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Figure 1: Dense correspondence between articulated objects obtained with the proposed unsupervised loss, optimized on

a single (unlabeled) example. Our method is compared with the state-of-the-art supervised network pre-trained on human

shapes, as well as with two axiomatic methods, employing a post processing algorithm [49] on the axiomatic results. See

Section 5.1 for more details. Correspondence is visualized by colors mapped from the leftmost reference shape.

Abstract

We introduce the first completely unsupervised corre-

spondence learning approach for deformable 3D shapes.

Key to our model is the understanding that natural deforma-

tions, such as changes in pose, approximately preserve the

metric structure of the surface, yielding a natural criterion

to drive the learning process toward distortion-minimizing

predictions. On this basis, we overcome the need for an-

notated data and replace it by a purely geometric crite-

rion. The resulting learning model is class-agnostic, and

is able to leverage any type of deformable geometric data

for the training phase. In contrast to existing supervised ap-

proaches which specialize on the class seen at training time,

we demonstrate stronger generalization as well as applica-

bility to a variety of challenging settings. We showcase our

method on a wide selection of correspondence benchmarks,

where the proposed method outperforms other methods in

terms of accuracy, generalization, and efficiency.

1. Introduction

The problem of finding accurate dense correspondence

between non-rigid shapes is fundamental in geometry pro-

cessing. It is a key component in applications such as de-

formation modeling, cross-shape texture mapping, pose and

animation transfer to name just a few. Dense deformable

shape correspondence algorithms can be broadly catego-

rized into two families. The first can be referred to as

axiomatic or model-based for which a certain geometric

assumption is asserted and pursuit for by some numerical

scheme. Modeling assumptions attempt to characterize the

action of a class of deformations on some geometric quan-

tities commonly referred to as descriptors. Such geometric

quantities often encode local geometric information in the

vicinity of a point on the shape (point-wise descriptors) such

as normal orientation [47], curvature [37], and heat [45] or

wave [6] propagation properties. Another type of geometric

quantities are the global relations between pairs of points

(pair-wise descriptors), which include geodesic [21, 14, 4],

diffusion [17, 12] or commute time [50] distances. Given a

pair of shapes, a dense map between them is sought to min-

imize the discrepancy between such descriptors. While the

minimization of the point-wise discrepancies can be formu-

lated as a linear assignment problem (LAP) and solved ef-

ficiently for reasonable scales, the use of pair-wise descrip-

tors leads to a quadratic assignment problem (QAP) that is
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unsolvable for any practical scales. Numerous approxima-

tions and heuristics have been developed in the literature to

alleviate the computational demand of QAPs.

The second family of correspondence algorithms is data-

driven and takes advantage of modern efficient machine

learning tools. Instead of axiomatically modeling the

class of deformations and the geometric properties of the

shapes of interest, these methods infer such properties from

the data themselves. Among such approaches are learn-

able generalizations of the heat kernel signature [31], as

well as models interpreting correspondence as a labeling

problem [41]. Other recent methods generalize CNNs to

non-Euclidean structures for learning improved descriptors

[35, 10]. A recent method based on extrinsic deformation

of a null-shape was introduced in [23]. A common denom-

inator of these approaches is the supervised training regime

– they all rely on examples of ground truth correspondences

between exemplar shapes.

A major drawback of this supervised setting is the fact

that in the case of 3D shape correspondence the ground truth

data are scarce and expensive to obtain. For example, de-

spite being restricted to a single shape class (human bodies),

the MPI FAUST scanning and labeling system [8] required

substantial manual labor and considerable financial costs.

In practice, labeled models are expected to be just a small

fraction of the existing geometric data, bringing into ques-

tion the scalability of any supervised learning algorithm.

1.1. Contribution

We propose an unsupervised learning scheme for dense

3D deformable shape correspondence based on a purely

geometric criterion. The suggested approach bridges be-

tween the model-based and the data-driven worlds by learn-

ing point-wise descriptors that result in correspondences

minimizing pair-wise geodesic distance distortion [21, 14].

The unsupervised loss is intimately related to the spec-

tral generalized multidimensional scaling [4] model. The

correspondence is solved by functional maps framework

[36], totally avoiding the computational burden of the pair-

wise methods. The point-wise descriptors are learned on a

surrogate task, only approximately characterizing the real

data, which deviate from the asserted isometric deforma-

tion model. Still, the method shows excellent generalization

capabilities exceeding the supervised counterparts without

ever seeing examples of ground truth correspondences. To

the best of our knowledge, this is the first unsupervised ap-

proach applied to the geometric shape correspondence prob-

lem.

A major advantage of the proposed framework is when

the data themselves are scarce, in extreme conditions we

might have only one pair of shapes that we would like to

match and we do not have a training dataset that contains

similar shapes. While a supervised scheme depends on a

relatively large amount of labelled data to deduce a general-

izing model, with the unsupervised network we can simply

optimize on a single pair of shapes that by itself contains

two training samples, one in each direction of the corre-

spondence. Our experiments required only a few iterations

that take just a couple of minutes to run. As a result we

obtain an accurate matching between the shapes, see Fig-

ure 1. For a trained network the inference phase takes less

than a second. We believe that this strategy has its own

merits as a replacement of the existing computationally ex-

pensive methods that are based on pair-wise descriptors.

The framework can be interpreted as a fusion between the

previously proposed generalized multidimensional scaling

(GMDS) [4, 14] and the FMNet network architecture [28].

Here we use the discretization of the pair-wise geodesic dis-

tance distortion, as suggested in [4] and justified in [34].

2. Background

2.1. Minimum distortion correspondence

We model shapes as Riemannian 2-manifolds X
equipped with a distance function dX : X × X → R in-

duced by the standard volume form dx. An isometry is a

map π : X → Y satisfying, for any pair x1, x2 ∈ X :

dX (x1, x2) = dY(π(x1), π(x2)) . (1)

Correspondence seeking approaches optimize for a map

π satisfying the distance preservation criterion (1). In

practical applications, only approximate realizations of an

isometry are expected; thus, one is interested in finding a

distortion-minimizing map of the form

π∗=argmin
π:X→Y

∫∫

x1,x2∈X

(dX (x1, x2)− dY(π(x1), π(x2)))
2
dax1

dax2

(2)

In the discrete setting, we assume manifolds X ,Y to be

represented as triangle meshes sampled at n vertices each.

Minimum distortion correspondence takes the form of a

quadratic assignment problem (QAP), where the minimum

is sought over the space of n × n permutation matrices.

Several studies have tried to reduce the complexity of this

QAP at the cost of getting an approximate solution via sub-

sampling [46, 39], hierarchical matching [14, 51, 38, 20] or

convex relaxations [3, 16]. However complicated to solve,

the minimum distortion criterion (2) is axiomatic and does

not require any annotated correspondences, making it a nat-

ural candidate for an unsupervised learning loss.

2.2. Descriptor learning

A common way to make the optimization of (2) more ef-

ficient is by restricting the feasible set to include only poten-

tial matches among points with similar descriptors. By do-

ing so, one shifts the key difficulty from optimizing a highly
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non-linear objective to designing deformation-invariant lo-

cal point descriptors. This has been an active research goal

in shape analysis in the last few years, with examples in-

cluding GPS [42], heat and wave kernel signatures [45, 6],

and the more recent geodesic distance descriptors [44]. In

3D vision, several rotation-invariant geometric descriptors

have been proposed [47, 25]. Despite their lack of invari-

ance to isometric deformations, the adoption of extrinsic

descriptors has been advocated in deformable settings [40]

due to their locality and resilience to boundary effects.

Handcrafted descriptors suffer from an inherent draw-

back of requiring manual tuning. Learning techniques have

thus been proposed to define descriptors whose invariance

classes are learned from the data. Early examples include

approaches based on decision forests and metric learning

[31, 41, 19]; more recently, several papers have proposed

an adaptation of deep learning models to non-Euclidean do-

mains, achieving dramatic improvement. In [33, 10, 35]

learnable local filters were introduced based on the notion

of patch operator. In [28] a task driven approach was taken

instead, where the network learns descriptors which excel

at the task at hand in a supervised manner. As we will show

in the sequel, our approach replaces the penalty of the latter

model with the one optimized for in the SGMDS model [4],

completely removing the need for supervision.

2.3. Functional maps

The notion of functional map was introduced in [36] as

a tool for transferring functions between surfaces without

the direct manipulation of a point-to-point correspondence.

Let F(X ),F(Y) be real-valued functional spaces defined

on top of X and Y respectively. Then, given a bijection

π : X → Y , the functional map T : F(X ) → F(Y) is a

linear mapping acting as

T (f) = f ◦ π−1 . (3)

The functional map T admits a matrix representation with

respect to orthogonal bases {φi}i≥1, {ψi}j≥1 on X and Y
respectively, with coefficients C = (cij) calculated by

T (f) =
∑

ij

〈φi, f〉 〈Tφi, ψj〉
︸ ︷︷ ︸

cji

ψj . (4)

While the functional maps formalism makes no further

requirements on the chosen bases, a typical choice is the

Laplace-Beltrami eigenbasis, where the justification for the

optimality of this choice can be found in [2]. Truncating

these series to k coefficients, one obtains a band-limited ap-

proximation of the functional correspondence T . Specifi-

cally, the map

P : x 7→
∑

i,j

cjiφi(x)ψj , (5)

also referred to as a soft map, will assign to each point

x ∈ X a function concentrated around y = π(x) with some

spread.

To solve for the matrix C, linear constrains are derived

from the knowledge of knowingly corresponding functions

on the two surfaces. Corresponding functions are functions

that preserve their value under the mapping T . Given a pair

of corresponding functions f : X → R and g : Y → R

with coefficients f̂ = {〈φi, f〉}i and ĝ = {〈ψj , g〉}j in

the bases {φi} and {ψj} respectively, the correspondence

imposes the following linear constraint on C

ĝ = Cf̂ . (6)

Each pair of such corresponding functions is translated into

a linear constraint.

Suppose there exists an operator receiving a shape X and

producing a set of descriptor functions on it. Let us further

assume that given another shape Y , the operator will pro-

duce a set of corresponding functions related by the latent

correspondence between X and Y . In other words, apply-

ing the above operator on the said pair of shapes produces

a set of pairs of corresponding functions (fi, gi), each pair

comprising fi defined on X and gi on Y . We stack the cor-

responding coefficients f̂ i and ĝi into the columns of the

matrices F̂ and Ĝ. The functional map matrix C is then

given by the (least squares, or otherwise regularized) solu-

tion to the system

Ĝ = CF̂. (7)

Thus, the requirement for specific knowledge of the point-

to-point correspondence is replaced by the relaxed require-

ment of knowledge about functional correspondence.

2.4. Deep functional maps

A significant caveat in the above setting is that, unless

the shapes X and Y are related by a narrow class of defor-

mations, it is very difficult to construct an operator produc-

ing a sufficient quantity of stable and repeatable descriptors.

However, such an operator can be learned from examples.

The aim of the deep functional maps network (FMNet) in-

troduced in [28] was to learn descriptors which, when used

in the above system of equations, will induce an accurate

correspondence. At training time, FMNet operates on in-

put descriptor functions (e.g. SHOT descriptors), and im-

proves upon them by minimizing a geometric loss that is

defined on the soft correspondence derived from the func-

tional map matrix. The differentiable functional map layer

(FM), solves the equation (7), with the current descriptor

functions in each iteration.

The network architecture described in [28] consists of 7
fully-connected residual layers with exponential linear units

(ELU) and no dimentionality reduction. The output of the

residual network is a dense vector-valued descriptor. Given
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Figure 2: Deep Functional Maps network architecture [28]

two shapes X and Y , the descriptors are calculated on each

shape using the same network, and are projected onto the

corresponding truncated LBO bases. The resulting coeffi-

cients are given as an input to the functional map (FM) layer

that calculates the functional map matrix C ∈ R
k×k ac-

cording to (7). The following correspondence layer (Corr)

produces a soft correspondence matrix P ∈ R
nY×nX out of

the functional map matrix C,

P = |ΨCΦTA|‖·‖. (8)

Where we denoted the number of vertices on the discretized

shapes as nX and nY , and the diagonal matrix A normalizes

the inner products with the discrete area elements of X . The

absolute value and the L2 column normalization, denoted

by ‖·‖, ensure that the values of p2ji can be interpreted as the

probability of vertex j on shape Y being in correspondence

with vertex i on X . We denote the element-wise square of

P by Q = P◦P, with ◦ standing for the Hadamard product.

Treating the i-th column of Q, qi, as the distribution on

the points of Y corresponding to the point i on X , we can

evaluate the expected deviation from the ground truth cor-

respondence π∗(i). This is expressed by the second-order

moment

Ej∼qi
d2Y(j, π

∗(i)) =
∑

j∈Y

qjid
2
Y(j, π

∗(i)). (9)

where dY(j, π
∗(i)) is the geodesic distance on Y between

the vertex j and the ground truth match π∗(i) of the vertex

i on X . As usual, this moment comprises a variance and a

bias terms; while the former is the result of the band-limited

approximation (due to the truncation of the basis), the latter

can be controlled. Averaging the above moment over all

points on X leads to the following supervised loss

ℓsup(X ,Y) =
1

|X |

∑

i∈X

∑

j∈Y

qjid
2
Y(j, π

∗(i))

=
1

|X |
‖P ◦ (DYΠ

∗)‖
2

F , (10)

where DY denotes the pairwise geodesic distance matrix

evaluated for each shape at the pre-processing stage, and

Π∗ is the ground truth permutation relating between the

shapes. The batch loss is the sum of ℓsup(X ,Y) for all

the pairs in the minibatch. Training an FMNet follows

the standard Siamese setting commonly used for descrip-

tor or metric learning, in which two copies of the network

with shared parameters produces the descriptors on X and

Y . From this perspective, the functional map and the soft

correspondence layers are parts of the Siamese loss rather

than of the network itself.

3. Unsupervised deep functional maps

The FMNet achieves state-of-the-art performance on

standard deformable shape correspondence benchmarks as

shown in [28]. However, one can argue that the supervised

training regime is prohibitive in terms of the amount of the

manually annotated data required.

The main contribution of this paper is replacing supervi-

sion by pointwise correspondences with standard geometric

quantities that do not require annotations, as formulated in

[4].

As mentioned before, human pose articulation can be

modeled as approximate isometries, that is, the latent cor-

respondence introduces little metric distortion. If two ver-

tices were at some geodesic distance on the source shape,

after mapping by the correct correspondence, the distance

between corresponding points on the target domain is pre-

served.

Let P be the output of the soft correspondence layer of

an FMNet; as before, its squared elements qji = p2ji are

interpreted as probability distributions on Y . In these terms,

the ji-th element of the matrix QTDYQ

(QTDYQ)ji =
∑

m,n

p2mip
2
njdY(m,n) (11)

represents the expected distance on Y between the images

of the vertices i, j ∈ X under the soft correspondence P.

This allows to define the following unsupervised loss

ℓuns(X ,Y) =
1

|X |2

∥
∥
∥DX −QTDYQ

∥
∥
∥

2

F
. (12)

The batch loss is the sum of ℓuns(X ,Y) for all the pairs

in the minibatch. This loss measures the L2 geodesic dis-

tance distortion and can be interpreted as the soft correspon-

dence version of the SGMDS loss, see [4]. Note that rather

than solving the QAP directly, we propose to train an FM-

Net using ℓuns, which promotes the network to generate de-

scriptors for which the resulting soft correspondence min-

imizes the expected pairwise distance distortion. The un-

supervised loss model thereby shares a common theoretical

framework with the spectral generalized multidimensional

scaling (SGMDS) model. Note, that for the unsupervised

loss the whole optimization could have been executed in

the spectral domain, as suggested by the SGMDS model
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[4]. In that case the Corr module in the FMnet architecture

presented in Fig. 2 could have been avoided. We plan to

explore such architectures in the future.

From the unsupervised perspective all the shapes in the

world could constitute a training set. Since the network is

ground-truth independent and general to any class of shapes

it is expected to improve when new shapes are encoun-

tered. The strict train-test separation applied in the super-

vised regime can be followed in the unsupervised regime

depending on the settings; If the training set is representa-

tive enough to generalize the test set, the network can learn

on the training set and infer on the test set, reducing the pro-

cessing time per shape. On the other hand, for a non repre-

sentative training set, the network can improve the learned

model by processing the test shapes as well. Learning could

in fact be executed even at inference time, as demonstrated

in 5.1. For the FAUST scans [7], for example, the authors

provide a training set with ground-truth labeling and a dis-

joint unlabeled test set. While the unsupervised scheme has

access to the same data, contrarily to the supervised coun-

terpart, it can leverage the unlabeled test shapes to improve

the prediction accuracy.

4. Implementation

We implemented our network in TensorFlow [1], run-

ning on a GeForce GTX 1080 Ti GPU. Data preprocessing

and correspondence refinement were done in Matlab. We

provide a link to the code in the supplementary material.

4.1. Pre­processing

To enable mini-batches of multiple shapes to fit in mem-

ory, each shape in the training set was remeshed to between

n ∼ 5K and 7K vertices , by edge contraction [22]. For

each remeshed shape k ∼ 70 − 150 LBO eigenfunctions

were calculated as well as a 352-dimensional SHOT de-

scriptor [43], using 10 bins and a SHOT radius roughly

chosen to 5% of the maximal pairwise geodesic distance.

Geodesic distance matrices D were estimated using the fast

marching method [27]. These quantities constitute the input

to the network.

4.2. Network architecture and loss

For a more direct and fair comparison, we adopted the

same network architecture as FMNet presented in Fig. 2.

The input for each pair of shapes is their n × k truncated

LBO bases Φ and Ψ , the n× n pairwise distance matrices

DX and DY , and the n×352 SHOT descriptor fields. These

are fed to a 7-layer residual network [24] outputting 352-

dimensional dense descriptor fields F and G on X and Y
respectively, which can be thought of as non-linearly trans-

formed variants of SHOT. The computed descriptors are

then input to the functional map layer, yielding a functional

map matrix C according to (7), followed by a soft corre-

spondence layer producing the stochastic correspondence

matrix P as per Eq. (8). Finally, the unsupervised loss is

calculated according to Eq. (12). While in FMNet the loss

is calculated on a random sub-sampling of the vertices, we

found that this strategy introduces inaccuracies to the de-

scriptor coefficients in the LBO basis; When sub-sampling

is used, the network evaluates an estimate of the projection

coefficients, which quickly becomes inaccurate for descrip-

tors with high-frequency content. To avoid this, in our im-

plementation we perform the projection at full resolution

while decreasing the size of the mini-batch to 4–5 pairs of

shapes per mini-batch. In all our experiments we used no

more than a few thousand (3K–10K) mini-batch iterations.

4.3. Post­processing

Point-wise map recovery. Following the protocol of FM-

Net, we apply the product manifold filter (PMF) [49], to

improve the raw prediction of the network, in the full

synthetic shapes settings. We found the geodesic ker-

nel less effective when topological noise exists, e.g. real

scans. Additionally, PMF is not well suited to partiality.

PMF algorithm takes noisy matches as input, and produces

a (guaranteed) bijective and smoother correspondence of

higher accuracy as output. The application of PMF boils

down to solving a series of linear assignment problems

argmaxΠt〈Πt,KXΠt−1K⊤
Y 〉F , where Πt ranges over the

space of permutations, and KX ,K
⊤
Y are kernel matrices

acting as diffusion operators. We refer to [49] for additional

details.

Upscaling. Since we operate on remeshed shapes, we fi-

nally apply an upscaling step to bring the correspondence

back to the original resolution. Again, we follow the proce-

dure described in FMNet [28], namely we solve a functional

map estimation problem of the form

Cup = argmin
C

‖CF̂up − Ĝup‖2,1 , (13)

where F̂up, Ĝup contain the LBO coefficients (in the full

resolution basis) of delta functions supported at correspond-

ing points, extracted from the low resolution map C. The

ℓ2,1 norm (defined as the sum of ℓ2 norms of the columns)

allows to down-weight potential mismatches.

5. Experiments

5.1. Learning to match a single pair

Before delving into training on large datasets, we begin

our experimental section with testing one extreme of the

shape matching problem: single input pair. Clearly, this

is the native environment for classical, non-learning based

methods. While learning-based methods have endowed us
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with better solutions given large train sets, they are not

equipped to handle entirely novel examples. We demon-

strate that the unsupervised network can be utilized as an

ad-hoc solver for a single pair, producing excellent results,

while initialized with random weights. Fig. 1 shows our un-

processed network result on a pair of shapes made by an

artist. Note that the ground-truth labeling is not provided

and therefore a supervised learning-based method can not

be fine-tuned on the input pair. Instead we compare with

the unprocessed predictions of FMNet pre-trained on hu-

man shapes from FAUST. Additionally, we compare with

two axiomatic methods [4, 36], using the same number of

LBO eigenfunctions (150) and applying the post processing

procedure described in 4.3 on the axiomatic results. While

our method exhibit superior performance, axiomatic meth-

ods runtime exceeded one hour. Conversely, optimizing our

network took about 15 minutes. Furthermore, had we been

given an additional deformation of the same shape to solve

for, any axiomatic method would have to solve the prob-

lem from scratch. Differently, as our method had already

learned to convert the pair-wise optimization problem to a

descriptor matching problem, inference would take about

one second! See the supplementary material for fast infer-

ence experiment.

5.2. Faust synthetic

In this experiment we compare our unsupervised method

and its supervised counterpart in the same settings. We

show that (a) optimizing for the unsupervised loss results

in a correlated decrease of the supervised loss; (b) the un-

supervised method achieves the same accuracy as the su-

pervised one. For training our network, we used Faust syn-

thetic human shapes [7] and followed the same dataset split

as in [28] where the first 80 shapes of 8 subjects are used

for training, and a disjoint set of 20 shapes of 2 other sub-

jects is used for testing. Each training mini-batch contained

4 shape pairs in their full resolution of 6890 vertices. We

used the same parameters as in [28], namely, k = 120
eigenfunctions and ADAM optimizer with a learning rate

of α = 10−3, β1 = 0.9, β2 = 0.999 and ǫ = 10−8. We

used 3K training mini-batches. Note that, as in [28], since

we train on shape pairs the effective train set size is 6400.

Loss function analysis. Fig. 3 displays the unsupervised

loss during the training process (top), alongside with the su-

pervised loss (bottom). Importantly, the unsupervised net-

work had no access to ground truth correspondence. From

the graphs, it can be observed that while the optimization

target is the unsupervised loss, the supervised loss is de-

creased as well. This demonstrates nicely that when our

underlying assumption of (quasi-) isometric deformations

holds, one can replace the expensive supervision altogether

with a single axiomatic-driven loss term.

Figure 3: Unsupervised loss (left axis) and supervised loss

(right axis) measured during the unsupervised training pro-

cess, in logarithmic scale.

Figure 4: Unsupervised and supervised network results,

evaluated on synthetic Faust intra-subject test pairs.

Figure 5: Synthetic Faust texture transfer. Four right models

show the predicted matching from the reference model.

Performance comparison. To compare our results with the

supervised network, we followed the same training scheme,

this time using the supervised loss. We used the 20 test

shapes to construct a test dataset of 400 pairs in total; 200
of which are intra-subject pairs, and the other 200 are inter-

subject pairs (Note that the matching is directional from

source to target, hence this set is not redundant). The intra-

subject pairs, are well modeled by isometry while the inter-

subject pairs exhibit deviation from isometry. Fig. 4 com-

pares the results for the 200 intra-subject test pairs and

Fig. 5 visualizes the calculated correspondences between

intra- as well as inter-subject test pairs. Additional visu-

alization is available in the supplementary material.
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5.3. Real scans

Traditionally, axiom-based methods were proven useful

only in the Computer Graphics regime. One of our goals

in introducing learned descriptors is to demonstrate the ap-

plicability of our method to real scanned data. To this

end, we make use of FAUST real scans benchmark. These

are very high-resolution, non-watertight meshes, many of

which contain holes and topological noise. We used the

whole scanned data in the benchmark. The scans were

down-sampled to a resolution of 7K vertices. For each

scan the distance matrix was calculated, as well as 352-

dimensional SHOT descriptors and k = 70 LBO eigenfunc-

tions. Each training mini-batch contained 4 pairs of shapes.

We trained our network for 10K iterations. The raw net-

work predictions were only upscaled but not refined with

PMF, as explained in 4.3. Quantitative results were evalu-

ated through the online evaluation system. With an average

and worst case scores of 2.51 cm and 24.35 cm, respec-

tively, on the intra challenge, our network performs on par

with state of the art methods that do not use additional data;

namely, FMNet (2.44, 26.16), and Chen et al. [16] (4.86,

26.57). We perform slightly below the recent 3D-CODED

method [23] (1.98, 5.18) which uses an additional augmen-

tation of over 200K shapes at training. The same method,

when not using additional data achieves worse results by a

factor of ≈ 9. For completion, we also trained the network

in the same settings, using only the train-set. We noticed

a minor change in the performance: [Average error: slight

deterioration to 2.82 cm instead of 2.51 cm; maximum er-

ror: slight improvement to 20.64 cm instead of 24.35 cm],

keeping the result on-par with FM-Net.

5.4. Generalization

Having an unsupervised loss grants us the ability to train

on datasets without given dense correspondences, or even

to optimize on individual pairs. Both methods were demon-

strated in the previous experiments. In this subsection, how-

ever, we would like to pose a different question: what has

our network learned by training on a source dataset, and to

which extent this knowledge is transferable to a target one.

Transferability between training domains is a long-standing

research area that has recently re-gained lots of interest, yet

it hasen’t been explored as much in the shape analysis com-

munity. In the scope of this work we focus on transferring

from either the synthetic or scanned FAUST shapes to the

either (a) human shapes form Dynamic-FAUST, (b) human

shapes form SCAPE, and (c) Animal shapes from TOSCA.

We show the prediction of the networks that were trained

with Faust synthetic or scanned data, evaluated on (a,b,c),

without using train samples from these datasets.

Dynamic FAUST is a recent very large collection of human

shapes [8], including various sequences of activities. While

the shapes are triangulated in the same way as our train set

of synthetic FAUST, they significantly differ in pose and ap-

pearance. Fig. 8 shows excellent generalization to this set,

suggesting that the small set of 80 synthetic FAUST shapes

were sufficient to capture the pose and shape variability. For

additional visualizations see the supplementary material.

SCAPE [5] also comprises human shapes only. Yet, we’ve

witnessed a quite poor performance using the network

trained on synthetic FAUST. By the same reasoning behind

the former result, the network might have learned to special-

ize on synthetic connectivity. To circumvent this, we have

tested the network trained on scans, that demonstrate differ-

ent meshes. Indeed Figure 7 displays good generalization.

TOSCA dataset [15] includes various animal shapes. Im-

pressively, the network trained on human scans shows very

good performance without ever seeing a single animal shape

at train time. In Fig. 9 we compare with several axiomatic

models and with a supervised network [41] trained sepa-

rately on each animal category and show comparable results

before pre-processing, and near-perfect results after.

5.5. Partial correspondence

Partial shape correspondence is a notoriously hard prob-

lem, and techniques that aim at solving it often require spe-

cial care [29, 40, 30]. That said, in this experiment we

tested the performance of our method under extreme par-

tiality conditions as is, namely, without any modification

to our network. To this end, we used the challenging “dog

with holse” class from [18]. We trained the network on a

small set of 10 partial shapes, and evaluated the results 26
test shapes. The network results are shown in Fig. 6. We

found that the mismatches occur typically near the bound-

ary of the partial shape. The reason might be the distortion

of the SHOT descriptor in these regions.

6. Discussion and conclusions

The main message of the paper is that a properly de-

signed unsupervised surrogate task can replace massive la-

beling. While we advocate the pure unsupervised approach

as a replacement to the supervised one, the two can also be

combined in a semi-supervised learning scheme. While we

demonstrate that the minimization of geodesic distance dis-

tortion achieves good generalization on a variety of bench-

marks, local scale variation and topological changes can

challenge the classic model and require a proper adapta-

tion. In future studies, we intend to investigate training

tasks based on the preservation of more general scale- and

conformal-invariant pair-wise geometric quantities, as well

as topological properties, e.g. by utilizing pairwise diffu-

sion distances, see e.g. [12]. The proposed network ex-

hibits surprisingly high performance on partial correspon-

dence tasks, even though the functional map layer is not
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Figure 6: Comparisons on the SHREC’16 benchmark [18] (dog class) for partial matching of deformable shapes. We

demonstrate results in line with partial functional maps [40], the current state of the art for this problem. The partial shapes

shown on the right are matched to the reference; corresponding points have similar color.
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Figure 7: Generalization on SCAPE. For fair comparison,

we show our network prediction without PMF refinement.
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Figure 8: Generalization experiments on Dynamic FAUST.

We render the network predictions with PMF refinement.

explicitly designed to treat partial data. Extending it to the

partial setting based on the recently introduced partial func-

tional map formalism [40, 29] and its relation to previous

explicit efforts [13] will be the subject of further investiga-

tion. Finally, we would like to explore additional descriptor
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Figure 9: Generalization on TOSCA. We show our network

prediction before (dashed curve) and after (solid) PMF re-

finement. The rendered visualization is before refinement.

fields with enhanced properties like increased sensitivity to

symmetries, increased robustness to partiality and non rigid

deformations. This paper presents a first attempt to create a

fully unsupervised learning framework to solve the funda-

mental problem of non rigid shape correspondence. We be-

lieve that the fusion of axiomatic models and deep learning

is a promising direction that makes it possible to accommo-

date the expected future growth of 3D data.
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[40] E. Rodolà, L. Cosmo, M. M. Bronstein, A. Torsello, and

D. Cremers. Partial functional correspondence. In Computer

Graphics Forum, volume 36, pages 222–236. Wiley Online

Library, 2017. 3, 7, 8
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