors required to achieve a de-
sired tracking performance in a particular setting. Also it
would be interesting to implement the sparse 3D feature track-
ing module on a real-time smart camera platform like the
NXP WiCa mote [24].
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