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Figure 1: The proposed approach takes a large set of shapes with spacseoisy labels as input; it outputs cleaned and completels
for each shape, facilitating organization and search ofshape collection. Labeled chair sets are shown, with trajrshapes in orange.

Abstract

In this paper we consider the problem of classifying shap#smw
a given category (e.g., chairs) into finer-grained classes,(chairs
with arms, rocking chairs, swivel chairs). We introduce altmu
label (i.e., shapes can belong to multiple classes) sep@rsised
approach that takes as input a large shape collection ofen gist-
egory with associated sparse and noisy labels, and outimaisex!
and complete labels for each shape. The key idea of the prdpos
approach is to jointly learn a distance metric for each clelsich
captures the underlying geometric similarity within thitss, e.g.,
the distance metric for swivel chairs evaluates the globahggtric
resemblance of chair bases. We show how to achieve thistivgjec
by first geometrically aligning the input shapes, and themrlimg
the class-specific distance metrics by exploiting the featonsis-
tency provided by this alignment. The learning objectivessider
both labeled data and the mutual relations between thendista
metrics. Given the learned metrics, we apply a graph-basetd- s
supervised classification technique to generate the fiagkifica-
tion results.

In order to evaluate the performance of our approach, we tigve
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1 Introduction

Shape classification is a fundamental problem in shape sisaly
So far most existing works have focused on classifying shage
different high-level categories, e.g., cars, chairs, deskc. With
the emergence of large shape collections, however, eveshtpes
within each category still exhibit significant variation.orfFexam-
ple, chair models from the Trimble 3D Warehouse contain deze
of sub-classes, including chairs-with-arms, swivel chaiocking
chairs, etc. (See Figur®). Classifying shapes into these fine-
grained classes can benefit a variety of applications suptoasict
search, browsing and exploration of shape variability, iaterac-
tive shape modeling.

In this paper, we consider a semi-supervised problem gettinere
the given input is a set of man-made shapes together witlciatsd
sparse and noisy labels (e.g., models from Trimble 3D Warsto

ated a benchmark data set where each shape is provided with a3nq their associated text), and the output consists of ettand

set of ground truth labels generated by Amazon’s Mechafiged

users. The benchmark contains a rich variety of shapes imaau
of categories. Experimental results show that despitevdity,

given very sparse and noisy initial labels, the new metheddgi
results that are superior to state-of-the-art semi-sugeiiMearning
techniques.

CR Categories: 1.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling;

complete labels for each input shape. This problem is pdatily
challenging due to (1) relatively subtle geometric differes be-
tween different classes, (2) the availability of only vepasse and
often quite noisy labels, (3) the fact that each shape carsseca
ated with multiple labels, and finally (4) the size of the peob, as
a shape collection will typically contain thousands of mede

The proposed approach addresses these challenges by gmmnbin
two simple ideas motivated from recent advances in geonpetry
cessing and machine learning. First, inspired by currdetést in
data-driven shape matchindg(ifn et al. 2012 Huang et al. 2012
Kim et al. 2013, we propose to align the input shapes of a given
category into a common space, thus implicitly generatingtaos
correspondences between the shapes. This common spaieprov
us with a convenient framework in which to compare shapeg&; ma
ing features across different shapes more consistent angasa-
ble. For example, the common space allows us to focus atpkati
neighborhoods of that space and examine local shape wasati
in those neighborhoods under appropriate similarity rogtriTo
handle large datasets with high shape variability, we thioe a
scalable shape matching approach that is able to simultaheo
align many thousands of diverse shapes.
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Given the aligned shapes in this common space, a straigltafdr
approach for classification would be to train a classifierdach
class, either jointly or independently. However, we fouhdttthe
performance of such approaches is rather unsatisfactonys i$
because, typically, a complex decision boundary has todadel
in order to capture the large geometric variations and ybtleu
geometric similarities within each class, a task made aalac-
complish in the presence of sparse and noisy labels. This lea
the second idea of the proposed approach, which combinasdés
learning [Yang and Jin 2006 which is less sensitive to problematic
labels but does not directly produce classification resattd graph
based semi-supervised classificati@hn(i 2006, which employs
unlabeled data to determine the decision boundaries buiresqg
high quality similarity graphs. Specifically, we first joiptearn a
distance metric for each class to capture its underlyingrggoc
similarity, e.g., that rocking chairs have similar basefede dis-
tance metrics are then used to construct a similarity grapbdch
class, on which we finally perform graph-based semi-supedvi
classification— and we do so jointly over all classes.

We have created a benchmark dataset to evaluate the praecbed
nique. The benchmark consists of three categories of shapes
chairs, and airplanes, all selected from the Trimble 3D Wause.
Each category has 2K-6K models, dozens of fine-grainededaas
well as ground-truth labels provided by human experts. \Wehea
proposed pipeline on sparse labels associated with thé shapes.
Experimental results show that the above approach geseeselts
that are superior to state-of-the-art semi-supervisesisitlaation

methods. We also compared each step of the proposed approacfior some recent advances.

with various alternatives to verify and support our designisions.

2 Background and Prior Work

2.1 Computer Graphics and Vision

3D shape classification.Shape classification has been studied ex-
tensively in the past. We refer the readerda Fontoura Costa and
Cesar Jr. 200%s a standard reference for this topic. When classi-
fying large shape collections, most existing works havei$ed on
computing meaningful global shape descriptors (see e@sada

et al. 2002 Kazhdan et al. 2003Chen et al. 2003. These global
descriptors have proven to be successful for classifyircifer-
entiating shapes from different categories, e.g., chailsaérplanes.
However, they are less effective in classifying shapes iwithe
same category, where shapes are typically distinguisheslibgfe
partial or local geometric features.

For shape collections of moderate size, Xu et201 introduced

an unsupervised method for classifying a shape collectibo i
groups of different styles, where shapes in each group anmee
rically similar after appropriate part scaling. Recenlglogerakis

et al. 2017 introduced a probabilistic part-based shape grammar

more robust against noisy and sparse labels. The classifidat
performed as a separate process. In addition, the repatisendf
3D shapes is very different from images, and color and textur
based methods do not immediately transfer to 3D geometryh®©n
other hand, we believe that a 3D approach, which can utiliaeem
complete information about objects, has the potential twegge
better results than image-based techniques.

Shape matching. Matching multiple shapes is fundamental prob-
lem in geometry processing. Despite some recent advarttaisef
2002 Crandall et al. 2011Kim et al. 2012 Huang et al. 201,Kim

et al. 2013 on this topic, we found that it is extremely difficult to
obtain high-quality correspondences among a shape dotheof
thousands of shapes. Our approach modifies existing agmsac
so that they become scalable and effective on large shapesc-col
tions. Specifically, we introduce a reduced affine transéiiom
model in which the MRF formulation described i@randall et al.
2012, Huang et al. 2012can be applied to globally match large
collections of man-made objects. For the local alignmennaf-
tiple shapesHuber 2002, we introduce an objective function that
admits an efficient alternating optimization.

2.2 Machine Learning

Semi-supervised learning. Semi-supervised learning addresses
the case where the labeled data is sparse. We refethio 2006

for a survey on this topic and t&grgus et al. 20Q9.iu et al. 2012
Roughly speaking, semi-supdrvis
techniques fall into two categories: inductive or transivec[Zhu
2004. Inductive methods typically extend their supervisedrtew
parts to incorporate unlabeled data. In contrast, trans@umeth-
ods focus on the input database by propagating labels froetdd
data to unlabeled data. Most transductive methods are grapéd,
where the propagation naturally happens along graph edges.

Very recently, Wang et al2017 introduced semi-supervised learn-
ing to the graphics community. They developed a shape segmen
tation framework which can significantly improve the qualdf
segmentations among a shape collection using a sparse issrof
specified constraints, i.e., the label sets. In contrasgppty semi-
supervised learning to perform multi-label shape clasific.

Multi-label classification. Multi-label classification has drawn a
lot of interest in machine learning research for the lasts®wears.
We refer to Tsoumakas and Katakis 200%r an introduction
to this topic. The proposed approach is mostly relatedAimif

et al. 2007, which performs multi-label classification of images by
jointly learning linear classifiers for each class. In parfér, Loeff

et al. 2009 extend this approach to the semi-supervised setting by
considering a unified similarity graph. In practice, we fduhat
using one similarity graph is insufficient as different sles possess
different types of geometric similarities. Multi-labelagisification
has also been studied in the graph-based semi-supervited) se

for the purpose of synthesizing new shapes. The shape gnamma(e.g., [Chen et al. 2008. However, these approaches are still lim-

encodes each shape part using a type set, which consiste®bpa
different shapes. These type sets are learned from the shppes
in an unsupervised manner. In contrast to these two tecasjque
focus on a different problem, whose goal is to classify skap®
human-recognizable fine-grained classes.

Fine-grained classification of images.We note that fine-grained
classification/categorization has been popular in the ctenpvi-
sion community in the last few years (e.d-peff et al. 2009 Yao

et al. 2011 Deng et al. 201Band the references therein). The key
idea of these approaches is to learn class specific featuhgsh
classify the instances of each class. The major differenagur
approach is that we learn class specific distance metridshveine

ited because they utilize a unified similarity graph to pgae label
information.

Distance learning. Distance metric learningvang and Jin 2006
is another active branch of machine learning. Most methoeiste

a similar set and a dissimilar set. A distance metric is ledro
minimize the pair-wise distances within the similar setle/max-
imizing the distances from the dissimilar set, subject taous
regularization constraints on the metric. Distance méggening
can also be performed in semi-supervised fashiaghshah and
Shouraki 2009 Hoi et al. 2010. Our approach applies the gen-
eral idea of distance metric learning, but is designed basetthe
specific problem we are solving.
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Figure 2: Overview of the shape classification pipelin€he input consists of a shape collection and a sparse ldbsde (colored in gold).
In the first stage, the input shapes are aligned into a comnpaiges In the second stage, a distance metric is learned fohn efass to

differentiate shapes within this class from other shapeghé third stage, a similarly graph is constructed for eatdss and graph-based
semi-supervised classification is jointly performed orgadiphs to generate the optimal shape set for each class.

3 Overview

The input to the proposed approach consists of:

e A collection of shapes of the same category- {S|1<i <
N}. Based on the characteristics of 3D Warehouse models, we
assume the up-right direction is aligned with thexis of a
world coordinate syster. We also normalize each modelan
so that its bounding box is centered @10, 0.5), and its ground
plane isz= 0. As most of man-made objects are reflectionally
symmetric, we further assume the reflectional axis of onpesha
denoted a§,, is aligned with thex axis of .

A set of object classefr; |1 < j < M} and the corresponding
labeled shape se{i}” C $|1< j <M} tobe used for training.
In general we assume that these sets are small compased to

The output consists of:

o The classified shape sets™ C s for each class;j, where
1< j < M. As a shape may be given multiple labels, the sets

prt corresponding to different classes may overlap.

As illustrated in Figure2, the proposed approach proceeds via the
following three stages. We elaborate on the technical idetdi
these stages from Sectidrto Sectiong, respectively.

Shape matching. The first stage aligns the input shapes in the
common space&, so that corresponding parts on different shapes
can be easily compared. We divide this stage into a globadeha
and a local phase. In the global phase, we jointly computdfarea
transformationT; for each shap& so that in the end all shapes
are roughly aligned irx. This is done by following the principal
two-step strategy of matching multiple shapes adHuljer 2002,
where the first step performs pair-wise affine matching tstowt

a similarity graphg among the input shapes along with associated
relative transformation; ), (i, j) € g, and the second step jointly
computes an affine transformatidnfor each shape by optimizing
the consistency between the induced transformaﬂ'qrfSO T and

the relative transformatiorig; ;). Among existing formulations to
this problem, we extend the MRF formulation describedGnan-
dall et al. 2011 Huang et al. 2012for our purposes, due to its
ability to handle noisy relative transformations. The éficy of
this formulation relies on effectively sampling the trasrsfiation
space of each shape. To address this issue, we introducaceded
affine transformation model, which is sufficient to provideiitial
starting point for the local phase, and which enables us time

the MRF optimization for each type of 1D transformation (e
rotation in thexy-plane) in a sequential manner. In this case, we
only need to sample a 1D space per-shape in each subproblem.

In the local phase, we proceed to jointly optimize a freerfidefor-
mation [Sederberg and Parry 1986 for each shap& to improve

the alignment. To avoid simultaneously optimizing the defa-
tions of all input shapes in large shape collections, wedhice an
objective function, which can be optimized in an alterngtman-
ner. In particular, at each step the deformatiof each shape can
be optimized separately.

Distance learning. In the second stage we jointly learn a distance
metric for each class to differentiate shapes within theesatass
and shapes from different classes. Taking the advantagehtha
input shapes are already alignedXinwe present a linear model in
> to parameterize distance metrics, i.e., a distance metadinear
combination of primitive distance metrics, each of whicmpares
shapes in terms of a pre-defined feature descriptor (e.im,irsp
ages Johnson and Hebert 199%nd at a spatial location iB.

We formulate distance learning as solving an optimizatiablgm
that incorporates various objective terms. Similar to déad dis-
tance learning technique¥dng and Jin 2006 we construct similar
sets (i.e, pairs of shapes in the same class) and dissirat&(is.,
pairs of shapes that belong to different classes) from éabshapes,
and formulate objective terms that minimize(maximizeatises
between shape pairs in similar(dissimilar) sets. To hasgkrse
and noisy labels, we introduce two regularization termg tra
derived from analyzing the structure of desirable distamegrics.
The first term enforces the consistency of the coefficientsach
distance metric, and the second term considers the mutualao
tions among all distance metrics. We demonstrate how toudtata
these objective terms so that the resulting optimizati@blem is
convex, leading to a global solution. To further improve goelity
of the optimized distance metrics, we perform an alterigagiro-
cedure, where we use the optimized distance metrics tohpthles
similar and dissimilar sets at each iteration.

Shape classificationln the third and final stage we use the learned
distance metrics to construct a similarity graph for eaessl and
apply graph-based semi-supervised classification to ol op-
timal shape set for each class. To avoid optimizing the ésoc
between every shape and every claShdn et al. 2008 which is
inefficient for large-scale datasets, we propose to firscprapute
a candidate set of classifications for each class by perfayigniaph
decompositions on the corresponding similarity graph wattying
parameters, and then jointly select the best classificabiote that
this strategy is particularly efficient because the graptod®o-
sitions are performed independently for each class, angothe
optimization is performed on candidate sets, whose sizzmach
smaller than the full input shape collection.

In summary, while at a very high level our shape alignment fol
lowed by label propagation strategy is based on familiaasdieom
graphics and vision, wide shape variations within a categmisy
training labels, and the scale of the problem, have led ustovate
at every step of the way by designing algorithms whose perfor
mance have proved essential to the quality of the resultsbiagro
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Figure 3: Shape matching procedureThis figure shows the shape matching pipeline, consisfiagyobal phase followed by a local phase.
In the global phase, we first identify pairs of similar shapesl compute optimal affine transformations between theran,Tio embed the
shapes into a common space, we apply sequential joint ggattions to optimize their orientations, scalings and tfatiens, in that order.
In the final local phase, we optimize a FFD for each shape toeedind improve the alignment.

4 Shape Matching

The proposed classification pipeline begins with alignithghe in-
put shapes. We divide this stage into a global affine matapliage
and then a local non-rigid alignment phase (See Figure

4.1 Global Affine Matching

We formulate global affine matching as solving a discrete MRF
which jointly optimizes the transformation of each shdpwithin

a discrete set of transformation samples. To make this flation
tractable, i.e, to maintain a small sample set for each shape
consider a reduced transformation model, under which tH&M
optimization can be performed for each type of elementaagstr
formation (e.g., the rotation in the xy-plane) indepenfjent

Reduced transformation model.The reduced deformation model
is based on the assumption that we match shapes by firstradigni
their front orientations and then performing appropriaéaslation
and scaling along each axis. Specifically, we parametdrezeffine
transformationT; : (x,y,2) € § — (X,Y,Z) € X of each shape
cog@) —sin(e)
sin(6) cog&)
specifying the front orientation with respectIp and a translation
ti = (t%,t)7 in thexy-plane, and three scalings’, s, &):

<Xl> (o O>R(e.)<x>+<§§>, Z-¢z

y s y

Accordingly, we represent a relative affine transformafiqrn, :
(xy,2) € § — (X,y,Z) € Sj using 7 parameters:

X
< y ) = Sij < § ) iy, Z=5;z

HereS(ivj) is a 2x 2 matrix. LetS(i_,j) = U(i_,j)/\(ivj)v(iT.j) be the SVD
of §j). Itis easy to see that the constraTrpTl oTi = T;,j can be
expressed via the following decoupled constraints:

S using a rotation matrbR(6) = ( (i.e.,

R(6 —6;) =UiViy, S/S =5,
s/s 0 >, NS R(_a) < Sthe Siie )
< 0 gy )~ ROISuREE)= Sine Siie /)

txi_’j

wheresf; ; andtf; , , ;are introduced to simplify the notations.

S
0

),8.8

Constructing G via pairwise matching. We adopt a variant of
the procedure described iKim et al. 2012 for constructing the

using RANSAC. As these steps are rather standard, we leave th
details in the supplemental material.

Joint matching via MRF optimization. Based on Equatiof, we
decouple the optimization df into the optimizations of 6}, {S},

{g}, {&}, {t} and {t} in this order. For each subproblem, we
placeK = 32 transformation samples per shape (see the table below
for details). Letf : {1,--- ,N} — {1,--- ,K} be the map that picks

a transformation sample for each shape. We compute the aptim
map f* (which provides the optimized transformations) by solving
the following MRF problem:

f*=arg n}axz exp(—Qij:ri)(j))
(i,j)eg
where termQ;;.+(j) evaluates the difference between the induced

transformation and the corresponding relative transftiona The
table below specifies the form fin each case.

)

Samples Qij:tit()
81y = 2nf(i)/K [IR(8: 1y — Bj,(j)) — U(i,j)V(Ij)l‘?
S = exp2f()/K - 1) 28" 14) — Sy i Sl
S = P2f()/K-1) 29 1) — S 1 Siio!
St = eXp(Zf_(i)/K -1 28 1) — SLr(p S|
1) = 2200)/K ~1) Moo =g ~ e
Ve = 2F()/K-1) Ao o)~ Hpesl

We solve Equatior2 using the iterative coordinate ascent method
described inlfeordeanu and Hebert 20péue to its simplicity and
efficiency. AsQjj.f()1(j) only provides relative constraints, we fix
f(1) in each subproblem so th&t is the identity transformation.

4.2 Local non-rigid registration

In the local phase, we start from the roughly aligned shajhes
for each shap&, we optimize a free-form deformation (FFD)
[Sederberg and Parry 1986 further refine the alignment. Follow-
ing [Huber 2002, we formulate this step as minimizing the sum
of distances between pairs of aligned shapes specified. byo
formulate the objective function, we first perform pair-&iegis-
tration [Li et al. 200§ to establish a set of corresponding point pairs
(piik € Si,Qik € §),k=1,...,ni between each pair of shapes
(S,S) € G. Then we setup the objective function to minimize the
distances betweepii« and gix. To avoid optimizing FFDs over
all shapes simultaneously, we introduce a latent point for each
point pair(pii«, gik) and setup the optimization problem as

N7

similarity graph g, i.e., using descriptor-based nearest neighbor  f.,ipie = Z Z(H}’i(p”,k) — miikll? + || F (i) — Miik]2).

computations and then estimating the associated tranafmmns

(iineg k=1
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Figure 4. Distance metric gallery A gallery of the learned  porating these terms leads to a more clean and meaningfizrtie

distance metrics for various label classes. To illustrdie effec- metric than merely optimizing the data term.

tiveness of the method, we highlight the cells contributivagt to

the distance computation as well as the most influentialédersed e Distance tox, i.e., ||p — x|| for a given pointp. The corre-
there. Note how natural features are automatically sekdcteg., sponding descriptor valuds (o.) effectively define a discrete
the arms for the chairs, or the loading area of the truck. distance field for each shajS Thus, these primitive distance

) . o ) metrics are expected to compare global geometric simjlarit
The quantity fmuriple can be efficiently optimized using alternat-

ing optimization. When ther are fixed, we simply se;i = L . 07

(piik + Qiik)/2. Whenmi;i are fixed, we can optimize each defor- * Norm of derivatives off: | H and|| ” These

mation % independently using.j et al. 2008. feature vectors are used for classes that have sallentandatr
global anisotropic scalings (e.g., Limousines).

5 Distance Learning on Aligned Shapes e Spin images Johnson and Hebert 1999vhich are used for
classes that exhibit local geometric features (e.g., Raksh

The central stage of the pipeline is to simultaneously |eadis-
tance metric between aligned shapes for each clas® that each 5.2 Learning distance metrics
metric captures the underlying geometric similarity of dwre-
sponding class. In the following, we first introduce a lineardel
for parameterizing the space of distance metrics. Then esepit
a convex optimization formulation for learning these nestri

We then jointly learn the distance metdg(-, -) = ka( -) associ-
ated with each clasg, where 1< j <M. In the foIIowmg we first
describe the objective function, which consists of a data tend
two regularization terms. Then we show how to solve the ieduc
5.1 Linear distance model optimization problem. We also present an alternating egsafor
updating the data term using the optimized distance metrics

We define a distance metric as a linear combination of a set
of primitive distance functions, each of which compares e- pr
defined volumetric shape descriptor at a spatial locatiopec-
ically, we first voxelize the bounding box of the aligned stmp

in Z. In our implementation, we set the grid size a&.0 For
each cellc and for each type of pre-defined volumetric descriptors
fs(-) : ¥ - RY 1< i <N (to be introduced later in this section),
we generate the corresponding primitive distance funai®n

ki(S. ) = [[fs (0c) — s (ac)

whereo, denotes the center of call Let K be the collection of
all primitive distance functions generated during thisgess, we

Data term. Following the principal idea of distance learninghg
and Jin 200F we construct for each class a similar seta4; C

S x S and adissimilarsetD; C S x 5, which collect pairs of shapes
that are expected to have small and large distances witlecesp
the desired distance metrik(-, ), respectively. In our implemen-
tation, we initialize both sets from the input shape it—}fts

= = (£

As the Li” of different classes can overlap, we compute a weight

define an arbitrary distance metd¢, -) as wp = 1—[ " 0 L] /max(| ]"|, | £]}]) for each shape pajy= (S €
L, S/ L'” \ L'”) € Dj to characterize its fuzzy association with
) :Zxkk(a) :XTk(.a')a XZOa (3) @lj :
ke %

The data term is then formulated to minimize the distancesden
shape pairs in the similar sets, and maximize the distareteselen
shape pairs in the dissimilar sets. In our formulation, welem

Volumetric descriptors. For robustness concern, we define each the following max-marginal model:
volumetric descrlptofs( ) as the surface integral of a surface de-

wherek(-, -) stacks all primitive distance funcions in a vector, and
x collects their coefficients.

scriptorfy(-) : § — R®: foata= Z Z dix; + |@| > wpymax0,1 - dpx;)),
= _ lp=x|? _ lp-x? =1 peM peD;
o= [ e ey [ e @
p<s p<s whered,, collects the distances gf with respect to primitive dis-

whereo = 0.05. In this paper, we have considered the following tance functions. Note that due to sparse and noisy inputaing
surface descriptors (See Figuréor their effects): the data term alone is typically insufficient (See Figbye
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As before, we show the relevant regions and kernels.

Regularization terms. We consider two regularization terms,
which are motivated from the properties of desired distametics
(See Figureb). The first termfqet favors the piece-wise constant
property, i.e., the coefficients of each desired distandeoremain
constant in each of its support region. Intuitively, thiscfes the co-
efficients to be determined in groups, which effectively raddes
the problem of having sparse and noisy input. RetC X x X
collect pairs of primitive distance metrics defined using fame
feature descriptor on neighboring cells. We enforce thes@iwise
constant property by minimizing the L1-norm (which pricréts
sparsity) of{xjx — Xj«|(k, k') € A(} for each classg;, wherex;
denotes the coefficient of kernl-, -) in d; (-, -):

fooett = Z Z IXj k= Xj | = Z [19%; |1,

=1 (kK)ex
where matrixJ is introduced to write dowricoeﬁ in the vector form.

©)

The second regularization terfp considers the mutual relations
among the distance metricArit et al. 2007. In our setting, we
assume that there exist a small set of support regions (ag.,
underlying parts), which are shared by all distance meticgiiv-
alently, this is to say that the rank of the matlx= (xz,--- ,Xm)
should be minimized. In our formulation, we propose to miain
the nuclear normCandés and Recht 200%vhich serves a popular
convex objective for rank minimization:

M
frank = Z Uk(X)
k=1

whereoy(X), 1 < k < M denote the singular values of matix

(6)

As shown in Figure, incorporating these two regularization terms
leads to significantly improved distance metrics.

Optimization. Combining Equationd, 5 and 6, we arrive at the
following convex problem:

M
min Z(l > d p,—km'zzwpma)((Ol dix ))
j=1 peM peD;
M M
FAD X+ 1Y ai(X)
i—1 i—1
st. XZ(X17...7XM)ZO. @)

Here parameters andy specify the strength of prior terms. For all
of our experiments, we chooge= 0.5 andu = 1, though we also
found that the optimal solution is insensitive to these peaters.

For optimization, we employ the alternating directions oiga
mented multiplier method (ADMM)Boyd et al. 2011, which has

been proven to be quite effective for solving large-scalever pro-
grams. Please refer tdyd et al. 201]for details.

Updating the date term. In the same spirit as reweighed least
squaresHlolland and Welsch 1977we use the optimized distance
metrics to update the similar and dissimilar sets used imighgfithe
data term, i.e., the similar and dissimilar sets only inelitstances
that are consistent with the optimized distance metrics:

M = {p|p € L] x 5, d}xp < 207(4))},
= {plp € £f" x 5, dpxp > 1},

where gj(94) denotes the medians df among the previougs;.
We then re-solve Equaton This alternating process is iterated
until the distance metrics become steady. In practice, wedahat
3-5 iterations were sufficient.

6 Graph Based Multi-Label Classification

The final stage of the proposed pipeline employs the learised d
tance metrics to construct per-class similarity graphs] per-
forms graph based multi-label classification to extracilassified
shapes of each class. To handle large shape collectionspwe e
ploy a select-from-candidate strategy, i.e., we first gateea set of
candidate classifications for each class in isolation vaplgrpar-
titioning, we then jointly select the optimal classificatifor each
class by solving a MRA[eordeanu and Hebert 2006

Similarity Graph Construction. We generate the similarity graph
gG; for each clasg; by connectingk-nearest neighbork = 6) of
each shape with respectdg(-, -). The weight associated with each
edge(S,S) € Gj is given by

Ws.g) = exp(—d?(S, §)/20%),
whereo is chosen as the median@f(S, S/) over all edges ir;.

Candidate classifications. We generate candidate classifications
by thresholding graph diffusion distancé3difman et al. 200pto

the labeled shape set, utilizing their power in capturirepgrclus-
ters at various scales. DenaigJ (S,S) as the diffusion distance
betweenS and§ on graphg; at scalet (Please refer toQoifman

et al. 200% for the formula). Given a fixed scale parameteand

a distance threshold;, we compute the corresponding candidate
classification

L£j ={S|d} (S, L") = mediar{d}, (S, SIS € £]"} < g,
where the median distance accounts for mislabeled shap“f?é in

To generate all candidate classifications, we first place: 8 uni-
form samples between 0 afdlam(g;) for the scale parametey.
Then for each fixed;, we placelL, = 8 uniform samples between

0 and maxe; dg, (S, £"™") for the distance thresholg. In total,
we obtainL = L;L, = 64 candidate classifications for clags

Joint classification selection. Denote f : {1,--- ,N} —
{1,---,L} as the map that picks one candidate classification from
each class, we compute the optimal mi@pt (which provides the
optimal classification for each class) by maximizing thédieing
second-order MRF potential'

)+ Z GJJ’ f(]

ZG
1<j<j’<n

The unary terng}, evaluates the disjoint score betweeyy;

ands \ Lj ¢(j on graphgJ In this paper, we utilize the normal-
ized cut (NCut) score$hi and Malik 200pto penalize candidate
classifications of small size:

0l = 2~ NCut(£j ¢

(8)

5\Ljf )



Query category by searching for sub-categories within WordNéitlér

SH: 199§ (e.g., side chair, Rex chair, sedan, convertible, spatshi-
plane, propeller airplane). We then use these class namiesyas
words to download models from Trimble 3D Warehouse. As the la

Hausdorff: % bels from the 3D Warehouse are quite noisy, we employ Amazon’
Mechanical Turk (AMT) to prune outlier models, i.e., those aot

in any category, and to generate ground truth labels. Speltyfi

we provide for each shape a few views and ask users from AMT to
answer questions that determine whether it is an outliey iindt,

the classes it belongs to. When determining fine-grainesset

we also give the AMT users a few examples of each class using
Google image search. In total, we obtained 5850 chairs with 2
classes, 1684 cars with 9 classes, and 1206 airplanes wids$es.

> PR PR
= |78 PPy

Baseline methods. As semi-supervised learning techniques fall
into transductive and inductive types, we chose a statbesfrt

- method from each category as the baseline method to compare
dt. w’ N’ W % m’ @ to. Among transductive methods, we cho&hén et al. 2008
7! which is the multi-label extension of a binary graph baseise
supervised classification method describedZhy 2006. Note
that this method requires a similarity graph of all input s as
input. In the same spirit aghu 200§, we construct this similarity
graph by connecting each shape wittkits 16 nearest neighbors in
terms of a pre-defined global shape descriptor. In our exjais,
we set this global shape descriptor as the concatenatiohreg t
popular shape descriptors: D@g$ada et al. 20Q2SH [Kazhdan
et al. 2003 and the lightfield descriptoiGhen et al. 2003 Among
inductive methods, we choskdeff et al. 2009, which is the semi-
supervised version of the popular linear classifier basdt-tabel
classification methodAmit et al. 2007. To make a fair compar-
ison between this approach and our approach, we feed thé set o
favor that the mutual correla- Volumetric features used by our approach irtodff et al. 2009.
Moreover, we use the same similarity graph as in the trarisguc
baseline method.

A A

=@ = P
by S\ e gl e o
Al ol

Figure 7: Distance metric comparisonThis figure compares dif-
ferent distance metrics for the task of shape retrieval.nirtop to
bottom, we show spherical harmonics (SKaghdan et al. 2003
Hausdorff distances between aligned shapes, and the distaet-
rics associated with the rocking and Windsor chair classespec-
tively. For the learned distances, we show results usinglistance
metric directly (top) as well as using the graph diffusiostedince
(bottom). It is clear that the learned distance metrics captthe
shape semantics more fully than traditional ones, and tifaigion
distances lead to the best results.

The pair-wise terms6?,;

tions between the output shape sets agree with those of plué in
shape sets, a criterion used by other multi-label clastificaech-

niques F'soumakas and Katakis 2007 Evaluation protocol. We evaluate the performance of a given
9121, i = = (1= [cor(£i s Lirt(j)) — cor(L}”|, |Li_p)|) method in terms of its classification accuracy and precisioet
L™ denote the ground truth set for clags Denote byz; the re-
where cofV,V’) = [V nV'|/|V UV’|, and parametey controls the sultlng labeled shape set for a given methodcpnWe define the
importance of the pair-wise term. classification accuracy(L j) and the precision(L;) of this method
We again employ the iterative coordinate ascent methoditbesic as:
in [Leordeanu and Hebert 200® optimize Equatior8. The pa- a(Ly) = [N gl /MU gif, (L) = 450 LM /] L)
rametery |s0 ?ptlmlzed_ via cross-correlation between the output | the following, we primarily use the classification acayrao
shape sets and the input shape set'. compare different classification methods. We use the poects

evaluate whether a given method reduces the noise leveltiiem
input labels or not. In this paper, we report these two messsim
percentages. Note tha(L'”) andr(L'”) describe the percentage of
input labels and their precisions, respectlvely

Note that after solving Equatio8, we also obtain an optimized
scale for defining the diffusion distance on the similaritsygh of
each shape. These diffusion distances can be easily appljsat-
form shape retrieval (See Figurdor an example).

. . 7.2 Analysis of classification results
7 Experimental Evaluation

. . . ) . Input | Transductive| Inductive | Proposed
In this section, we describe the experimental evaluatichetlas- PlaneType| 6.5/81.6| 54.7/59.2 | 75.1/78.2| 81.2/87.5
sification pipeline. We begin with introducing the experirtas ChairType | 3.4/79.8| 6L1.7/67.3 | 79.3/82.1] 83.4/87.1
setup in Sectiory.1 Then in Sectior?.2, we analyze the classi- CarType | 6.0/79.0| 51.7/59.8 | 75.3/80.1| 81.2/85.7
f'Cfét/'O” results a”d.coa“plare .‘f'?em. with Sf‘g"’f'the‘a”t"‘“l‘be' Planestyle| 4.7/83.8| 45.7/47.2 | 63.3/67.1] 80.1/85.6
and/or semi-supervised classification methods. Finayevaluate ChairStyle| 9.9/78.2| 44.7/48.7 | 65.3/68.1| 76.8/85.3

each stage of the proposed pipeline in SecTid

) Table 1: Average classification accuracies and precisions of the
7.1 Experimental setup proposed method and two baseline algorithms on classifyipgs

and styles of each dataset. In each entry, we show clasgificat
Benchmark. We have created a benchmark shape data set to eval-accuracy/precision.

uate the performance of the proposed approach. The benkhmar

includes three large shape collections: “Chair,” “Autorihgband To analyze the classification results, we divide the clas§e®n-
“Airplane”. We followed the following procedure to creathig sideration into a type group and a style group. The type group

benchmark. We first determine a candidate set of classesétr e includes classes, in which shapes exhibit global simjlaetg.,
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Figure 8: Baseline comparisonComparison between the linear classifier baseline apprgadeff et al. 200pand the proposed approach
on classifying propeller planes (Top) and rocking chairet®m). Correctly labeled instances and mislabeled instarare colored in blue
and red, respectively. (Left) Input shapes. (Middle) Gfasztion results of the linear classifier based approachigt® Classification results
of the proposed approach. We see that the proposed approaids gleaner results.

stools, lounge chairs, sedan and coupe, while the stylepgiou
cludes classes that exhibit partial and local similarity, eocking
chairs, swivel chairs and jet planes. The complete list ohegoup
is provided in the supplemental material.

Table 1 and Figure9 collect the classification accuracies of vari-
ous methods. Due to space constraints, we only report sesnlt
representative classes as well as the averaged resultsbria@
collection. Please refer to the supplemental material forente-
tails. Overall, our approach delivers good performancellnize
collections. In addition, the new approach improves sigaiftly
from baseline algorithms and is able to reduce the nois¢ éévke
input labels. In the following, we break down the performainé
various methods on specific classes.

Type classification. We distinguish between two categories of ob-
ject types. On objects whose geometric shapes significaliftly
fer from other object types in their category, e.g., limoesi and
lounge chairs, both the baseline algorithm and the propeged
proach lead to comparable high quality results (See Figuréhis

is expected because these object types are known to be ¥iett di
entiated by comparing either global shape descriptors igned
shapes. However, on object types that are characterize@lby r
atively small-scale geometric features, e.g., arm-rdsis $epa-
rate side chairs from chairs with arms, the performance ef th
descriptor-based transductive approach drops significarithis

is due to the fact that these local geometric features arevabt
captured by comparing global descriptors. In this casesticeess
of the descriptor-based approach relies on a huge shapztoti
and densely labeled shapes, so that one can propagatedaiigig
very similar shapes. In contrast, such key small-scale gétitn
features are nicely localized after aligning shapes, @xiplg why
the proposed approach and the classifier-based approarhhih
classification accuracy in this case.

Style classification. When classifying object styles, our approach
leads to better performance than the linear classifier agpra-ig-
ure8illustrates the classification results of these two apgrea®n
the style classes of rocking chairs and propeller planescaliesee

limousines lounge side with-arms

89.1/93.2100 91.1/93.294.5 | 64.2/83.184.9 | 61.2/81.283.0
rocking propeller bar stool folding

32.1/61.285.1 47.1/56.284.8 57.1/65.270.1 | 41.1/68.273.1

Figure 9: Results on representative classe£lassification ac-
curacies of the proposed approach and the baseline methods o
selected classes. Within each entry, we show transduciselibe
approach/inductive baseline approach/proposed approach

that the linear classifier based approach misclassifies istaayes
that are similar to inliers but with respect to a biased notibgeo-
metric similarity. This can be explained by the fact thatrih&ure of
geometric variation within each such style class is ratbibtls, and
itis unlikely to be characterized well using linear classtilearned
from sparse and noisy data. In contrast, the proposed agproa
utilizes a sub-graph to represent the shapes in each cléassh w
is capable of representing more complex decision bourslarie

7.3 Analysis of classification pipeline

Shape matching.We have evaluated the performance of our shape
matching approach on the benchmark dataset describedinm [

et al. 2013 This dataset consists of four categories of shapes: Seat,
Plane, Bike and Helicopter. The size of each category vémes

a few hundreds to a few thousands. Within each categorye ther
are 100 shapes with manually labeled feature points for eoimg

the accuracy of different methods. We run our approach oh eac
complete category of shapes and evaluate its performand¢keon
subset of labeled shapes. Figli@compares the performance of
our approach with state-of-the-art data-driven shape mrajcech-



| | Kim13 [ DL1 | DL2 | DL3 | Chen08] Prop. | sification. The strategy of updating the similar and diskimsets

PlaneType| 76.9 | 64.6 | 71.2 | 69.1 77.9 81.2 is also important for style classification as the style laliehd to
ChairType| 83.1 | 69.2 | 781 82.1 82.2 83.4 be sparser and noisier than the type labels (See Table

Car 813 | 696 | 77.1| 742| 77.7 81.2 . .
PlaneStyle| 68.6 | 55.6 | 65.2 | 63.8 59.8 801 Graph based classification. An alternative way to perform graph-
ChairStyle 05 T608 1 7011 672 773 “68 based multi-label classification is to use the methodCbfgn et al.

2009 on the similarity graphs derived from distance learningg A
. ) ... shown in Table2, we found that the classification accuracy of the
Table 2: Performance of alternative methods used in the classifica- proposed approach slightly outperforms that@hgn et al. 2008
tion pipeline. From left to right: using the shape matchingthod on all three datasets. Moreover, the proposed approaciyri-si
described in Kim et al. 2013 three alternative distance leaming jcantly more efficient since it avoids solving a large-sditear
strategies (DL1, DL2 and DL3), using the method Ghgn etal.  gystem. On the chair dataset, the new approach takes 10esjnut
20094 on the learned similarity graphs for classification and the | hile that of Chen et al. 200&akes 210 minutes.

proposed pipeline.

7442 Seats 3114 Pl anes _ tmatch treature tieamn teut total
P I ——— e Airplane | 3h33m | 1h4Im| 8m | 2m | 5h24m
g o TS / g o / Chair | 10h42m | 4h31m | 31m | 10m | 15h54m
go /7 — HE g = Car 4h1lm | 2h47m| 12m | 6m | 7h16m
8 40 ---Xu10 S a0l )7 SXu10 b
5% T 5% /L Ttz Table 3: Timings of the proposed approachmath teature tiearn
¥ 19 ---Kim3 # 10 -k m3 and t,; represent the shape matching stage, the volumetric feature
0-92y¢) Yadan & stance” > % 092y Yadan & stance” > O computation stage, the distance learning stage and the gwaph
100 471 Bkes 100 152 elicopters partitioning stage, respectively.
o 90 @ 90 e
§ EE """""""""""""" u ZE ,;,»”"' Timing. Table3 shows the timing of each stage of the pipeline on
2 50 e 2 s/ T a machine with 3.2GHZ CPU and 16G memory. Most of the time
e —Ki m2 Sl —Kim2 at the shape matching stage is spent on performing pairshizsge
2 o s g 20 f Ty matching and local alignment. On the average, matching aire p
% 005 01 0l 07 02 % oo, o @IS 07 02 of fully (partially) similar shapes costs1{1.5) seconds. Non-rigid

registration for one pair of shapes take® feconds. In the distance

Figure 10: Shape matching quality This figure demonstrates the ~ |€arning stage, most of the time is spent on feature comipotahe
shape matching quality of our method (red) relative to priark: learning process itself takes dozens of minutes. In tha fgiaph
Kim et al. [2013(magenta), Huang et al4013(black), Kim et partitioning stage, computing th_e diffusion distance Saah_out 2-
al. [2017 (blue) and Xu el al. 01 (green) on the benchmark 15 seponds per class. Generating shape sets and solvingtthe o
provided in R013. Our method improves substantially from prior ~ Mization problem take less than 10 seconds.

work in terms of both global and local accuracy. Limitations. Our approach is less effective on classes where geo-

metric similarity is less salient, e.g., folding chairs drat stools
(See Figure9). In this case, our approach is only able to propa-
gate labels to very similar shapes, and thus requires dehsds|
for better performance. To classify these classes well,haseto
utilize advanced feature vectors that understand shaptidunality.
This is subject to future research. Moreover, the propoppdoach
assumes that the input shapes can be aligned in one comnem spa

To understand the influence of the shape matching stage on thelt does not work well when the part of interest has differespie-

final classification results, we have replaced our shape himatc tition counts on some shapes (e.g., wheel classificatian frars
method by that of Kim et al. 2013. We found that the classifica-  With different number of wheels). In the future, we plan taless
tion accuracies on object types are similar. However, ouhoie  thiS issue by considering multiple common spaces, each @fhwh
leads to better performance on classifying style classéss dan accounts for one shared part across multiple shapes.

be understood by the fact that the template-based fittingoaph
described inKim et al. 2013 is insufficient to align style classes
that typically exhibit non axis-aligned in-class deforioges.

niqgues Huang et al. 2012Kim et al. 2012 Kim et al. 2013 as
well as the state-of-the-art pair-wise shape matching auefor
man-made objects{u et al. 201Q. The new approach is consider-
ably better than previous methods in terms of both globali@ay
and local accuracy. This shows the advantage of simultahgou
matching and aligning shapes in an ambient space.

8 Conclusions

Distance learning. We have tested the final classification accura- In this paper, given a modest set of labeled shapes in a cgtego

cies of using three alternative distance learning strategi we have described a semi-supervised approach that siraalialy
propagates and cleans these labels for others shapes mtégeiy.
e (DL1): Optimize fyata @nd updateis, ;. While there has been extensive work on aligning shapes tased
geometric features, the aim of our work has been to learn loow t
e (DL2): Optimize fyata+ A feoetf and updateisj, ;. compare shapes so that the resulting geometric similapteallel
o those present in a set of semantic class labels of a modesh¢ra
o (DL3): Optimize fgata + A feoet + 1 frank- set. The resulting labeled collection is far easier to ommrsearch,

) o etc. than before. Furthermore, experimental results shaivthe
As shown in Table2, both the three objective terms as well as the - performance of the presented approach outperforms stabe-@rt
strategy of updating the similar and dissimilar sets areoirsmt multi-label shape classification techniques.
for the classification pipeline. Specifically, incorponatithe coef-

ficient prior term significantly improves the classificatiaccuracy There are ample opportunities for future research. Firstywould
on all shape collections. The rank prior term, which considbe like to study how to unify shape matching and shape classifica
mutual relations among different classes, is importanstyle clas- tion into a single optimization procedure. Intuitivelyetblassified



shapes and the knowledge of where shapes are similar shelpld h
match shapes in a better way. Moreover, we would like to egplo
other applications of the presented approach to shape mgdeid
shape editing, or to more sophisticated forms of shapelsearc
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