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Abstract

Permutations are ubiquitous in many real world problema) si$ voting, rankings
and data association. Representing uncertainty over pations is challenging,
since there are! possibilities, and typical compact representations sadraphi-
cal models cannot efficiently capture the mutual exclugisiinstraints associated
with permutations. In this paper, we use the “low-frequérieyms of a Fourier
decomposition to represent such distributions compabtlg. presenKronecker
conditioning a general and efficient approach for maintaining theseilligions
directly in the Fourier domain. Low order Fourier-basedragjpmations can lead
to functions that do not correspond to valid distributions address this problem,
we present an efficient quadratic program defined directipénFourier domain
to project the approximation onto the marginal polytope. d&onstrate the ef-
fectiveness of our approach on a real camera-based moltilpé&acking setting.

1 Introduction

Permutations arise naturally in a variety of real situaisoch as card games, data association
problems, ranking analysis, etc. As an example, considensos network that tracks the positions
of n people, but can only gather identity information when thetkanear certain sensors. Such
mixed-modality sensor networks are an attractive alter@ad exclusively using sensors which can
measure identity because they are potentially cheapeereasdeploy, and less intrusive. See [1]
for a real deployment. A typical tracking system maintaimasks ofn people and the identity of
the person corresponding to each track. What makes the pnakiféicult is that identities can be
confused when tracks cross in what we call mixing events.nbaiing accurate track-to-identity
assignments in the face of these ambiguities based on tyengasurements is known as the
Identity Management Probleff], and is known to béV P-hard. Permutations pose a challenge for
probabilistic inference, because distributions on theugrof permutations om elements require
storing at least:! — 1 numbers, which quickly becomes infeasibleragcreases. Furthermore,
typical compact representations, such as graphical modamot capture the mutual exclusivity
constraints associated with permutations.

Diaconis [3] proposes maintaining a small subset of Fouaefficients of the actual distribution al-
lowing for a principled tradeoff between accuracy and caxipy. Schumitsch et al. [4] use similar
ideas to maintain a particular subset of Fourier coeffisienthe log probability distribution. Kon-
dor et al. [5] allow for general sets of coefficients, but assia restrictive form of the observation
model in order to exploit an efficient FFT factorization. Trhain contributions of this paper are:

e A new, simple and general algorithiironecker Conditioningwhich performs all proba-
bilistic inference operations completely in the Fouriendan. Our approach is general, in
the sense that it can address any transition model or lik@ditiunction that can be repre-
sented in the Fourier domain, such as those used in previots and can represent the
probability distribution with any desired set of Fourieefficients.

¢ \We show that approximate conditioning can sometimes yieldiEr coefficients which do
not correspond to any valid distribution, and present a otketar projecting the result back
into the marginal polytope.

e \We demonstrate the effectiveness of our approach on a resreabased multi-people
tracking setting.



2 Filtering over permutations

In identity management, a permutati@mepresents a joint assignment of identities to internaksa
with o (7) being the track belonging to thith identity. When people walk too closely together, their
identities can be confused, leading to uncertainty evelfio model this uncertainty, we uséd#dden
Markov Modelon permutations, which is a joint distribution ovBta("), ... o) 21 »(1))
which factors as:

P, oM W D) = PEWe ) [ P('eW) - P(eP oY),
t

where thes(!) are latent permutations and th€) denote observed variables. The conditional
probability distributionP(o(!)|o(t=1)) is called thetransition modeland might reflect for example,
that the identities belonging to two tracks were swappeth witme probability. The distribution
P(z®M]a®) is called theobservation modewhich might capture a distribution over the color of
clothing for each individual.

We focus offiltering, in which one queries the HMM for the posterior at some timestonditioned
on all past observations. Given the distributi®tic|=(1), ... 2(*)), we recursively compute
P(e®Dz(M . 2(+1D) in two steps: aprediction/rollup step and aconditioningstep. The
first updates the distribution by multiplying by the trarmit model and marginalizing out the
previous timestep: P(c+V M . 2®) = S o P(eD|e®)P(a® 2D L M),
The second conditions the distribution on an observatigiit!) using Bayes rule:
P(e®tDz(M 20D o P2 |t patHD (0 2(1) Since there aren!
permutations, a single update requit@§n!)?) flops and is consequently intractable for all but
very smalln. The approach that we advocate is to maintain a compact xipgaton to the true
distribution based on the Fourier transform. As we discassr,| the Fourier based approximation
is equivalent to maintaining a set of low-order marginasher than the full joint, which we regard
as being analagous to &ssumed Density Filtd6].

3 Fourier projections of functions on the Symmetric Group

Over the last 50 years, the Fourier Transform has been ubicly applied to everything digital,
particularly with the invention of the Fast Fourier Transifio On the real line, the Fourier Transform
is a well-studied method for decomposing a function into m ©f sine and cosine terms over
a spectrum of frequencies. Perhaps less familiar, is itsgtheoretic generalization, which we
review in this section with an eye towards approximatingfions on the group of permutations, the
Symmetric GroupFor permutations on objects, the Symmetric Group will be abbreviated%y
The formal definition of the Fourier Transform relies on thedry of group representations, which
we briefly discuss first. Our goal in this section is to motvtite idea that the Fourier transform of
a distributionP is related to certain marginals &f. For references on this subject, see [3].

Definition 1. A representatiorof a groupG is a mapp from G to a set of invertibled, x d,
matrix operators which preserves algebraic structure & gbnse that for alby,00 € G,
plo1oa) = p(o1) - p(oz). The matrices which lie in the image of this map are called the
representation matricesind we will refer tad,, as thedegreeof the representation.

Representations play the role of basis functions, similahat of sinusoids, in Fourier theory. The
simplest basis functions are constant functions — and aiigfkample of a representation is the-

ial representatiop, : G — R which maps every element 6f to 1. As a more pertinent example,
we define thd st order permutation representatiof.S,, to be the degree representationy; , which
maps a permutation to its corresponding permutation matrix given by;(o)];; = 1 {o(j) = i}.
For example, the permutation % which swaps the second and third elements maps to:

100
n(l—1,2—33—2)=( 0 0 1
010

The 7, representation can be thought of as a collectiom®functions at once, one for each
matrix entry, [7;(0)];;. There are other possible permutation representations example the
2nd order unordered permutation representafiog, is defined by the action of a permutation on
unordered pairs of objects|p(o)]( jy.1ery = 1{oc({{,k}) ={i,j}}), and is a degreé‘@
representation. And the list goes on to include many moreptioated representations.



It is useful to think of two representations as being the s#ithe representation matrices are equal
up to some consistent change of basis. This idea is fornthbgedeclaring two representatiops
andr to beequivalentf there exists an invertible matrik such thatC=! - p(o) - C = (o) for all

o € G. We write thisag = 7.

Most representations can be seen as having been built up &lfesmepresentations. We say that
a representatiop is reducibleif there exist smaller representatiops, p2 such thatp = p; @ po
whered is defined to be thdirect sum representation

A p1(g) 0

p1 D p2(9) = ( 0 } 02(9) ) : (1)
In general, there are infinitely many inequivalent représtions. However, for any finite group,
there is always a finite collection of atomic representaiamich can be used to build up any
other representation using direct sums. These represegaire referred to as theeducibles
of a group, and they are simply the collection of repres@ntatwhich are not reducible. We will
refer to the set of irreducibles iy. It can be shown that any representation of a finite grGup
is equivalent to a direct sum of irreducibles [3], and hericeany representation, there exists a
matricesC for whichC~! - 7. C = ®p,er @ pi, where the innewm refers to some finite number
of copies of the irreducibleg;.

Describing the irreducibles of,, up to equivalence is a subject unto itself; We will simply say
that there is a natural way to order the irreduciblesSgfthat corresponds to ‘simplicity’ in the
same way that low frequency sinusoids are simpler than higbguency ones. We will refer to the
irreducibles in this order asy, p1,. ... For example, the first two irreducibles form the first order
permutation representation; (= po & p1), and the second order permutation representation can be
formed by the first 3 irreducibles.

Irreducible representation matrices are not always odhalj but they can always be chosen to be
so (up to equivalence). For notational convenience, tleelircible representations in this paper will
always be assumed to be orthogonal.

3.1 The Fourier transform

On the real line, the Fourier Transform corresponds to caimguinner products of a function with
sines and cosines at varying frequencies. The analogoustidefifor finite groups replaces the
sinusoids by group representations.

Definition 2. Let f : G — R be any function on a grou@ and letp be any representation d@k.
TheFourier Transformof f at the representatignis defined to bef, = 3" _ f(o)p(o).

There are two important points which distinguish this Feufiransform from the familiar version

on the real line — it is matrix-valued, and instead of real bens, the inputs t¢ arerepresentations
of G. The collection of Fourier Transforms ¢fat all irreducibles form the Fourier Transform pf
As in the familiar case, there is an inverse transform giwen b

1 T
(o) = g 2T [/ @] @)

wherek indexes over the collection of irreducibles@f

We provide two examples for intuition. For functions on tlealrline, the Fourier Transform at
zero gives the DC component of a signal. This is also trueuioctions on a group; If : G — R
is any function, then the Fourier Transform ¢fat the trivial representation is constant with

fpo =" f(o). Thus, for any probability distributio®?, we haveP,, = 1. If P were the uniform
distribution, thenﬁp = 0 at all irreducibles except at the trivial representation.

The Fourier Transform at; also has a simple interpretation:

Frdis =Y f@m(@)]y =Y flo)l{c()=i}= > 'f(0)~

oESy oESy o (j)=i

Thus, if P is a distribution, therfDT1 is a matrix of marginal probabilties, where thieth element
is the marginal probability that a random permutation drésom P maps element to i. Similarly,

the Fourier transform of at the second order permutation representation is a métrixacginal
probabilities of the formP (o ({7, j}) = {k, ¢}).



In Section 5, we will discuss function approximation by biémding the Fourier coefficients, but
this example should illustrate the fact that maintainingrier coefficients at low-order irreducibles
is the same as maintaining low-order marginal probalsljitiezhile higher order irreducibles
correspond to more complicated marginals.

4 Inference in the Fourier domain

Bandlimiting allows for compactly storing a distributioney permutations, but the idea is rather
moot if it becomes necessary to transform back to the prinoahadn each time an inference
operation is called. Naively, the Fourier Transform$nscales a®)((n!)?), and even the fastest
Fast Fourier Transforms for functions 6 are no faster tha®(n!log(n!)) (see [7] for example).
To resolve this issue, we present a formulation of inferembeeh operates solely in the Fourier
domain, allowing us to avoid a costly transform. We begin Bcualssing exact inference in the
Fourier domain, which is no more tractable than the origprablem because there aséFourier
coefficients, but it will allow us to discuss the bandlimgiapproximation in the next section. There
are two operations to considgsrediction/rollup andconditioning The assumption for the rest of
this section is that the Fourier Transforms of the transiiad observation models are known. We
discuss methods for obtaining the models in Section 7.

4.1 Fourier prediction/rollup

We will consider one particular type of transition model —atttof a random walk over a group.
This model assumes that‘*t! is generated fronw(Y) by drawing a random permutatiorf?)
from some distributior@® and settingr**1) = () In our identity management example,
7(t) represents a random identity permutation that might ocooray tracks when they get close
to each other (anixing even}t, but the random walk model appears in other applicationt s1$

modeling card shuffles [3]. The Fourier domain Predictiailiip step is easily formulated using
the convolution theorem (see also [3]):

Proposition 3. Let@ and P be probability distributions o1%,,. Define the convolution @ and P to
be the function@ « P| (1) = >_,, Qo1 -05 ) P(03). Then for any representatign {@\P} =
P

@,, : ﬁp, where the operation on the right side is matrix multiplioat

The Prediction/Rollup step for the random walk transitioodal can be written as a convolution:
P(J(H'l)) _ Z Q(t)(T(t)),p(U(t)) _ ZQ(t)(J(t+1),(a(t))—1)P(U(t)) _ [Q(t) * P] (U(t+1)).

{(e®, 7)) : g+ =7(1) .50} o(t)
Then assuming thd@,@ and@g) are given, the prediction/rollup update rule is simply:
]/SlgtJrl) - @E}t) . ]’5lgt)'

Note that the update requires only knowledge’adnd does not requirB. Furthermore, the update
is pointwisein the Fourier domain in the sense that the coefficients atepeesentatiop affect

PV onlyat p.

4.2 Fourier conditioning

An application of Bayes rule to find a posterior distributiB(v|~) after observing some evidenee
requires gointwise producdf likelihood L(z|o) and priorP (o), followed by a normalization step.
We showed earlier that the normalization consfait L(z|o) - P(o) is given by the Fourier trans-

form of L() P(*) at the trivial representation — and therefore the normttimestep of conditioning

can be implemented by simply dividing each Fourier coeffickey the scalal[L(ﬂP(t)
PO

The pointwise product of two functiong and g, however, is trickier to formulate in the Fourier

domain. For functions on the real line, the pointwise pradfcfunctions can be implemented

by convolving the Fourier coefficients of and §, and so a natural question is: can we apply a

similar operation for functions over other groups? Our arsiw this is that there is an analogous

(but more complicated) notion of convolution in the Fouidemain of a general finite group. We

present a convolution-based conditioning algorithm whighcall Kronecker Conditioningwhich,

in contrast to the pointwise nature of the Fourier Domairdymtéon/rollup step, and much like

convolution, smears the information at an irreducityldo other irreducibles.

4



Fourier transforming the pointwise product Our approach to Fourier Transforming the point-

wise product in terms of andg is to manipulate the functiofi(o)g(c) so that it can be seen as the
result of an inverse Fourier Transform. Hence, the goallvélto find matrices!;, (as a function of

f,9) such that for any € G,
£0)-9(0) = 15 32T (4L 1le)). 3

whereA; = [ﬁ] . For anyos € G we can write the pointwise product in terrﬁandg using the
p o
inverse Fourier Traknsform (Equation 2):

X CRDIRE AL CRR)
- (|G\) Zd”‘d‘“ [Tr (fp Pz(O’)) (figj 'Pj(a))]‘ (4)

Now we want to manipulate this product of traces in the la% lio be just one trace (as in
Equation 3), by appealing to some properties of rietrix Kronecker product The connection
to the pointwise product (first observed in [8]), lies in thegerty that for any matrice¥, V,
Tr(U®V)=(TrU) - (TrV). Applying this to Equation 4, we have:

Tr (f,)T vPi(O')) Tr (ngJ -pj(cr)> Tr ((pr -pi(g)) ® (93; .pj(g)))
= Tr ((fm ®gpj)T (pi(0) @pj(g))) 7 )

where the last line follows by standard matrix propertiebe Term on the rightp; (o) ® p; (o),
itself happens to be a representation, called Knenecker Product Representatiorin general,
the Kronecker Product representation is reducible, and sani decomposed into a direct sum of
irreducibles. This means that #f andp; are any two irreducibles af, there exists a similarity
transformC;; such that for any € G,

flo)-g(o) =

Zijk

ngl “pi ® ps] (o) - Cij = @@pk(a

k ¢=1
The & symbols here refer to a matrix direct sum as in Equatioh ihdexes over all irreducible

representations of,,, while ¢ indexes over a number afopiesof p, which appear in the de-
composition. We index blocks on the right side of this equratby pairs of indicegk, ¢). The
number of copies of eachy, is denoted by the integer;;;, the collection of which, taken over
all triples (¢, 7, k), are commonly referred to as tl@ebsch-Gordarseries. Note that we allow
the z;;;, to be zero, in which casg, does not contribute to the direct sum. The matriCgsare
known as theClebsch-Gordan coefficientsThe Kronecker Product Decompositiogproblem is
that of finding the irreducible components of the Kroneckardpct representation, and thus to
find the Clebsch-Gordan series/coefficients for each paiemfesentationép;, p;). Decomposing
the Kronecker product inside Equation 5 using the Clebscoldén series/coefficients yields the
desired Fourier Transform, which we summarize here:

Proposition 4. Let f, § be the Fourier Transforms of functiorfsand ¢ respectively, and for each
ordered pair of irreduciblesp;, p;), define the matrix:A;; £ C;;" - (fpf, ® ij) - Cyj. Then the
Fourier tranform of the pointwise produ¢tg is:

Zijk

73], = pk\m Zdﬂbd% ZAW ©)

where A}/ is the block of4;; corresponding to thék, ¢) block in&y, &;7* py.

See the Appendix for a full proof of Proposition 4. The Cldb&ordan seriesy;;;, plays an
important role in Equation 6, which says that the, p;) crossterm contributes to the pointwise
product atp, onlywhenz;;, > 0. For example,

P1 Y p1 = poDp1 D p2Dps (7)
S0z 1, = 1for k < 3 andis zero otherwise.



Unfortunately, there are no analytical formulas for findihg Clebsch-Gordan series or coeffi-
cients, and in practice, these computations can take a loreg tWe emphasize however, that as
fundamental quantities, like the digits of they need only be comput@mceand stored in a table
for future reference. Due to space limitations, we will nodvpde complete details on computing
these numbers. We refer the reader to Murnaghan [9], whagesgeneral formulas for computing
Clebsch-Gordan series for pairs of low-order irreduciblasd to Appendix 1 for details about
computing Clebsch-Gordan coefficients. We also plan to nzaget of precomputed coefficients
available on the web.

5 Approximate inference by bandlimiting

We approximate the probability distributioR(o) by fixing a bandlimitB and maintaining the
Fourier transform o’ only at irreduciblesy, . . . pg. We refer to this set of irreducibles s As on
the real line, smooth functions are generally well appr@tad by only a few Fourier coefficients,
while “wigglier” functions require more. For example, whéh= 3, 5 is the setpg, p1, p2, and
ps, Which corresponds to maintaining marginal probabilitdshe form P(o((i,7)) = (k,£)).
During inference, we follow the procedure outlined in theyious section but ignore the higher
order terms which are not maintained. Pseudocode for baitdd prediction/rollup and Kronecker
conditioning is given in Algorithm 6 and 6.

Since the Prediction/Rollup step is pointwise in the Faudemain, the update is exact for the
maintained irreducibles because higher order irredugibésnot affect those below the bandlimit.
As in [5], we find that the error from bandlimiting creeps imdbgh the conditioning step. For
example, Equation 7 shows thatif = 1 (so that we maintain first-order marginals), then the
pointwise product spreads information to second-ordegimals. Conversely, pairs of higher-order
irreducibles may propagate information to lower-ordeeducibles. If a distribution is diffuse,
then most of the energy is stored in low-order Fourier cdeffits anyway, and so this is not
a big problem. However, it is when the distribution is sharpbncentrated at a small subset
of permutations, that the Fourier projection is unable fthfally approximate the distribution,
in many circumstances, resulting in a bandlimited Fouriesin$form with negative marginal
probabilities! To combat this problem, we present a metlooehforcing nonnnegativity.

Projecting to marginal polytope The marginal polytopeM is the set of Fourier coefficients
which are doubly stochastic at the permutation represdentafe.g. rows and columns sum to one
and all entries are nonnegative)! can be described by a set of linear equalities which comstrai
a matrix of marginals to correspond to a legal Fourier tramsf and a set of linear inequalities
which constrain the marginals to be nonnegative. In thedirder caseM is exactly the set of all
doubly-stochastic matrices.

After each conditioning step, we apply a ‘correction’ to #gproximate posterioP(*) by finding
the bandlimited function in\ which is closest ta?(*) in an L, sense. To perform the projection,
we employ the Plancherel Theorem [3] which relatesthelistance between functions éf) to a
distance metric in the Fourier domain.

Proposition 5. Zj:(f(”) _g(0)? = ﬁ zk:dkar <(ka _gpk)T. (fpg - gpk)) . (8)

We formulate the optimization as a quadratic program whegeobjective is to minimize the right
side of Equation 8, where the sum is taken only over the setaftained irreducibles3, and
subject to the set of constraints which describe the marginigtope.

We remark that even though the projection will produce a Eeodransform corresponding to non-
negative marginals, there might not necessarily existrd wiobability distribution orf,, consistent
with those marginals. In the case of first-order marginalgdver, the existence of a consistent joint
distributionis guaranteed by thBirkhoff-von Neumantheorem [10], which states that a matrix is
doubly stochasti@ and only if it can be written as a convex combination of permutation ivesr

6 Related Work

The Identity Management problem was first introduced in [B]al maintains a doubly stochastic
first orderbelief matrixto reason over data associations. Schumitsch et al. [4pig@ similar
idea, but formulated the problem in log-space.



Figure 1:Pseudocode for the Fourier Prediction/Rollup Algorithm.

PREDICTIONROLLUP e
foreach p, € Bdo P — Q). BV ;

Figure 2:Pseudocode for the Kronecker Conditioning Algorithm.

KRONECKERCONDITIONING
pdb Ll

foreach py, € B do [L<t>P<t>] < 0 /Nnitialize Posterior
Pk

/[Pointwise Product
foreach p; € B do
foreach p; € Bdo
z — CGseries(ps, pj) ;
Ci; — CGceoef ficients(pi, pj) ; Aij — C’E : (fp, ®§pj) -Clij;
for pix € B such thatz;;, # 0 do
for £ =1toz do o 0
[ L® P(O} - [Lu) p<t>] 4 TS AR AR is the (k, £) block of Ay
Pk Pk (o
7 — [L@ﬂ}
PO

foreach p,, € B do [L@”] — % [LW”] /INormalization
Pk Pk

Kondor et al. [5] were the first to show that the data assasigtroblem could be approximately
handled via the Fourier Transform. For conditioning, thepleit a modified FFT factorization
which works on certain simplified observation models. Ouprapch generalizes the type of
observations that can be handled in [5] and is equivalertiérsimplified model that they present.
We requireO(D3n?) time in their setting. Their FFT method saves a factobadue to the fact that
certain representation matrices can be shown to be spahseigi we do not prove it, we observe
that the Clebsch-Gordan coefficients,; are typically similarly sparse, which yields an equivalent
running time in practice. In addition, Kondor et al. do notleeks the issue of projecting onto the
marginal polytope, which, as we show in our experimentalltssis fundamental in practice.

Willsky [8] was the first to formulate a nonabelian versiontioé FFT algorithm (for Metacyclic
groups) as well as to note the connection between pointwigsdupts and Kronecker product
decompositions for general finite groups. In this paper, edress approximate inference, which is
necessary given thel complexity of inference for the Symmetric group.

7 Experimental results

For smalln, we compared our algorithm to exact inference on synthettasts in which tracks
are drawn at random to be observed or swapped. For validatiermeasure the distance to the
true distribution usingl, normalized byn!. As expected, the Fourier approximation is better
when there are either more mixing events (the fraction oflt@ming events is smaller), or when
more Fourier coefficients are maintained, as shown in Fig). 3(Ve also see in Fig 3(b) that the
Plancherel Projection step is fundamental, especiallymwhéing events are rare, reducing the
error by factors of about 3. Comparing running times, it &aclthat our algorithm scales gracefully
compared to the exact solution (Fig. 3(c)).

We also evaluated our algorithm on data taken from a realar&taf 8 cameras (Fig. 3(d)). In the
data, there are = 11 people walking around a room in fairly close proximity. Tankée the fact
that people can freely leave and enter the room, we mainthsh @f the tracks which are external
to the room. Each time a new track leaves the room, it is adoldket list and a mixing event is
called to allow form? pairwise swaps amongst the external tracks.

The number of mixing events is approximately the same asuhgper of observations. For each
observation, the network returns a color histogram of thub kdssociated with one track. The
task after conditioning on each observation is to predienities for all tracks inside the room,
and the evaluation metric is the fraction of accurate ptemis. We compared against a baseline
approach of predicting the identity of a track based on thestmecently observed histogram
at that track. This approach is expected to be accurate wiere are many observations and
discriminative appearance models, neither of which oublera afforded. As Figure 3(e) shows,



ithm iterations

IS

w

0.006]

N

Running time in seconds

g 8

average error over 500 timesteps
average error over 500 timesteps

o5 Lx 5o s G

03 05 07
fraction of conditioning events

1 03 o
fraction of conditioning events

(a) Without Projection (b) With Projection (c) n versus Running Time

:

w/o Projection

w &
5 8

&

20|

% Tracks correctly Identified

5

o

fl
W .
b

(d) Sample Image (e) Accuracy for Camera Data

Figure 3:Evaluation on synthetic ((a)-(c)) and real camera network ((d)d@&pg.

both the baseline and first order model(without projectian¢d poorly, while the projection step
dramatically boosted the accuracy. To illustrate the difficof predicting based on appearance
alone, the rightmost bar reflects the performance ddraniscientracker who knows the result of
each mixing event and is therefore left only with the taskisfidguishing between appearances.

8 Conclusions

We presented a formulation of hidden Markov model inferéndbe Fourier domain. In particular,

we developed the Kronecker Conditioning algorithm whichfgrens a convolution-like operation

on Fourier coefficients to find the Fourier transform of thatpdor distribution. We argued that
bandlimited conditioning can result in Fourier coefficenthich correspond to no distribution,
but that the problem can be remedied by projecting to the imalrgpolytope. Our evaluation

on data from a camera network shows that our methods outperiell when compared to the

optimal solution in small problems, or to an omniscientkexdn large problems. Furthermore, we
demonstrated that our projection step is fundamental taioibg these high-quality results.

We conclude by remarking that the mathematical framewovkld@ed in this paper is quite general.
In fact, both the prediction/rollup and conditioning forkations hold over any finite group, provid-
ing a principled method for approximate inference for peof$ with underlying group structure.
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