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Figure 1: Learning a shared semantic space from multiple annotated databases enables to retrieve and classify objects across
different modalities, including 3D-shapes, text, images, and user scribbles.

Abstract
In this paper, we propose a new method for structuring multi-modal representations of shapes according to seman-
tic relations. We learn a metric that links semantically similar objects represented in different modalities. First,
3D-shapes are associated with textual labels by learning how textual attributes are related to the observed geom-
etry. Correlations between similar labels are captured by simultaneously embedding labels and shape descriptors
into a common latent space in which an inner product corresponds to similarity. The mapping is learned robustly
by optimizing a rank-based loss function under a sparseness prior for the spectrum of the matrix of all classi-
fiers. Second, we extend this framework towards relating multi-modal representations of the geometric objects.
The key idea is that weak cues from shared human labels are sufficient to obtain a consistent embedding of related
objects even though their representations are not directly comparable. We evaluate our method against common
base-line approaches, investigate the influence of different geometric descriptors, and demonstrate a prototypical
multi-modal browser that relates 3D-objects with text, photographs, and 2D line sketches.

Categories and Subject Descriptors (according to ACM CCS):
Computer Graphics [I.3.5]: Computational Geometry and
Object Modeling—Curve, surface, solid, and object repre-
sentations; Artificial Intelligence [I.2.10]: Vision and Scene
Understanding—Shape Image Processing and Computer Vi-
sion [I.4.8]: Scene Analysis—Object recognition

Keywords: multi-modal learning, object recognition, col-
laborative filtering, 3D-shape descriptors, semantic corre-
spondences, object retrieval

1. Introduction

As digital sensors have become ubiquitous and the internet
gives us access to enormous quantities of information, struc-
turing and understanding data has become one of the big
challenges of modern computer science. Computer graphics
is no exception: Within the past decade, data-driven methods
have become a central research focus. A lot of effort has re-
cently been made [SMKF04, ATC∗05, MGGP06, RES∗06,
LG07, KHS10, vKZHCO11, WBU11, KFLCO13, HSS∗13,
ARS13, HFL14] to structure large data bases of images and
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3D-models in order to extract information for the analysis
and synthesis of shapes, images, and other media.

Our paper addresses the problem of relating geometric
shapes to each other and to alternative representations (pho-
tos, 2D sketches, textual labels) of themselves. To this end,
we learn a common similarity metric for multi-modal repre-
sentations, linked by weak human labeling such as semantic
tags in data bases. We proceed in two conceptual steps:

First, we consider the problem of learning to relate 3D
shapes with each other based on weak textual labels. Weak
labeling means that objects have been tagged with lists of
keywords (for example, “car”, “sports car”, “fast”, “old”,
“vintage”) that capture human semantic categories. Labels
might be redundant (e.g., synonyms, different languages),
noisy (e.g., imprecise, overly generic, mistakes), and par-
tially related (such as “cars” and “sport cars”). Our objective
is to learn the similarity of shapes to each other (and thereby
also to the associated labels).

We employ recent ideas from image understanding and rec-
ommendation systems [RS05, LF08, LFEF09, WBU11] to
address this multi-class learning problem. Instead of learn-
ing separate classifiers for each class label, we assume that
classifiers can be linearly combined from a more compact,
lower-dimensional space of basis classifiers. Implicitly, this
retrieves similarities between related labels and shapes and
extracts more information from the training data. This can
also be viewed as an instance of a collaborative filter-
ing technique, as used originally in recommendation sys-
tems [SK09] to discover hidden correlations in sparsely sam-
pled data. Technically, labels and shape descriptors are mod-
eled as points that are embedded into a common space with
the objective of nearest neighbors representing the most sim-
ilar objects. Embedding is performed using a linear projec-
tion matrix, and a penalty on its trace-norm encourages in-
formation sharing.

In a second step, we extend this framework towards learning
similarities in multi-modal object representations (3D geom-
etry, photographs, and 2D sketches, all annotated with sparse
and weak textual labels). Again, the different types of ob-
jects and labels are embedded as points in a common space
with the objective of agreeing on the available labels. The
resulting embedding provides a metric to relate objects of
different modalities, which can be used for browsing, query-
ing, and navigating the dataset.

The rationale for this design is that most data bases natu-
rally come with weak (noisy/unreliable) label sets, but these
are most often not accurate enough to directly navigate the
data. Our approach merely uses this noisy information to cal-
ibrate similarity measures of the geometric and visual data
itself. Such data provides richer information than the label
sets, but misses semantic information. By combining both
sources of information we can structure the data even though
a direct comparison of the different modalities would be very

difficult. Further, after learning from weakly labeled data,
new, unlabeled objects can be understood using the learned
geometry/appearance-based classifiers.

We evaluate our approach on three different benchmark
datasets (Princeton shape benchmark, a collection of Trim-
ble 3D Warehouse models, and the “LabelMe” dataset
[RTMF07]), and study the influence of a large selection of
geometric descriptors on the obtained performance. Further-
more, we show that the proposed learning-based approach
is competitive with a carefully hand-crafted design for ex-
plicit cross-modal matching [ERB∗12], yielding an interest-
ing, generic alternative for associating geometric data with
non-geometric attributes and representations. We also pro-
vide a prototypical cross-modal object-retrieval application
for browsing data bases.

In summary, our paper makes the following contributions:
First, we propose and evaluate a scalable system for jointly
learning annotations of 3D-shapes with multiple correlated
labels. This part transfers ideas from related disciplines,
which, to the best of our knowledge, have not been applied
before in the context of 3D geometry. Second, we generalize
the uni-modal approach to multi-modal structuring of data,
specifically text labels, images, 2D sketches, and 3D-shapes,
providing a simple and generic way of associating geometry
with various other representations.

2. Related Work

Relating shapes has recently received a lot of interest. Di-
rect shape matching [vKZHCO11] is well understood for
classes of shapes that are related by fixed groups of map-
pings, such as extrinsic or intrinsic isometries. In con-
trast, relating shapes of similar semantics or functionality is
much more difficult and requires more invariant shape rep-
resentations [TV08]. Similar to several previous systems,
our method employs bags-of-features [LSP06, MGGP06,
LG07, BBGO11, LBBC14] to characterize shapes glob-
ally by building histograms of local descriptors. As lo-
cal descriptor, we use an adaptation of the very success-
ful histograms of oriented gradients [Low04, DT05] to
3D-shapes, where image gradients are replaced by geo-
metric crease lines [MFK∗10, SKVS13, KBWS13, STS14,
RMHM14, SX14]. The descriptor design can easily be var-
ied; we evaluate performance on a larger set of alternative
descriptors.

“Semantic” similarity is subjective and often application-
dependent; therefore, machine-learning is required to adapt
the notion of similarity to the user’s intent. In our case,
we assume that large quantities of weakly labeled data is
available, as typically provided by online repositories. Here,
labels are not mutually exclusive but semantically corre-
lated, and our goal is to utilize this to improve performance
(i.e., not using simple one-vs-all classifiers [FCH∗08]). In
3D-shape analysis, this has not yet been attempted, but a
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number of methods have been proposed for image clas-
sification [FEHF09, FEH10]. One approach is collabora-
tive filtering [SK09]: By assuming that the classifiers can
be represented within a dimensionality-reduced subspace,
sharing and utilizing of semantic similarity is encouraged;
this can be formulated implicitly by a sparseness prior on
the singular value spectrum of the matrix of all classifiers
[RS05,LF08,LFEF09]. We base our method on an extension
of the method of Weston et al. [WBU11] that combines this
idea with stochastic large-margin ranking [CB04]. We were
also inspired by the extension described in [WBH11] that, in
the context of music retrieval, structures different types of la-
bels (artist, genre, etc.). Different from this, our method uses
only one class of labels but links different data modalities.

Kleiman et al. [KFLCO13] propose a method for computing
a dynamic shape layout for browsing shape repositories. Fo-
cusing on exploration, it does not aim at providing a globally
consistent metric. Further, their approach is single modal and
based on direct geometric similarity. Huang et al. [HSS∗13]
introduce quartet analysis from bio-informatics for structur-
ing data that cannot be described by a global metric but rely
on local similarity.

Sketch-based retrieval is a specific example of cross-modal
data matching: Eitz et al. [ERB∗12] use perceptually
weighted light field descriptors and contour rendering to en-
able a direct comparison of geometry and image data. Learn-
ing can improve performance [ST14]; our approach is dif-
ferent as we do not learn a direct regression function from
sketches to geometry but rather aim at a label-guided co-
embedding of multiple modalities, which offers more flexi-
bility in integrating various representations without relating
all pairs of types and permits utilizing label correlation in-
formation. Aubry et al. [ARS13] propose a method for align-
ing paintings with geometry by learning the most discrimi-
native features that can be matched reliably across modal-
ities. This idea is orthogonal to our embedding approach.
The same holds for utilizing additional cues, such as con-
text [XMZ∗14].

3. Correlated Discriminative Features

3.1. Feature Detection

As usual, we first transform local pieces of geometry into a
more invariant representation by feature vectors. We exam-
ine a variety of choices to assess the influence on our frame-
work. We use the established spherical harmonics [KFR03]
and light-field descriptors [CXPYTO03, ERB∗12]. Further,
we add two implementations of the more recent class of
descriptors based on histograms of differential properties
[ZBVH09, SKVS13, KBWS13, RMHM14, STS14, SX14].
These have shown excellent invariance properties at still
high specificity by focusing on salient creases/gradients and
using spatial and orientational histograms to achieve local

Figure 2: Multi-scale feature detection for 3D-shapes using
“histograms of oriented curvature (HOC)”. We determine
curvature vectors at multiple levels of detail as analogs to
image gradients. (signed curvature vectors – green: positive
curvature, red: negative).

deformation invariance. Below, we further detail our imple-
mentation for reproducibility.

Histograms of Oriented Curvature (HOC): This descrip-
tor is based on crease lines [KBWS13]: We assume that we
are given a point cloud with oriented normals and sample
spacing ε (triangle meshes are converted into point clouds
via Poisson-disc sampling). We then approximate a smooth
surface via quadratic moving-least-squares and estimate a
local, average tangent frame (with normal n) and the aver-
age curvature tensor [CP05], from which we obtain a di-
rection of maximum principal curvature t1 and its magni-
tude κ1. We convert this information into curvature vectors
κ1(n× t1) that serve as an analog of 2D-image gradients for
3D-surfaces. We now project the curvature vectors into an
average tangent plane and collect orientation statistics with 8
orientation bins and 4×4 spatial bins (see Fig. 3), each with
an edge length of 5ε as described in detail in [KBWS13].
We ignore the direction of the curvature vectors (i.e., em-
ploy binning modulo 180◦) because normal directions are
usually unreliable in generic 3D data bases. For capturing
information in different frequency bands and for obtaining
scale-invariant matching, we employ a multi-scale frame-
work (Fig. 2). We downsample the point cloud repeatedly
(using a Gaussian window for anti-aliasing), enlarging ε by
a constant factor of γ (in practice, we use 5 levels, γ = 1.5).
The result is a set of scale-annotated descriptors. Note that
our HOC descriptor can be regarded as a specialized version
of the MeshHOG descriptor [ZBVH09].

Histogram of Oriented Normals (HON): We obtain a sec-
ond variant by replacing curvature vectors with surface nor-
mals [STS14], keeping the rest of the descriptor design un-
changed. HON descriptors can distinguish flat surfaces from
empty space. Edges and corners, on the other hand, obtain
less weight. HON descriptors are targeted towards shapes
with coarse, possibly smooth feature structures, while HOC
descriptors appear more suitable for relief-like structures
(such as architecture/façades).
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Figure 3: HOC descriptors accumulate curvature orienta-
tion in the tangent plane of a surface, employing coarse spa-
tial (4× 4) and orientational (8 fold modulo 180◦) binning
for invariance.

Figure 4: Example 3D data with noisy and correlated
labels showing a subset for label “bike” from Trimble
3D WarehouseTM.

3.2. Correlated Classifiers and Attributes

We turn our attention towards the problem of learning an
association between multiple weak and correlated textual la-
bels and 3D geometry. This is done by optimizing the place-
ment of labels and objects in a joint, latent Euclidean space
such that the dot product of feature vectors of similar objects
is maximized. We use a ranking objective that aims at mak-
ing pairs with a high dot product consistent. As regularizer,
we impose a soft constraint on the dimension of the joint
space, encouraging sharing of information between different
classes of labels and avoiding overfitting.

3.2.1. Input and Preprocessing

Training data: First of all, we assume that we are given
a training set of objects with comprehensive annotations,
as shown in Figure 4. We validate the results on a test set,
where annotations are hidden to the algorithm. For now, we
restrict ourselves to 3D-meshes and postpone the discussion
of other modalities to Section 4. In our experiments, we use
3D-meshes from a large collection of objects from Trim-
ble 3D WarehouseTM (abbr. “WH”) as well as the smaller
set of labeled shapes from the Princeton Shape Benchmark
[SMKF04] (“PSB”). Annotations are taken from the labels
provided by the data base. In case of WH the annotations are
numerous and rather noisy and we initially filter rare labels
if they show up less than 10 times in the entire dataset. We
also assume that models have a consistent upward orienta-
tion. Abstractly, we denote the 3D-models as n separate 3D
point sets S1, ...,Sn ⊂ R3.

Figure 5: The key idea of the employed collaborative multi-
task learning approach is to compute an embedding of labels
(left) and descriptors (right) into a common latent space. The
inner product in the latent space reflects semantic similarity.

Annotations: The training data is annotated with a total of m
labels y j ∈ Yall (the terms “label” and “annotation” are used
synonymously). We denote the list of annotations of sample
Si by Yi. To simplify the notation later on, we represent each
single label y j by a binary vector, i.e., y j ∈ Rm, where the
jth entry equals 1 and the rest is set to zero.

Descriptors: For each 3D-model Si, we compute our dense
HOC-descriptors at different scales by first subsampling Si
with sample spacing 2.5ε (which is the Nyquist-frequency
matching the spatial binning of the histograms). At each
sample point, we center our HOC-descriptor, using the aver-
age surface normal and the fixed upward orientation to com-
pute a local reference frame that fixes the rotational align-
ment. We denote the set of all descriptors by D and that of a
given training sample by Di.

Bag-of-features: We convert the sets Di into bags-of-
features by the standard procedure of performing k-means
clustering (with k ≈ 500) and building histograms of near-
est neighbors to the centroids. Additionally, we weight the
clusters by the inverse of their sizes following the term
frequency-inverse document frequency principle. We denote
the resulting k-dimensional frequency vectors by xi where
‖xi‖2 = 1.

3.2.2. Learning Algorithm

We learn m linear classifiers w j :Rk→R that detect whether
a descriptor x ∈ Rk is likely to carry the label y j, j = 1, ..,m.
The detector acts like a linear support vector machine, i.e.,
given a descriptor x, the score is just obtained by a scalar
product with the classifier vector

score j(x) =
〈
w j,x

〉
(1)

We use W to denote the m× k matrix of all classifiers,
stacked row-wise. The main idea now is to interpret the
mapping from classifiers to annotations as an embedding
in a joint, latent space, in which the labels are positioned
with their inner products reflecting their semantic similar-
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ity. Correspondingly, descriptors are also mapped into the
same space, and those that are indicative of a certain seman-
tic label are embedded to similar directions of the space (see
Fig. 5 and Fig. 6). Formally, we factor W into two parts:

W = UT V (2)

The right handed matrix V maps descriptor vectors x into the
latent space, and U maps labels y into the same space. With
this, we have 2 linear mappings U and V that together consti-
tute the classifier ensemble W =UTV . This can be viewed as
mapping labels y and features x to a unified semantic space

y∗← U ·y and x∗← V ·x, (3)

respectively (in the following, superscript stars indicate vec-
tors in the latent semantic space). In particular, we can mea-
sure the “semantic” similarity f (x,y) between labels y and
our features x using the similarity measure d(y∗,x∗) in the
latent space (see Fig. 5). In our paper, we define the similar-
ity measure d(·, ·) in the latent space as d(y∗,x∗) = 〈y∗,x∗〉.
This induces a function f (·, ·) in the original space:

f (x,y) = d(x∗,y∗) (4)

=
〈
y∗,x∗

〉
= yT UT Vx = yT Wx. (5)

Having setup a recognition model, we now address the prob-
lem of learning it from training data. We employ an objective
function

Etrain(W) = ED(W)+ER(W) (6)

that we seek to minimize in order to find optimal classifiers.
The energy consists of two parts, a loss function ED(W) that
penalizes bad alignment of the classification results with the
available training data, and a regularizer ER(W) that defines
the learning model and controls overfitting.

Regularization: The key ingredient is a regularization term
that tries to keep the latent semantic space low-dimensional.
Intuitively, we want the matrix W to have low rank, which
forces the individual classifiers to share information. A
straightforward choice would be to consider the squared
Frobenius norm ‖W‖2

F of W, which penalizes the squares of
the singular values of W, thereby spreading out the spectrum
of W rather than encouraging low-rank solutions. A better
choice is to penalize the L1-norm of the singular values of
W (trace norm), which aims at creating a sparse spectrum,
preferring fewer larger singular values over many smaller
ones. This is equivalent to constraining the squared Frobe-
nius norm of the factors U,V [RS05]:

ER(W) =
1

2C
(‖U‖2

F +‖V‖2
F ) (7)

This collaborative filtering approach exploits the correlation
in the label classification and enables to learn latent labels
that have not been modeled explicitly in the feature descrip-
tor x. Such a didactic example is shown in Fig. 6 where col-
ored fruit images were learned with 2D HOG features that
have no notion of color in the descriptor. Nevertheless, due

to the high correlation in the fruits and colors the multi-task
learning was able to cluster colors and fruits in a meaningful
way (e.g., “yellow”, “banana”).

Loss function: Assume that we are given l pairs of labeled
training data (xi,yi)i=1..l , where xi denotes the descriptor
and yi a label for this descriptor that has been observed in the
annotations of one of the example models. We now define
a data loss function ED(W) that penalizes deviation from
the training annotations. One option at this point is to use
a simple square loss or, more effectively, the max-margin
hinge loss (as in a support vector machine) to train a linear
classifier W [RS05, LF08, LFEF09]. However, it has been
shown [WBU11] that learning a rank-optimized linear clas-
sifier that favors a high precision at a few top-ranked data
samples rather than optimizing the average precision over
the entire training dataset outperforms these baseline classi-
fiers for large datasets with many labels. We use this idea for
multi-class learning with ranking and consider sets of labels
Y per data sample, i.e., (xi,Yi)i=1..l . However, to simplify no-
tation in the following derivations we will restrict ourselves
to only one label yi ∈ Yi. The energy we want to minimize
over all training data using the rank-loss is given by:

ED(W) =
1
l

l

∑
i=1

Lr(rank(xi,yi)), (8)

where rank ∈ [0, ..,m) gives the position of the similarity
score f (xi,yi) corresponding to ground-truth label yi in the
list of all m scores (Wxi) sorted in descending order. Intu-
itively, we measure whether the correct labels of the training
data show up in the top detections when ranking them by
their detector score. Formally, we can write:

rank(x,y) = ∑
yk 6=y

I ( f (x,yk)> f (x,y)) , (9)

where I is the indicator function. Lr transforms this rank
non-linearly into a loss such that precision is optimized at
the top ranks:

Lr(k) :=
∫ k+1

1

1
x

dx = ln(k+1) (10)

Importantly, errors among the first entries of the ranked list
are penalized relatively high compared to ranking errors fur-
ther on in the list, which makes it robust against outliers.

In [WBU11] Eq. (8) was changed to a continuous max-
margin formulation where the indicator function in Eq. (9)
is replaced by the continuous hinge-loss
h(x,y,yk) = max(0,1− f (x,y)+ f (x,yk)) resulting in

E+
D (W) =

1
l

l

∑
i=1

Lr(rank(xi,yi)) ∑
yk 6=yi

h(xi,yi,yk)

rank(xi,yi)
. (11)

Eq. (11) still contains non-differentiable terms and is in-
efficient to solve in a gradient based optimization scheme
since for each sample (xi,yi) we need to sum over all pos-
sible labels yk 6= yi. However, [WBU11] have shown how
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to use an unbiased randomized sampling algorithm to ef-
ficiently approximate the function and overcome this defi-
ciency. We randomly draw (with replacement) a label ŷ 6= y
with h(x,y, ŷ) > 0, which has a probability 1/rank(x,y) or
zero if rank(x,y) = 0. The number of random trials n̂ needed
to find a violating label ŷ follows a geometric distribution
where the success probability of each trial is p =

rank(x,y)
m−1

with m− 1 being the number of all labels excluding y.
Hence, the rank can be estimated as

rank(x,y)≈ m−1
n̂

, (12)

since the expectation for the number of Bernoulli trials n̂ to
find ŷ is E[n̂] = 1/p. To this end, we can sample a data pair
(x,y) and a violating label ŷ and get an estimate for Eq. (11)
with contribution

Lr

(
m−1

n̂

)
h(x,y, ŷ). (13)

Based on this loss-estimate, we minimize our objective
Etrain(W) with stochastic gradient descent (SGD), which of-
ten yields a good generalization performance [BB08] and
has been shown to be computational more efficient than
traditional linear SVMs for large scale learning [WBU11,
FGMR10, WdW10].

Figure 6: Multi-task rank-loss training in a 2D latent space
for a didactic dataset consisting of 100 images with 9 labels
showing colorful fruits. Red dots represent labels, black dots
the images mapped into this latent space. Lines link images
to their top-ranked label (green: correctly labeled, purple:
otherwise). The inset: the initial latent space; large image:
the converged space after 15.000 SGD iterations – semanti-
cally related labels cluster naturally in this space; top right
image: label correlation matrix, bottom right image: aver-
age rank-error after each SGD iteration.

For performing SGD we need to compute a sub-gradient
with respect to our model parameters W = UT V for a sin-
gle random sample (xi,yi) with a contribution computed by
Eq. (13). The sub-gradient with respect to U and V of the

non-differentiable hinge-loss h is

∂h
∂U

(x,y, ŷ) =

{
(ŷ−y) · (Vx)T if h(x,y, ŷ)> 0,
0 else

∂h
∂V

(x,y, ŷ) =

{
U(ŷ−y) ·xT if h(x,y, ŷ)> 0,
0 else

(14)

This approach is a margin perceptron, which has been shown
to be equivalent to linear SVMs [CB04].

Finally, generalizing the previous derivations to multiple la-
bels per sample is straight-forward and in summary each sin-
gle SGD iteration consists of only a few simple steps:

• uniformly sample a training pair (xi,Yi)

• sample a label yi ∈ Yi

• sample with rejection a label ŷ 6∈ Yi with h(xi,yi, ŷ) > 0

• compute the rank-loss estimate Lr

(
m−|Yi|

n̂

)
(Eq. (10))

• compute the sub-gradient of∇Etrain(W) using Eq. (14) weighted
by the rank-loss estimate

• perform gradient descent on U and V with fixed learning rate τ.

An example of the convergence results of our SGD learning
algorithm is shown in Fig. 6 and in the accompanying video.

In practice, a single SGD iteration can still be costly and
we sample the data in small random batches (xi,Yi)i=1..b
of size b = 32 running in parallel rather than a single ran-
dom example, which reduces the variance in the rank es-
timate and results in better approximations to the real gra-
dient. We also experimented with a “soft”-rank estimate
Lr

(
m−|Yi|

n̂ (1−ρ(yi, ŷ))
)

taking into account the initial label

correlation ρ(y, ŷ) ∈ [−1, ..,1] in the annotation of the train-
ing data. However, on our benchmarks we did not observe a
significant improvement in the retrieval performance.

4. Cross-Modal Embedding and Retrieval

Our supervised learning so far considered only labeled 3D-
shapes. We now extend the method to handle images and line
drawings. After that, we describe how we can learn a joint
space of multi-modal data objects.

4.1. Image Data

For handling images, we use the same algorithmic frame-
work. We only have to adapt the descriptors. For pho-
tographs, we use standard histogram of oriented gradient
(HOG) features as introduced by Dalal and Triggs [DT05].
We use 6× 6 HOG cells with 16 orientational bins, operat-
ing on gray-scale gradients. We compute dense descriptors
sliding a window on the regular pixel grid and build bags of
features as discussed before, with a dictionary size of 512 k-
means clusters. In addition, we use a global, tiny 5×5 pixel
color image in order to capture color and rough image lay-
out. We employ these descriptors for photographs from the
Labelme dataset [RES∗06].
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For line drawings (scanned 2D scribbles), we use the same
principle setup with slightly different parameters (4×4×8)
and dropping the color image.

4.2. Multi-Modal Embedding

The latent-space embedding makes it possible to learn the
corresponding object mapping V (Section 3.2.2) jointly for
different modalities. For example we are able to learn a map-
ping Vimg for images and V3D for 3D-shapes simultaneously
where we use the common annotation as the glue to ensure
that images and 3D-shapes that are semantically similar are
also mapped in a similar direction in the shared latent space.
Interestingly, this scheme not only allows for using com-
pletely different descriptors x for each modality, but bene-
fits from sharing semantic labels across modalities, which,
due to correlation with other common labels, are automati-
cally transferred. For example, the labels green and leaves
that we find as best matches for a 3D-shape query of a tree,
do not exist in our Trimble 3D Warehouse dataset, but only
in the image-based Labelme dataset. The only change to the
learning procedure described in Section 3.2.2 required is to
randomly alternate between the different modalities at each
SGD step of the optimization. Interactive cross-modal re-
trieval results can be seen in the accompanying video. An
extension to other modalities such as text-documents, sound,
etc., is easily possible (relying only on suitable descriptors);
this is left for future work.

5. Results

We evaluate the classification and retrieval performance of
our method on different benchmarks (statistics are shown in
Table 1 and precision-recall curves are shown in Figs. 7,8,9).
Specifically, we have tested on the Princeton 3D-Shape
Benchmark (PSB) [SMKF04], on a custom 3D-shape bench-
mark consisting of 1939 objects obtained by searching the
Trimble 3D WarehouseTM (WH) for 34 different keywords.
For our cross-modal retrieval, we use the popular Labelme
image dataset [RTMF07]. It contains densely labeled high-
resolution color-images and provides the shape and loca-
tion of semantic objects within the images that we ignore in
our evaluation. The scribbles dataset is a small collection of
line-drawings (black and white images) that we have drawn
and annotated ourselves for the purpose of demonstration
(Fig. 12). For a quantitative assessment, we compare against
the benchmark of Eitz et al. [ERB∗12].

5.1. Relating Shapes

Base-line methods: We first compare our approach to com-
mon baseline classification tools. We begin with linear sup-
port vector machines (Linear SVM) [FCH∗08], trained in
a discriminative one-versus-all setting, thereby not utilizing

Dataset Type Size |Y | |Yi| Descriptor
Princeton Shape
Bench. [SMKF04]

3D meshes 907+907 114 2.4 BoW(512):
HON(4,4,8)

Trimble
3D WarehouseTM

3D meshes 1155+784 308 6 BoW(512):
HOC(4,4,8)

Labelme
[RTMF07]

photos 18538
+18500

767 4.9 BoW(512):
HOG(6,6,16)
+ Color(5,5)

Scribbles line-
drawing

374 24 1.8 BoW(256):
HOG(4,4,8)

Table 1: Datasets used in our evaluation: Type, size (num-
ber of training + test objects), total number of label cate-
gories |Y |, average number of labels per object |Yi|, feature
descriptor (parameters: number of words; number of spatial
and rotational bins; color has no rotational binning).
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Figure 7: Precision-recall curves for PSB and WH
datasets. Methods are: our latent-space rank-loss model
(Rank Loss) described in Section 3.2.2, one-versus-all linear
SVM [FCH∗08] with optimized hyper-parameter C (Linear
SVM), and a linear SVM however with a latent space em-
bedding (Hinge Loss). The latent space dimension is 128.

feature sharing via the common latent space. For the ex-
periment, we optimize the hyper-parameter C of the base-
line SVMs using a grid-search with cross-validation. We
also validate the proposed design by simplifying the indi-
vidual steps: In particular, we test our log-based rank-loss
(Rank Loss) in Eq. (11) against a max-margin L1-loss (Hinge
Loss), which ignores the rank and is conceptually similar
to traditional collaborative filtering techniques for multi-
task learning used in recommendation systems [RS05,LF08]
rather than [WBH11]. The quantitative results (precision-
recall curves) computed for the proposed HOC-descriptor
(Sec. 3.1) are shown in Fig. 7 for the two 3D-shape re-
trieval benchmarks, PSB and WH. Since the PSB con-
tains relatively “clean” 3D-meshes with hierarchically or-
ganized labels (e.g., f urniture→ seat → chair) the meth-
ods using feature sharing clearly outperform the one-versus-
all SVMs in Fig. 7(a). However, using the rank-optimized
loss only marginally improves the performance compared
to the simpler hinge-loss. In particular, the top-prediction
(precision@1) is nearly the same for the rank-loss and the
hinge-loss. In contrast, the quality of the WH dataset varies
strongly, making it difficult for multi-class classification
methods. Here, due to noise and outliers the effect of ro-
bustly optimizing the top-ranked objects is very important
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Figure 8: The effect of the 2 configurable parameters on
the precision-recall for the Trimble 3D WarehouseTM Bench-
mark.

and clearly visible in Fig. 7(b): for small recall the test pre-
cision of our model trained with a log-rank loss is relatively
high compared to the baseline methods.

Computational efficiency: One interesting property of our
algorithm is its scalability with respect to data base and an-
notation size. Due to the rank-loss and the low-dimensional
embedding our learning algorithm can effectively cope with
many labels where the performance of common multi-class
(e.g., one-versus-all) classifiers deteriorates quickly. Further,
the run-time complexity at test time is lower than for linear
one-versus-all classifiers since the latent space dimension
can be lower than the total number of labels, leading to rela-
tively few matrix-vector multiplications. In our experiments,
we obtain interactive query performance on a desktop PC
(see video). The training time is in the order of a few minutes
for smaller datasets (Princeton or Trimble 3D Warehouse)
but may take up to one hour for large datasets with many
labels (e.g., Labelme), which is comparable to other large-
scale learning algorithms such as linear SVMs [FCH∗08].
However, the core algorithm is very easy to implement and,
in addition, requires little memory in contrast to k-nearest
neighbor classifiers and one-versus-all SVMs, in particular
kernel SVMs.

Parameters: Our model needs the following parameters: the
latent space dimension d, the regularization parameter C, the
learning rate τ of the stochastic gradient descent (SGD). Like
for standard SVMs, the most sensitive parameter is the reg-
ularization parameter C, which controls the amount of fit-
ting of the model to the training data (the greater the higher
the risk of overfitting). The influence of C on the classi-
fication performance for the Trimble 3D Warehouse test-
dataset is shown in Fig. 8(b). As a rule of thumb, a value
of C = 2 works well in our experiments. The latent space
dimension parameter d is less critical than C and values of
d ∈ [100, ..,200] give near optimal results for our datasets
as shown in Fig. 8(a). For d > 250 test performance starts
to drop since we lose the advantage of feature sharing –
an important property for good generalization performance.
However, further experiments with ensemble models that lin-
early combine several trained linear models of different di-
mensions [WBU11] may still give a significant performance
boost. As in [WBU11] the learning rate τ of the stochas-
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Figure 9: The discriminative power of various 3D descrip-
tors tested on (a) the Princeton shape benchmark (PSB) and
(b) our Trimble 3D WarehouseTM benchmark.

tic gradient descent was set empirically – we used a con-
stant value of τ = 0.1 in all our tests. Experiments with data-
adaptive learning rates and a decaying rate τ ∝ 1/t did not
improve our results but yielded much slower convergence.

Descriptors: We compare different 3D shape descriptors
(see Sec. 3.1) with respect to their prediction performance
within our algorithm. Particularly, we test the rotation-
invariant spherical harmonics descriptor (SH) [KFR03], the
light-field descriptor (LF) [CXPYTO03], and our HOC and
HON descriptors computed at different scales that are sim-
ilar to the MeshHOG descriptor [ZBVH09]. Results are
shown in Fig. 9. For all descriptors we use a bag-of-feature
approach to generate a final single histogram from the lo-
cally computed descriptors for each 3D model. Local LF
descriptors are generated by densely sampling view points
on the model’s bounding sphere. The SH descriptors are
computed at bandwidth b = 16 for 5 concentric spherical
shells with centers sampled uniformly across the 3D model.
The HOC and HON descriptors are computed as described
in Sec. 3.1. LF descriptors show high precision values on
the PSB dataset, due to the discriminative silhouette ren-
derings obtainable from the PSB models. Because of many
low-res., locally planar 3D models HON descriptors perform
slightly better than HOC descriptors, while SH descriptors
yield much lower precision overall – perhaps due to the lost
orientational information. On the WH dataset we found that
HOC and HON descriptors give the best results. HOC de-
scriptors yield a better precision for the top label, whereas
HON descriptors perform slightly better for the lower-rank
predictions. Due to many complex models in this dataset, the
silhouette-based LF descriptors perform slightly worse.

5.2. Cross-Modal Embedding

As a proof-of-concept we also evaluated our cross-modal re-
trieval performance on a publicly available benchmark for
sketch-based 3D shape retrieval [ERB∗12]. This benchmark
extends the Princeton Shape Benchmark (PSB) with a cor-
responding human-scribbled 2D-image sketch for each 3D
shape. Then, instead of text labels as queries, the sketches
are used to retrieve the best matching 3D shapes. For run-
ning the benchmark we precompute HON descriptors for all
3D shapes and HOG descriptors for the 2D scribble images
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Figure 10: This figure shows an excerpt of the results for automatic annotation of the Trimble 3D Warehouse test set using our
rank-based learning algorithm that was trained on 3D HOC bag-of-feature descriptors as described in Section 3.2.1. The 3 top
ranked predictions out of 308 label categories are shown in red in the top-right corner (top-left shows the ground-truth).

with parameters denoted in Table 1. Following [ERB∗12] we
also optimize the hyper-parameters on the training set of this
benchmark using a grid search with cross-validation, which
is shown in Fig. 11a. However, in contrast to [ERB∗12]
we do not optimize the hyper-parameters of the descriptors
but rather optimize the cross-modal embedding parameters
jointly for scribble and 3D shape descriptors given the com-
mon annotations in the PSB training data (see Sec. 4.2).
Since this benchmark was not prepared for learning a clas-
sifier/distance metric, approximately half of the labels (68
of 131) found in the test set do not appear in the training set
and therefore, can not be learned. By excluding the instances
"unseen" in the training set from the original benchmark we
obtain the retrieval performance shown by the green curve in
Fig. 11b. In addition, we modify the benchmark such that for
each label category in the test set there is at least one sam-
ple found in the training set, which results in the blue curve
in Fig. 11b. Please note that the performance of the origi-
nal method [ERB∗12] (red curve) is therefore not directly
comparable with our results and only plotted as a baseline.

5.3. Applications

We have applied our method to two scenarios: label sugges-
tion for sparsely annotated and noisy shape data bases like
Trimble 3D Warehouse, and cross-modal object retrieval
and data exploration.

Automatic Annotations for 3D-Object Databases

Since predictions on the PSB dataset are relatively good,
we show only results for 3D-object annotation on the noisy
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Figure 11: Cross-modal retrieval performance with scrib-
ble queries for the PSB dataset [SMKF04], based on the
benchmark from [ERB∗12]. (a) The color-coded contour
plot shows the area-under-curve (auc) of the precision-recall
curve for the top 20 retrieved meshes with varying regular-
ization parameter C and latent space dimension (dim). The
optimal setting is found at C = 1.5, dim = 46, which we used
to compute the precision-recall curves in (b).

Trimble 3D Warehouse dataset in Fig. 10. Due to noisy
labels and the lack of explicit context modeling in our
bag-of-feature descriptor, some results are wrongly labeled.
Nonetheless, in most cases at least one of the top three pre-
dicted labels recognizes the object category correctly. In
cases where this does not apply such as the model of a TV set
(middle image in the upper row of Fig. 10), the suggestions
are still plausible (the TV set is recognized as “computer”).

Given that the 3D Warehouse data is very noisy and the
method works fully unsupervised (given the downloaded
data), the results are already encouraging.

Cross Modal Retrieval

In Fig. 12, we show an example of the retrieval results for
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joint cross-modal learning of images (annotated photographs
from Labelme), 3D-shapes (Trimble 3D Warehouse), and
user scribbles (custom dataset). We have implemented a sim-
ple user interface that permits an interactive navigation of the
latent space (showing the current query in the middle and the
nearest neighbors in concentric arrangement; the size of the
results reflects the rank). Please also refer to the accompa-
nying video for an interactive demo. We also provide further
screenshots of interactive sessions in the supplemental ma-
terial. The nearest neighbor sets are predominantly match-
ing the category of the query objects but some mismatches
show up. For interactive browsing, this is no limitation. We
can also see how the results show objects that are related in
shape, appearance, or textual labeling, which gives us a nice
way of exploring the data space.

6. Conclusions and Future Work

We have presented a system for learning the assignment of
labels to 3D geometry by learning a low-rank classifier ma-
trix that recognizes similarities of labels through correlations
in shape. This permits information sharing across geometri-
cally similar objects as well as semantically related labels.
In experiments, we can clearly see an advantage in perfor-
mance over baseline methods that ignore this side informa-
tion. Moreover, we have generalized the idea of multi-label
classification through a low-dimensional latent space to ob-
tain a novel cross-modal embedding of objects. It can be
used for object retrieval across different modalities and for
interactive explorations of complex data spaces. To this end,
we also evaluated the performance of several 3D shape de-
scriptors for object retrieval when using a discriminatively
trained similarity metric.

In future work, we would like to extend our model to also
learn to localize 3D-shapes within larger 3D scenes, which
is particularly important for annotating and recognizing ob-
jects in 3D point clouds. Similar to object detection in im-
ages, this requires searching for “high-scoring” parts us-
ing a sliding-window approach or employing a constellation
model that explicitly learns the context of 3D-objects.

Acknowledgements

The research for this work was partially funded by the support
of grants NSF DMS 1228304, AFOSR FA9550-12-1-0372, ONR
MURI N00014-13-1-0341, a Google research award, and the Max
Planck Center for Visual Computing and Communication. The au-
thors would like to thank Bernt Schiele and Martin Bokeloh for dis-
cussions on the descriptor design.

References

[ARS13] AUBRY M., RUSSELL B., SIVIC J.: Painting-to-3D
model alignment via discriminative visual elements. ACM Trans-
actions on Graphics (2013). 1, 3

[ATC∗05] ANGUELOV D., TASKAR B., CHATALBASHEV V.,
KOLLER D., GUPTA D., HEITZ G., NG A.: Discriminative
learning of markov random fields for segmentation of 3d scan
data. In CVPR (2005). 1

[BB08] BOTTOU L., BOUSQUET O.: The tradeoffs of large scale
learning. Adv. in Neural Information Processing Systems 20
(2008). 6

[BBGO11] BRONSTEIN A. M., BRONSTEIN M. M., GUIBAS
L. J., OVSJANIKOV M.: Shape Google: Geometric words and
expressions for invariant shape retrieval. ACM Trans. Graph. 30
(February 2011). 2

[CB04] COLLOBERT R., BENGIO S.: Links between perceptrons,
mlps and svms. Proceedings of ICML (2004). 3, 6

[CP05] CAZALS F., POUGET M.: Estimating differential quanti-
ties using polynomial fitting of osculating jets. Computer Aided
Geometric Design 22, 2 (2005), 121 – 146. 3

[CXPYTO03] CHEN D.-Y., X.-P.TIAN, Y.-T.SHEN, OUHY-
OUNG M.: On visual similarity based 3d model retrieval. In
Proc. of Eurographics 22, 3 (2003), 223 – 232. 3, 8

[DT05] DALAL N., TRIGGS B.: Histograms of oriented gradients
for human detection. In Proc. Conf. Comp. Vision and Pattern
Recognition CVPR (2005), pp. 886 – 893. 2, 6

[ERB∗12] EITZ M., RICHTER R., BOUBEKEUR T., HILDE-
BRAND K., ALEXA M.: Sketch-based shape retrieval. ACM
Trans. Graph. (Proc. SIGGRAPH) 31, 4 (2012), 1–10. 2, 3, 7, 8,
9

[FCH∗08] FAN R.-E., CHANG K.-W., HSIEH C.-J., WANG X.-
R., LIN C.-J.: Liblinear: A library for large linear classification.
Journal of Machine Learning Research (2008). 2, 7, 8

[FEH10] FARHADI A., ENDRES I., HOIEM D.: Attribute-centric
recognition for cross-category generalization. In CVPR (2010),
pp. 2352–2359. 3

[FEHF09] FARHADI A., ENDRES I., HOIEM D., FORSYTH D.:
Describing objects by their attributes. In Proc. Conf. Comp. Vi-
sion and Pattern Recognition CVPR (2009), pp. 1778–1785. 3

[FGMR10] FELZENSZWALB P., GIRSHICK R., MCALLESTER
D., RAMANAN D.: Object detection with discriminatively
trained part-based models. IEEE Trans. on Pattern Analysis and
Machine Intelligence 32, 9 (2010), 1627–1645. 6

[HFL14] HUANG Z., FU H., LAU R. W. H.: Data-driven seg-
mentation and labeling of freehand sketches. ACM Transactions
on Graphics (Proceedings of SIGGRAPH Asia 2014) (2014). 1

[HSS∗13] HUANG S.-S., SHAMIR A., SHEN C.-H., ZHANG H.,
SHEFFER A., HU S.-M., COHEN-OR D.: Qualitative organiza-
tion of collections of shapes via quartet analysis. ACM Transac-
tions on Graphics 32, 4 (2013), 1–10. 1, 3

[KBWS13] KERBER J., BOKELOH M., WAND M., SEIDEL H.-
P.: Scalable symmetry detection for urban scenes. Computer
Graphics Forum (2013), 3–15. 2, 3

[KFLCO13] KLEIMAN Y., FISH N., LANIR J., COHEN-OR D.:
Dynamic maps for exploring and browsing shapes. Computer
Graphics Forum (Proceedings of SGP) (2013). 1, 3

[KFR03] KAZHDAN M., FUNKHOUSER T., RUSINKIEWICZ S.:
Rotation invariant spherical harmonic representation of 3D shape
descriptors. In Symposium on Geometry Processing (2003). 3, 8

[KHS10] KALOGERAKIS E., HERTZMANN A., SINGH K.:
Learning 3d mesh segmentation and labeling. ACM Trans.
Graph. 29, 3 (2010). 1

[LBBC14] LITMAN R., BRONSTEIN A., BRONSTEIN M.,
CASTELLANI U.: Supervised learning of bag-of-features shape

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

150



R. Herzog & D. Mewes & M. Wand & L. Guibas & H.-P. Seidel / LeSSS: Relating Multi-Modal Representations of 3D Shapes

Figure 12: Screenshots of our application for cross-modal shape retrieval. The user can interactively select a 3D-shape, image,
type a text query, or simply scribble a sketch and retrieves the highest ranked results from all modalities. Here, the query
data base consists of 3 modalities: images (Labelme dataset [RTMF07]), 3D-shapes from Trimble 3D Warehouse, and text
labels (union of datasets); or labels, 3D-shapes (Princeton Shape Benchmark [SMKF04]) and scribbles (center). Queries are
highlighted in the center and results are arranged as: the closer the result to the center the higher its rank (size of the bounding
box reflects its relevance). For more examples browse the supplemental material and watch the accompanying video material.
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