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Figure 1: The proposed approach takes a large set of shapes with sparseand noisy labels as input; it outputs cleaned and complete labels
for each shape, facilitating organization and search of theshape collection. Labeled chair sets are shown, with training shapes in orange.

Abstract

In this paper we consider the problem of classifying shapes within
a given category (e.g., chairs) into finer-grained classes (e.g., chairs
with arms, rocking chairs, swivel chairs). We introduce a multi-
label (i.e., shapes can belong to multiple classes) semi-supervised
approach that takes as input a large shape collection of a given cat-
egory with associated sparse and noisy labels, and outputs cleaned
and complete labels for each shape. The key idea of the proposed
approach is to jointly learn a distance metric for each classwhich
captures the underlying geometric similarity within that class, e.g.,
the distance metric for swivel chairs evaluates the global geometric
resemblance of chair bases. We show how to achieve this objective
by first geometrically aligning the input shapes, and then learning
the class-specific distance metrics by exploiting the feature consis-
tency provided by this alignment. The learning objectives consider
both labeled data and the mutual relations between the distance
metrics. Given the learned metrics, we apply a graph-based semi-
supervised classification technique to generate the final classifica-
tion results.

In order to evaluate the performance of our approach, we havecre-
ated a benchmark data set where each shape is provided with a
set of ground truth labels generated by Amazon’s MechanicalTurk
users. The benchmark contains a rich variety of shapes in a number
of categories. Experimental results show that despite thisvariety,
given very sparse and noisy initial labels, the new method yields
results that are superior to state-of-the-art semi-supervised learning
techniques.
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1 Introduction

Shape classification is a fundamental problem in shape analysis.
So far most existing works have focused on classifying shapes into
different high-level categories, e.g., cars, chairs, desks, etc. With
the emergence of large shape collections, however, even theshapes
within each category still exhibit significant variation. For exam-
ple, chair models from the Trimble 3D Warehouse contain dozens
of sub-classes, including chairs-with-arms, swivel chairs, rocking
chairs, etc. (See Figure1). Classifying shapes into these fine-
grained classes can benefit a variety of applications such asproduct
search, browsing and exploration of shape variability, andinterac-
tive shape modeling.

In this paper, we consider a semi-supervised problem setting, where
the given input is a set of man-made shapes together with associated
sparse and noisy labels (e.g., models from Trimble 3D Warehouse
and their associated text), and the output consists of cleaned and
complete labels for each input shape. This problem is particularly
challenging due to (1) relatively subtle geometric differences be-
tween different classes, (2) the availability of only very sparse and
often quite noisy labels, (3) the fact that each shape can be associ-
ated with multiple labels, and finally (4) the size of the problem, as
a shape collection will typically contain thousands of models.

The proposed approach addresses these challenges by combining
two simple ideas motivated from recent advances in geometrypro-
cessing and machine learning. First, inspired by current interest in
data-driven shape matching, [Kim et al. 2012; Huang et al. 2012;
Kim et al. 2013], we propose to align the input shapes of a given
category into a common space, thus implicitly generating a set of
correspondences between the shapes. This common space provides
us with a convenient framework in which to compare shapes, mak-
ing features across different shapes more consistent and compara-
ble. For example, the common space allows us to focus at particular
neighborhoods of that space and examine local shape variations
in those neighborhoods under appropriate similarity metrics. To
handle large datasets with high shape variability, we introduce a
scalable shape matching approach that is able to simultaneously
align many thousands of diverse shapes.
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Given the aligned shapes in this common space, a straightforward
approach for classification would be to train a classifier foreach
class, either jointly or independently. However, we found that the
performance of such approaches is rather unsatisfactory. This is
because, typically, a complex decision boundary has to be learned
in order to capture the large geometric variations and yet subtle
geometric similarities within each class, a task made harder to ac-
complish in the presence of sparse and noisy labels. This leads to
the second idea of the proposed approach, which combines distance
learning [Yang and Jin 2006], which is less sensitive to problematic
labels but does not directly produce classification results, and graph
based semi-supervised classification [Zhu 2006], which employs
unlabeled data to determine the decision boundaries but requires
high quality similarity graphs. Specifically, we first jointly learn a
distance metric for each class to capture its underlying geometric
similarity, e.g., that rocking chairs have similar bases. These dis-
tance metrics are then used to construct a similarity graph for each
class, on which we finally perform graph-based semi-supervised
classification— and we do so jointly over all classes.

We have created a benchmark dataset to evaluate the proposedtech-
nique. The benchmark consists of three categories of shapes: cars,
chairs, and airplanes, all selected from the Trimble 3D Warehouse.
Each category has 2K-6K models, dozens of fine-grained classes, as
well as ground-truth labels provided by human experts. We ran the
proposed pipeline on sparse labels associated with the input shapes.
Experimental results show that the above approach generates results
that are superior to state-of-the-art semi-supervised classification
methods. We also compared each step of the proposed approach
with various alternatives to verify and support our design decisions.

2 Background and Prior Work

2.1 Computer Graphics and Vision

3D shape classification.Shape classification has been studied ex-
tensively in the past. We refer the reader to [da Fontoura Costa and
Cesar Jr. 2009] as a standard reference for this topic. When classi-
fying large shape collections, most existing works have focused on
computing meaningful global shape descriptors (see e.g., [Osada
et al. 2002; Kazhdan et al. 2003; Chen et al. 2003]). These global
descriptors have proven to be successful for classifying and differ-
entiating shapes from different categories, e.g., chairs and airplanes.
However, they are less effective in classifying shapes within the
same category, where shapes are typically distinguished bysubtle
partial or local geometric features.

For shape collections of moderate size, Xu et al. [2010] introduced
an unsupervised method for classifying a shape collection into
groups of different styles, where shapes in each group are geomet-
rically similar after appropriate part scaling. Recently,Kalogerakis
et al. [2012] introduced a probabilistic part-based shape grammar
for the purpose of synthesizing new shapes. The shape grammar
encodes each shape part using a type set, which consists of parts of
different shapes. These type sets are learned from the inputshapes
in an unsupervised manner. In contrast to these two techniques, we
focus on a different problem, whose goal is to classify shapes into
human-recognizable fine-grained classes.

Fine-grained classification of images.We note that fine-grained
classification/categorization has been popular in the computer vi-
sion community in the last few years (e.g., [Loeff et al. 2009; Yao
et al. 2011; Deng et al. 2013] and the references therein). The key
idea of these approaches is to learn class specific features,which
classify the instances of each class. The major difference in our
approach is that we learn class specific distance metrics, which are

more robust against noisy and sparse labels. The classification is
performed as a separate process. In addition, the representation of
3D shapes is very different from images, and color and texture-
based methods do not immediately transfer to 3D geometry. Onthe
other hand, we believe that a 3D approach, which can utilize more
complete information about objects, has the potential to generate
better results than image-based techniques.

Shape matching.Matching multiple shapes is fundamental prob-
lem in geometry processing. Despite some recent advances [Huber
2002; Crandall et al. 2011; Kim et al. 2012; Huang et al. 2012; Kim
et al. 2013] on this topic, we found that it is extremely difficult to
obtain high-quality correspondences among a shape collection of
thousands of shapes. Our approach modifies existing approaches
so that they become scalable and effective on large shape collec-
tions. Specifically, we introduce a reduced affine transformation
model in which the MRF formulation described in [Crandall et al.
2011; Huang et al. 2012] can be applied to globally match large
collections of man-made objects. For the local alignment ofmul-
tiple shapes [Huber 2002], we introduce an objective function that
admits an efficient alternating optimization.

2.2 Machine Learning

Semi-supervised learning. Semi-supervised learning addresses
the case where the labeled data is sparse. We refer to [Zhu 2006]
for a survey on this topic and to [Fergus et al. 2009; Liu et al. 2012]
for some recent advances. Roughly speaking, semi-supervised
techniques fall into two categories: inductive or transductive [Zhu
2006]. Inductive methods typically extend their supervised counter-
parts to incorporate unlabeled data. In contrast, transductive meth-
ods focus on the input database by propagating labels from labeled
data to unlabeled data. Most transductive methods are graph-based,
where the propagation naturally happens along graph edges.

Very recently, Wang et al. [2012] introduced semi-supervised learn-
ing to the graphics community. They developed a shape segmen-
tation framework which can significantly improve the quality of
segmentations among a shape collection using a sparse set ofuser-
specified constraints, i.e., the label sets. In contrast, weapply semi-
supervised learning to perform multi-label shape classification.

Multi-label classification. Multi-label classification has drawn a
lot of interest in machine learning research for the last several years.
We refer to [Tsoumakas and Katakis 2007] for an introduction
to this topic. The proposed approach is mostly related to [Amit
et al. 2007], which performs multi-label classification of images by
jointly learning linear classifiers for each class. In particular, Loeff
et al. [2009] extend this approach to the semi-supervised setting by
considering a unified similarity graph. In practice, we found that
using one similarity graph is insufficient as different classes possess
different types of geometric similarities. Multi-label classification
has also been studied in the graph-based semi-supervised setting
(e.g., [Chen et al. 2008]). However, these approaches are still lim-
ited because they utilize a unified similarity graph to propagate label
information.

Distance learning. Distance metric learning [Yang and Jin 2006]
is another active branch of machine learning. Most methods create
a similar set and a dissimilar set. A distance metric is learned to
minimize the pair-wise distances within the similar set while max-
imizing the distances from the dissimilar set, subject to various
regularization constraints on the metric. Distance metriclearning
can also be performed in semi-supervised fashion [Baghshah and
Shouraki 2009; Hoi et al. 2010]. Our approach applies the gen-
eral idea of distance metric learning, but is designed basedon the
specific problem we are solving.
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Figure 2: Overview of the shape classification pipeline. The input consists of a shape collection and a sparse labeled set (colored in gold).
In the first stage, the input shapes are aligned into a common space. In the second stage, a distance metric is learned for each class to
differentiate shapes within this class from other shapes. In the third stage, a similarly graph is constructed for each class and graph-based
semi-supervised classification is jointly performed on allgraphs to generate the optimal shape set for each class.

3 Overview

The input to the proposed approach consists of:

• A collection of shapes of the same categoryS = {Si |1 ≤ i ≤
N}. Based on the characteristics of 3D Warehouse models, we
assume the up-right direction is aligned with thez axis of a
world coordinate systemΣ. We also normalize each model inΣ
so that its bounding box is centered at(0,0, 0.5), and its ground
plane isz= 0. As most of man-made objects are reflectionally
symmetric, we further assume the reflectional axis of one shape,
denoted asS1, is aligned with thex axis ofΣ.

• A set of object classes{c j |1 ≤ j ≤ M} and the corresponding
labeled shape sets{L in

j ⊆ S |1≤ j ≤ M} to be used for training.
In general we assume that these sets are small compared toS .

The output consists of:

• The classified shape setsL
opt
j ⊂ S for each classc j , where

1 ≤ j ≤ M. As a shape may be given multiple labels, the sets
L

opt
j corresponding to different classes may overlap.

As illustrated in Figure2, the proposed approach proceeds via the
following three stages. We elaborate on the technical details of
these stages from Section4 to Section6, respectively.

Shape matching. The first stage aligns the input shapes in the
common spaceΣ, so that corresponding parts on different shapes
can be easily compared. We divide this stage into a global phase
and a local phase. In the global phase, we jointly compute an affine
transformationTi for each shapeSi so that in the end all shapes
are roughly aligned inΣ. This is done by following the principal
two-step strategy of matching multiple shapes as in [Huber 2002],
where the first step performs pair-wise affine matching to construct
a similarity graphG among the input shapes along with associated
relative transformationsT(i, j), (i, j) ∈ G , and the second step jointly
computes an affine transformationTi for each shape by optimizing
the consistency between the induced transformationsT−1

j ◦ Ti and
the relative transformationsT(i, j). Among existing formulations to
this problem, we extend the MRF formulation described in [Cran-
dall et al. 2011; Huang et al. 2012] for our purposes, due to its
ability to handle noisy relative transformations. The efficiency of
this formulation relies on effectively sampling the transformation
space of each shape. To address this issue, we introduce a reduced
affine transformation model, which is sufficient to provide an initial
starting point for the local phase, and which enables us to perform
the MRF optimization for each type of 1D transformation (e.g, the
rotation in thexy-plane) in a sequential manner. In this case, we
only need to sample a 1D space per-shape in each subproblem.

In the local phase, we proceed to jointly optimize a free-from defor-
mation [Sederberg and Parry 1986] Fi for each shapeSi to improve

the alignment. To avoid simultaneously optimizing the deforma-
tions of all input shapes in large shape collections, we introduce an
objective function, which can be optimized in an alternating man-
ner. In particular, at each step the deformationFi of each shape can
be optimized separately.

Distance learning. In the second stage we jointly learn a distance
metric for each class to differentiate shapes within the same class
and shapes from different classes. Taking the advantage that the
input shapes are already aligned inΣ, we present a linear model in
Σ to parameterize distance metrics, i.e., a distance metric is a linear
combination of primitive distance metrics, each of which compares
shapes in terms of a pre-defined feature descriptor (e.g., spin im-
ages [Johnson and Hebert 1999]) and at a spatial location inΣ.

We formulate distance learning as solving an optimization problem
that incorporates various objective terms. Similar to standard dis-
tance learning techniques [Yang and Jin 2006], we construct similar
sets (i.e, pairs of shapes in the same class) and dissimilar sets (i.e.,
pairs of shapes that belong to different classes) from labeled shapes,
and formulate objective terms that minimize(maximize) distances
between shape pairs in similar(dissimilar) sets. To handlesparse
and noisy labels, we introduce two regularization terms that are
derived from analyzing the structure of desirable distancemetrics.
The first term enforces the consistency of the coefficients ofeach
distance metric, and the second term considers the mutual correla-
tions among all distance metrics. We demonstrate how to formulate
these objective terms so that the resulting optimization problem is
convex, leading to a global solution. To further improve thequality
of the optimized distance metrics, we perform an alternating pro-
cedure, where we use the optimized distance metrics to polish the
similar and dissimilar sets at each iteration.

Shape classification.In the third and final stage we use the learned
distance metrics to construct a similarity graph for each class, and
apply graph-based semi-supervised classification to obtain the op-
timal shape set for each class. To avoid optimizing the association
between every shape and every class [Chen et al. 2008], which is
inefficient for large-scale datasets, we propose to first pre-compute
a candidate set of classifications for each class by performing graph
decompositions on the corresponding similarity graph withvarying
parameters, and then jointly select the best classification. Note that
this strategy is particularly efficient because the graph decompo-
sitions are performed independently for each class, and thejoint
optimization is performed on candidate sets, whose sizes are much
smaller than the full input shape collection.

In summary, while at a very high level our shape alignment fol-
lowed by label propagation strategy is based on familiar ideas from
graphics and vision, wide shape variations within a category, noisy
training labels, and the scale of the problem, have led us to innovate
at every step of the way by designing algorithms whose perfor-
mance have proved essential to the quality of the results we obtain.
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Figure 3: Shape matching procedure. This figure shows the shape matching pipeline, consisting of a global phase followed by a local phase.
In the global phase, we first identify pairs of similar shapesand compute optimal affine transformations between them. Then, to embed the
shapes into a common space, we apply sequential joint optimizations to optimize their orientations, scalings and translations, in that order.
In the final local phase, we optimize a FFD for each shape to refine and improve the alignment.

4 Shape Matching

The proposed classification pipeline begins with aligning all the in-
put shapes. We divide this stage into a global affine matchingphase
and then a local non-rigid alignment phase (See Figure3).

4.1 Global Affine Matching

We formulate global affine matching as solving a discrete MRF,
which jointly optimizes the transformation of each shapeTi within
a discrete set of transformation samples. To make this formulation
tractable, i.e, to maintain a small sample set for each shape, we
consider a reduced transformation model, under which this MRF
optimization can be performed for each type of elementary trans-
formation (e.g., the rotation in the xy-plane) independently.

Reduced transformation model.The reduced deformation model
is based on the assumption that we match shapes by first aligning
their front orientations and then performing appropriate translation
and scaling along each axis. Specifically, we parameterize the affine
transformationTi : (x, y, z) ∈ Si → (x′, y′, z′) ∈ Σ of each shape

Si using a rotation matrixR(θi) =

(

cos(θi) − sin(θi)
sin(θi) cos(θi)

)

(i.e.,

specifying the front orientation with respect toΣ) and a translation
t i = (tx

i , t
y
i )

T in thexy-plane, and three scalings(sx
i , s

y
i , s

z
i ):

(

x′

y′

)

=

(

sx
i 0
0 sy

i

)

R(θi)

(

x
y

)

+

(

tx
i

ty
i

)

, z′ = sz
i z.

Accordingly, we represent a relative affine transformationT(i, j) :
(x, y, z) ∈ Si → (x′, y′, z′) ∈ Sj using 7 parameters:

(

x′

y′

)

= S(i, j)

(

x
y

)

+ t(i, j), z′ = sz
(i, j)z.

HereS(i, j) is a 2× 2 matrix. LetS(i, j) = U(i, j)Λ(i, j)VT
(i, j) be the SVD

of S(i, j). It is easy to see that the constraintT−1
j ◦ Ti = T(i, j) can be

expressed via the following decoupled constraints:

R(θi − θ j) = U(i, j)V
T
(i, j), sz

i /sz
j = sz

(i, j),

(

sx
i /sx

j 0
0 sy

i /sy
j

)

= R(θ j)S(i, j)R(−θi) :=

(

sxx
(i, j),θ sxy

(i, j),θ
syx
(i, j),θ syy

(i, j),θ

)

,

t i − t j =

(

sx
i 0
0 sy

i

)

R(θ j)t(i, j) :=

(

tx
(i, j),θ ,s

ty
(i, j),θ ,s

)

, (1)

wheresxx
(i, j),θ andtx

(i, j),θ ,s are introduced to simplify the notations.

Constructing G via pairwise matching. We adopt a variant of
the procedure described in [Kim et al. 2012] for constructing the
similarity graphG , i.e., using descriptor-based nearest neighbor
computations and then estimating the associated transformations

using RANSAC. As these steps are rather standard, we leave the
details in the supplemental material.

Joint matching via MRF optimization. Based on Equation1, we
decouple the optimization ofTi into the optimizations of{θi}, {sx

i },
{sy

i }, {sz
i }, {tx

i } and{ty
i } in this order. For each subproblem, we

placeK = 32 transformation samples per shape (see the table below
for details). Letf : {1, · · · ,N}→ {1, · · · ,K} be the map that picks
a transformation sample for each shape. We compute the optimal
map f ⋆ (which provides the optimized transformations) by solving
the following MRF problem:

f ⋆ = arg max
f

∑

(i, j)∈G

exp(−Qi j ; f (i) f ( j)), (2)

where termQi j ; f (i) f ( j) evaluates the difference between the induced
transformation and the corresponding relative transformation. The
table below specifies the form ofQ in each case.

Samples Qi j ; f (i) f ( j)

θi, f (i) = 2π f (i)/K ‖R(θi, f (i) − θ j, f ( j))−U(i, j)V
T
(i, j)‖F

sx
i, f (i) = exp(2 f (i)/K − 1) 2|sx

i, f (i) − sx
j, f ( j)s

11
(i, j),θ |

sy
i, f (i) = exp(2 f (i)/K − 1) 2|sy

i, f (i) − sy
j, f ( j)s

22
(i, j),θ |

sz
i, f (i) = exp(2 f (i)/K − 1) 2|sz

i, f (i) − sz
j, f ( j)s

z
(i, j)|

tx
i, f (i) = 2(2 f (i)/K − 1) 4|tx

i, f (i) − tx
j, f ( j) − tx

(i, j),θ ,s|

ty
i, f (i) = 2(2 f (i)/K − 1) 4|ty

i, f (i) − ty
j, f ( j) − ty

(i, j),θ ,s|

We solve Equation2 using the iterative coordinate ascent method
described in [Leordeanu and Hebert 2006] due to its simplicity and
efficiency. AsQi j ; f (i) f ( j) only provides relative constraints, we fix
f (1) in each subproblem so thatT1 is the identity transformation.

4.2 Local non-rigid registration

In the local phase, we start from the roughly aligned shapes,then
for each shapeSi , we optimize a free-form deformation (FFD)Fi

[Sederberg and Parry 1986] to further refine the alignment. Follow-
ing [Huber 2002], we formulate this step as minimizing the sum
of distances between pairs of aligned shapes specified byG . To
formulate the objective function, we first perform pair-wise regis-
tration [Li et al. 2008] to establish a set of corresponding point pairs
(pii ′k ∈ Si ,qii ′k ∈ Si ′), k = 1, . . . ,nii ′ between each pair of shapes
(Si ,Si ′) ∈ G . Then we setup the objective function to minimize the
distances betweenpii ′k and qii ′k. To avoid optimizing FFDs over
all shapes simultaneously, we introduce a latent pointmii ′k for each
point pair(pii ′k,qii ′k) and setup the optimization problem as

fmultiple =
∑

(i,i ′)∈G

nii ′
∑

k=1

(‖Fi(pii ′k)− mii ′k‖
2 + ‖Fi ′ (qii ′k)− mii ′k‖

2).
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Figure 4: Distance metric gallery. A gallery of the learned
distance metrics for various label classes. To illustrate the effec-
tiveness of the method, we highlight the cells contributingmost to
the distance computation as well as the most influential kernel used
there. Note how natural features are automatically selected, e.g.,
the arms for the chairs, or the loading area of the truck.

The quantity fmultiple can be efficiently optimized using alternat-
ing optimization. When theFi are fixed, we simply setmii ′k =
(pii ′k + qii ′k)/2. Whenmii ′k are fixed, we can optimize each defor-
mationFi independently using [Li et al. 2008].

5 Distance Learning on Aligned Shapes

The central stage of the pipeline is to simultaneously learna dis-
tance metric between aligned shapes for each classc j , so that each
metric captures the underlying geometric similarity of thecorre-
sponding class. In the following, we first introduce a linearmodel
for parameterizing the space of distance metrics. Then we present
a convex optimization formulation for learning these metrics.

5.1 Linear distance model

We define a distance metric as a linear combination of a set
of primitive distance functions, each of which compares a pre-
defined volumetric shape descriptor at a spatial location. Specif-
ically, we first voxelize the bounding box of the aligned shapes
in Σ. In our implementation, we set the grid size as 0.1. For
each cellc and for each type of pre-defined volumetric descriptors
fSi (·) : Σ → R

d,1 ≤ i ≤ N (to be introduced later in this section),
we generate the corresponding primitive distance functionas

kf
c(Si ,Sj) = ‖fSi (oc)− fSj (oc)‖,

whereoc denotes the center of cellc. Let K be the collection of
all primitive distance functions generated during this process, we
define an arbitrary distance metricd(·, ·) as

d(·, ·) =
∑

k∈K

xkk(·, ·) = xTk(·, ·), x ≥ 0, (3)

wherek(·, ·) stacks all primitive distance funcions in a vector, and
x collects their coefficients.

Volumetric descriptors. For robustness concern, we define each
volumetric descriptorfSi (x) as the surface integral of a surface de-
scriptorfx(·) : Si → R

d:

fSi (x) =
∫

p∈Si

e−
‖p−x‖2

2σ2 fx(p)/
∫

p∈Si

e−
‖p−x‖2

2σ2 ,

whereσ = 0.05. In this paper, we have considered the following
surface descriptors (See Figure4 for their effects):

Training set:

Bi-planeStraightSwept

Without

Regulariza�on:

With

Regulariza�on:

Figure 5: Effect of the regularization terms. We can see that incor-
porating these terms leads to a more clean and meaningful distance
metric than merely optimizing the data term.

• Distance tox, i.e., ‖p − x‖ for a given pointp. The corre-
sponding descriptor valuesfSi (oc) effectively define a discrete
distance field for each shapeSi . Thus, these primitive distance
metrics are expected to compare global geometric similarity.

• Norm of derivatives ofFi : ‖
∂ Fi (p)

∂x ‖, ‖ ∂ Fi (p)
∂y ‖ and‖ ∂ Fi (p)

∂z ‖. These
feature vectors are used for classes that have salient localand/or
global anisotropic scalings (e.g., Limousines).

• Spin images [Johnson and Hebert 1999], which are used for
classes that exhibit local geometric features (e.g., Rex chairs).

5.2 Learning distance metrics

We then jointly learn the distance metricdj(·, ·) = xT
j k(·, ·) associ-

ated with each classc j , where 1≤ j ≤ M. In the following, we first
describe the objective function, which consists of a data term and
two regularization terms. Then we show how to solve the induced
optimization problem. We also present an alternating strategy for
updating the data term using the optimized distance metrics.

Data term. Following the principal idea of distance learning [Yang
and Jin 2006], we construct for each classc j a similar set M j ⊂
S × S and adissimilarsetD j ⊂ S × S , which collect pairs of shapes
that are expected to have small and large distances with respect to
the desired distance metricdj (·, ·), respectively. In our implemen-
tation, we initialize both sets from the input shape setsL in

j :

M j = L in
j × L in

j , D j = L in
j ×

(

M
∑

j ′=1

L in
j ′ \ L in

j

)

,

As theL in
j of different classes can overlap, we compute a weight

wp = 1− |L in
j ∩ L in

j ′ |/max(|L in
j |, |L

in
j ′ |) for each shape pairp= (Si ∈

L in
j ,Si ′ ∈ L in

j ′ \ L in
j ) ∈ D j to characterize its fuzzy association with

D j .

The data term is then formulated to minimize the distances between
shape pairs in the similar sets, and maximize the distances between
shape pairs in the dissimilar sets. In our formulation, we employ
the following max-marginal model:

fdata=
M
∑

j=1

(
1

|M j |

∑

p∈M j

dT
px j +

1
|D j |

∑

p∈D j

wp max(0,1− dT
px j)),

(4)
wheredp collects the distances ofp with respect to primitive dis-
tance functions. Note that due to sparse and noisy input, optimizing
the data term alone is typically insufficient (See Figure5).
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Regularization terms. We consider two regularization terms,
which are motivated from the properties of desired distancemetrics
(See Figure6). The first termfcoeff favors the piece-wise constant
property, i.e., the coefficients of each desired distance metric remain
constant in each of its support region. Intuitively, this forces the co-
efficients to be determined in groups, which effectively addresses
the problem of having sparse and noisy input. LetN ⊂ K × K
collect pairs of primitive distance metrics defined using the same
feature descriptor on neighboring cells. We enforce this piece-wise
constant property by minimizing the L1-norm (which prioritizes
sparsity) of{x j ,k − x j ,k′ |(k, k′) ∈ N } for each classc j , wherex j ,k

denotes the coefficient of kernelk(·, ·) in dj(·, ·):

fcoeff =
M
∑

j=1

∑

(k,k′)∈N

|x j ,k − x j ,k′ | =
M
∑

j=1

‖Jx j‖1, (5)

where matrixJ is introduced to write downfcoeff in the vector form.

The second regularization termfrank considers the mutual relations
among the distance metrics [Amit et al. 2007]. In our setting, we
assume that there exist a small set of support regions (e.g.,the
underlying parts), which are shared by all distance metrics. Equiv-
alently, this is to say that the rank of the matrixX = (x1, · · · , xM)
should be minimized. In our formulation, we propose to minimize
the nuclear norm [Candès and Recht 2009], which serves a popular
convex objective for rank minimization:

frank =

M
∑

k=1

σk(X), (6)

whereσk(X),1 ≤ k ≤ M denote the singular values of matrixX.

As shown in Figure5, incorporating these two regularization terms
leads to significantly improved distance metrics.

Optimization. Combining Equations4, 5 and 6, we arrive at the
following convex problem:

min
X

M
∑

j=1

( 1
|M j |

∑

p∈M j

dT
px j +

1
|Dl |

∑

p∈D j

wp max(0,1− dT
px j)

)

+ λ
M
∑

j=1

‖Jx j‖+ µ
M
∑

j=1

σ j(X) ,

s.t. X = (x1, . . . , xM) ≥ 0. (7)

Here parametersλ andµ specify the strength of prior terms. For all
of our experiments, we chooseλ = 0.5 andµ = 1, though we also
found that the optimal solution is insensitive to these parameters.

For optimization, we employ the alternating directions of aug-
mented multiplier method (ADMM) [Boyd et al. 2011], which has

been proven to be quite effective for solving large-scale convex pro-
grams. Please refer to [Boyd et al. 2011] for details.

Updating the date term. In the same spirit as reweighed least
squares [Holland and Welsch 1977], we use the optimized distance
metrics to update the similar and dissimilar sets used in defining the
data term, i.e., the similar and dissimilar sets only include instances
that are consistent with the optimized distance metrics:

M j := {p|p ∈ L in
j × S , dT

pxp < 2σ j(M j)},

D j := {p|p ∈ L in
j × S , dT

pxp > 1},

whereσ j(M j) denotes the medians ofdj among the previousM j .
We then re-solve Equaton7. This alternating process is iterated
until the distance metrics become steady. In practice, we found that
3-5 iterations were sufficient.

6 Graph Based Multi-Label Classification

The final stage of the proposed pipeline employs the learned dis-
tance metrics to construct per-class similarity graphs, and per-
forms graph based multi-label classification to extract theclassified
shapes of each class. To handle large shape collections, we em-
ploy a select-from-candidate strategy, i.e., we first generate a set of
candidate classifications for each class in isolation via graph par-
titioning, we then jointly select the optimal classification for each
class by solving a MRF [Leordeanu and Hebert 2006].

Similarity Graph Construction. We generate the similarity graph
G j for each classc j by connectingk-nearest neighbors (k = 6) of
each shape with respect todj (·, ·). The weight associated with each
edge(Si ,Si ′) ∈ G j is given by

w(Si ,Si′ )
= exp(−d2

j (Si ,Si ′)/2σ2),

whereσ is chosen as the median ofdj (Si ,Si ′) over all edges inG j .

Candidate classifications. We generate candidate classifications
by thresholding graph diffusion distances [Coifman et al. 2005] to
the labeled shape set, utilizing their power in capturing graph clus-
ters at various scales. Denotedt

G j
(Si ,Si ′ ) as the diffusion distance

betweenSi andS′
i on graphG j at scalet (Please refer to [Coifman

et al. 2005] for the formula). Given a fixed scale parametert j and
a distance thresholdδ j , we compute the corresponding candidate
classification

L j = {Si |d
t j

G j
(Si ,L in

j ) = median{dt j

G j
(Si ,Si ′ )|Si ′ ∈ L in

j } < δ j ,

where the median distance accounts for mislabeled shapes inL in
j .

To generate all candidate classifications, we first placeL1 = 8 uni-
form samples between 0 andDiam(G j) for the scale parametert j .
Then for each fixedt j , we placeL2 = 8 uniform samples between
0 and maxSi∈S dG j (Si ,L

input
j ) for the distance thresholdδ j . In total,

we obtainL = L1L2 = 64 candidate classifications for classc j .

Joint classification selection. Denote f : {1, · · · ,N} →
{1, · · · , L} as the map that picks one candidate classification from
each class, we compute the optimal mapf opt (which provides the
optimal classification for each class) by maximizing the following
second-order MRF potential:

Q( f , θ) =
n

∑

j=1

θ 1
j , f ( j) +

∑

1≤ j< j ′≤n

θ 2
j j ′, f ( j) f ( j ′). (8)

The unary termθ 1
j ; f ( j) evaluates the disjoint score betweenL j , f ( j)

and S \ L j , f ( j) on graphG j . In this paper, we utilize the normal-
ized cut (NCut) score [Shi and Malik 2000] to penalize candidate
classifications of small size:

θ 1
j ; f ( j) = 2− NCut(L j , f ( j), S \ L j , f ( j)).
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Figure 7: Distance metric comparison.This figure compares dif-
ferent distance metrics for the task of shape retrieval. From top to
bottom, we show spherical harmonics (SH) [Kazhdan et al. 2003],
Hausdorff distances between aligned shapes, and the distance met-
rics associated with the rocking and Windsor chair classes,respec-
tively. For the learned distances, we show results using thedistance
metric directly (top) as well as using the graph diffusion distance
(bottom). It is clear that the learned distance metrics capture the
shape semantics more fully than traditional ones, and that diffusion
distances lead to the best results.

The pair-wise termsθ 2
j j ′; f ( j) f ( j ′) favor that the mutual correla-

tions between the output shape sets agree with those of the input
shape sets, a criterion used by other multi-label classification tech-
niques [Tsoumakas and Katakis 2007]:

θ 2
j j ′; f ( j) f ( j ′) = γ(1− |cor(L j , f ( j),L j ′ , f ( j ′))− cor(L in

j |, |L
in
j ′ )|),

where cor(V,V ′) = |V ∩V ′|/|V ∪V ′|, and parameterγ controls the
importance of the pair-wise term.

We again employ the iterative coordinate ascent method described
in [Leordeanu and Hebert 2006] to optimize Equation8. The pa-
rameterγ is optimized via cross-correlation between the output
shape setsLopt

j and the input shape setsL in
j .

Note that after solving Equation8, we also obtain an optimized
scale for defining the diffusion distance on the similarity graph of
each shape. These diffusion distances can be easily appliedto per-
form shape retrieval (See Figure7 for an example).

7 Experimental Evaluation

In this section, we describe the experimental evaluation ofthe clas-
sification pipeline. We begin with introducing the experimental
setup in Section7.1. Then in Section7.2, we analyze the classi-
fication results and compare them with state-of-the-art multi-label
and/or semi-supervised classification methods. Finally, we evaluate
each stage of the proposed pipeline in Section7.3.

7.1 Experimental setup

Benchmark. We have created a benchmark shape data set to eval-
uate the performance of the proposed approach. The benchmark
includes three large shape collections: “Chair,” “Automobile” and
“Airplane”. We followed the following procedure to create this
benchmark. We first determine a candidate set of classes for each

category by searching for sub-categories within WordNet [Miller
1995] (e.g., side chair, Rex chair, sedan, convertible, sports car, bi-
plane, propeller airplane). We then use these class names askey
words to download models from Trimble 3D Warehouse. As the la-
bels from the 3D Warehouse are quite noisy, we employ Amazon’s
Mechanical Turk (AMT) to prune outlier models, i.e., those are not
in any category, and to generate ground truth labels. Specifically,
we provide for each shape a few views and ask users from AMT to
answer questions that determine whether it is an outlier and, if not,
the classes it belongs to. When determining fine-grained classes,
we also give the AMT users a few examples of each class using
Google image search. In total, we obtained 5850 chairs with 26
classes, 1684 cars with 9 classes, and 1206 airplanes with 9 classes.

Baseline methods. As semi-supervised learning techniques fall
into transductive and inductive types, we chose a state-of-the-art
method from each category as the baseline method to compare
to. Among transductive methods, we chose [Chen et al. 2008],
which is the multi-label extension of a binary graph based semi-
supervised classification method described in [Zhu 2006]. Note
that this method requires a similarity graph of all input shapes as
input. In the same spirit as [Zhu 2006], we construct this similarity
graph by connecting each shape with itsk = 16 nearest neighbors in
terms of a pre-defined global shape descriptor. In our experiments,
we set this global shape descriptor as the concatenation of three
popular shape descriptors: D2 [Osada et al. 2002], SH [Kazhdan
et al. 2003] and the lightfield descriptor [Chen et al. 2003]. Among
inductive methods, we chose [Loeff et al. 2009], which is the semi-
supervised version of the popular linear classifier based multi-label
classification method [Amit et al. 2007]. To make a fair compar-
ison between this approach and our approach, we feed the set of
volumetric features used by our approach into [Loeff et al. 2009].
Moreover, we use the same similarity graph as in the transductive
baseline method.

Evaluation protocol. We evaluate the performance of a given
method in terms of its classification accuracy and precision. Let
Lmt

j denote the ground truth set for classc j . Denote byL j the re-
sulting labeled shape set for a given method onc j . We define the
classification accuracya(L j) and the precisionr(L j) of this method
as:

a(L j ) = |Lmt
j ∩ L j |/|L

mt
j ∪ L j |, r(L j) = |L j ∩ Lmt

j |/|L j |.

In the following, we primarily use the classification accuracy to
compare different classification methods. We use the precision to
evaluate whether a given method reduces the noise level fromthe
input labels or not. In this paper, we report these two measures in
percentages. Note thata(L in

j ) andr(Lin
j ) describe the percentage of

input labels and their precisions, respectively.

7.2 Analysis of classification results

Input Transductive Inductive Proposed
PlaneType 6.5/81.6 54.7/59.2 75.1/78.2 81.2/87.5
ChairType 3.4/79.8 61.7/67.3 79.3/82.1 83.4/87.1
CarType 6.9/79.0 51.7/59.8 75.3/80.1 81.2/85.7

PlaneStyle 4.7/83.8 45.7/47.2 63.3/67.1 80.1/85.6
ChairStyle 9.9/78.2 44.7/48.7 65.3/68.1 76.8/85.3

Table 1: Average classification accuracies and precisions of the
proposed method and two baseline algorithms on classifyingtypes
and styles of each dataset. In each entry, we show classification
accuracy/precision.

To analyze the classification results, we divide the classesof con-
sideration into a type group and a style group. The type group
includes classes, in which shapes exhibit global similarity, e.g.,



Input label sets Baseline Our approach

Propeller planes

Rocking chairs

Figure 8: Baseline comparison.Comparison between the linear classifier baseline approach[Loeff et al. 2009] and the proposed approach
on classifying propeller planes (Top) and rocking chairs (Bottom). Correctly labeled instances and mislabeled instances are colored in blue
and red, respectively. (Left) Input shapes. (Middle) Classification results of the linear classifier based approach. (Right) Classification results
of the proposed approach. We see that the proposed approach yields cleaner results.

stools, lounge chairs, sedan and coupe, while the style group in-
cludes classes that exhibit partial and local similarity, e.g., rocking
chairs, swivel chairs and jet planes. The complete list of each group
is provided in the supplemental material.

Table 1 and Figure9 collect the classification accuracies of vari-
ous methods. Due to space constraints, we only report results on
representative classes as well as the averaged results on each data
collection. Please refer to the supplemental material for more de-
tails. Overall, our approach delivers good performance on all three
collections. In addition, the new approach improves significantly
from baseline algorithms and is able to reduce the noise level of the
input labels. In the following, we break down the performance of
various methods on specific classes.

Type classification.We distinguish between two categories of ob-
ject types. On objects whose geometric shapes significantlydif-
fer from other object types in their category, e.g., limousines and
lounge chairs, both the baseline algorithm and the proposedap-
proach lead to comparable high quality results (See Figure9). This
is expected because these object types are known to be well differ-
entiated by comparing either global shape descriptors or aligned
shapes. However, on object types that are characterized by rel-
atively small-scale geometric features, e.g., arm-rests that sepa-
rate side chairs from chairs with arms, the performance of the
descriptor-based transductive approach drops significantly. This
is due to the fact that these local geometric features are notwell
captured by comparing global descriptors. In this case, thesuccess
of the descriptor-based approach relies on a huge shape collection
and densely labeled shapes, so that one can propagate labelsamong
very similar shapes. In contrast, such key small-scale geometric
features are nicely localized after aligning shapes, explaining why
the proposed approach and the classifier-based approach report high
classification accuracy in this case.

Style classification.When classifying object styles, our approach
leads to better performance than the linear classifier approach. Fig-
ure8 illustrates the classification results of these two approaches on
the style classes of rocking chairs and propeller planes. Wecan see

limousines lounge side with-arms

89.1/93.2/100 91.1/93.2/94.5 64.2/83.1/84.9 61.2/81.2/83.0

rocking propeller bar stool folding

32.1/61.2/85.1 47.1/56.2/84.8 57.1/65.2/70.1 41.1/68.2/73.1

Figure 9: Results on representative classes.Classification ac-
curacies of the proposed approach and the baseline methods on
selected classes. Within each entry, we show transductive baseline
approach/inductive baseline approach/proposed approach.

that the linear classifier based approach misclassifies manyshapes
that are similar to inliers but with respect to a biased notion of geo-
metric similarity. This can be explained by the fact that thenature of
geometric variation within each such style class is rather subtle, and
it is unlikely to be characterized well using linear classifiers learned
from sparse and noisy data. In contrast, the proposed approach
utilizes a sub-graph to represent the shapes in each class, which
is capable of representing more complex decision boundaries.

7.3 Analysis of classification pipeline

Shape matching.We have evaluated the performance of our shape
matching approach on the benchmark dataset described in [Kim
et al. 2013]. This dataset consists of four categories of shapes: Seat,
Plane, Bike and Helicopter. The size of each category variesfrom
a few hundreds to a few thousands. Within each category, there
are 100 shapes with manually labeled feature points for comparing
the accuracy of different methods. We run our approach on each
complete category of shapes and evaluate its performance onthe
subset of labeled shapes. Figure10 compares the performance of
our approach with state-of-the-art data-driven shape matching tech-



Kim13 DL1 DL2 DL3 Chen08 Prop.
PlaneType 76.9 64.6 71.2 69.1 77.9 81.2
ChairType 83.1 69.2 78.1 82.1 82.2 83.4

Car 81.3 69.6 77.1 74.2 77.7 81.2
PlaneStyle 68.6 55.6 65.2 63.8 69.8 80.1
ChairStyle 70.5 60.8 70.1 67.2 77.3 76.8

Table 2: Performance of alternative methods used in the classifica-
tion pipeline. From left to right: using the shape matching method
described in [Kim et al. 2013], three alternative distance learning
strategies (DL1, DL2 and DL3), using the method of [Chen et al.
2008] on the learned similarity graphs for classification and the
proposed pipeline.
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Figure 10: Shape matching quality. This figure demonstrates the
shape matching quality of our method (red) relative to priorwork:
Kim et al. [2013](magenta), Huang et al [2012](black), Kim et
al. [2012] (blue) and Xu el al. [2010] (green) on the benchmark
provided in [2013]. Our method improves substantially from prior
work in terms of both global and local accuracy.

niques [Huang et al. 2012; Kim et al. 2012; Kim et al. 2013] as
well as the state-of-the-art pair-wise shape matching method for
man-made objects [Xu et al. 2010] . The new approach is consider-
ably better than previous methods in terms of both global accuracy
and local accuracy. This shows the advantage of simultaneously
matching and aligning shapes in an ambient space.

To understand the influence of the shape matching stage on the
final classification results, we have replaced our shape matching
method by that of [Kim et al. 2013]. We found that the classifica-
tion accuracies on object types are similar. However, our method
leads to better performance on classifying style classes. This can
be understood by the fact that the template-based fitting approach
described in [Kim et al. 2013] is insufficient to align style classes
that typically exhibit non axis-aligned in-class deformations.

Distance learning. We have tested the final classification accura-
cies of using three alternative distance learning strategies:

• (DL1): Optimize fdata and updateM j ,D j .

• (DL2): Optimize fdata+ λ fcoe f f and updateM j ,D j .

• (DL3): Optimize fdata+ λ fcoe f f + µ frank.

As shown in Table2, both the three objective terms as well as the
strategy of updating the similar and dissimilar sets are important
for the classification pipeline. Specifically, incorporating the coef-
ficient prior term significantly improves the classificationaccuracy
on all shape collections. The rank prior term, which considers the
mutual relations among different classes, is important forstyle clas-

sification. The strategy of updating the similar and dissimilar sets
is also important for style classification as the style labels tend to
be sparser and noisier than the type labels (See Table1).

Graph based classification.An alternative way to perform graph-
based multi-label classification is to use the method of [Chen et al.
2008] on the similarity graphs derived from distance learning. As
shown in Table2, we found that the classification accuracy of the
proposed approach slightly outperforms that of [Chen et al. 2008]
on all three datasets. Moreover, the proposed approach is signif-
icantly more efficient since it avoids solving a large-scalelinear
system. On the chair dataset, the new approach takes 10 minutes,
while that of [Chen et al. 2008] takes 210 minutes.

tmatch tfeature tlearn tcut ttotal

Airplane 3h33m 1h41m 8m 2m 5h24m
Chair 10h42m 4h31m 31m 10m 15h54m
Car 4h11m 2h47m 12m 6m 7h16m

Table 3: Timings of the proposed approach. tmatch, tfeature, tlearn
and tcut represent the shape matching stage, the volumetric feature
computation stage, the distance learning stage and the joint graph
partitioning stage, respectively.

Timing. Table3 shows the timing of each stage of the pipeline on
a machine with 3.2GHZ CPU and 16G memory. Most of the time
at the shape matching stage is spent on performing pair-wiseshape
matching and local alignment. On the average, matching one pair
of fully (partially) similar shapes costs 0.1(1.5) seconds. Non-rigid
registration for one pair of shapes takes 0.2 seconds. In the distance
learning stage, most of the time is spent on feature computation; the
learning process itself takes dozens of minutes. In the joint graph
partitioning stage, computing the diffusion distance takes about 2-
15 seconds per class. Generating shape sets and solving the opti-
mization problem take less than 10 seconds.

Limitations. Our approach is less effective on classes where geo-
metric similarity is less salient, e.g., folding chairs andbar stools
(See Figure9). In this case, our approach is only able to propa-
gate labels to very similar shapes, and thus requires dense labels
for better performance. To classify these classes well, onehas to
utilize advanced feature vectors that understand shape functionality.
This is subject to future research. Moreover, the proposed approach
assumes that the input shapes can be aligned in one common space.
It does not work well when the part of interest has different repe-
tition counts on some shapes (e.g., wheel classification from cars
with different number of wheels). In the future, we plan to address
this issue by considering multiple common spaces, each of which
accounts for one shared part across multiple shapes.

8 Conclusions

In this paper, given a modest set of labeled shapes in a category,
we have described a semi-supervised approach that simultaneously
propagates and cleans these labels for others shapes in the category.
While there has been extensive work on aligning shapes basedon
geometric features, the aim of our work has been to learn how to
compare shapes so that the resulting geometric similarities parallel
those present in a set of semantic class labels of a modest training
set. The resulting labeled collection is far easier to organize, search,
etc. than before. Furthermore, experimental results show that the
performance of the presented approach outperforms state-of-the-art
multi-label shape classification techniques.

There are ample opportunities for future research. First, we would
like to study how to unify shape matching and shape classifica-
tion into a single optimization procedure. Intuitively, the classified



shapes and the knowledge of where shapes are similar should help
match shapes in a better way. Moreover, we would like to explore
other applications of the presented approach to shape modeling and
shape editing, or to more sophisticated forms of shape search.
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