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A Surface Approximation Method for Image
and Video Correspondences

Jingwei Huang, Bin Wang, Wenping Wang, and Pradeep Sen, Senior Member, IEEE

Abstract— Although finding correspondences between similar
images is an important problem in image processing, the existing
algorithms cannot find accurate and dense correspondences in
images with significant changes in lighting/transformation or with
the non-rigid objects. This paper proposes a novel method for
finding accurate and dense correspondences between images even
in these difficult situations. Starting with the non-rigid dense
correspondence algorithm [1] to generate an initial correspon-
dence map, we propose a new geometric filter that uses cubic
B-Spline surfaces to approximate the correspondence mapping
functions for shared objects in both images, thereby eliminating
outliers and noise. We then propose an iterative algorithm which
enlarges the region containing valid correspondences. Compared
with the existing methods, our method is more robust to signif-
icant changes in lighting, color, or viewpoint. Furthermore, we
demonstrate how to extend our surface approximation method to
video editing by first generating a reliable correspondence map
between a given source frame and each frame of a video. The user
can then edit the source frame, and the changes are automatically
propagated through the entire video using the correspondence
map. To evaluate our approach, we examine applications of
unsupervised image recognition and video texture editing, and
show that our algorithm produces better results than those from
state-of-the-art approaches.

Index Terms— Dense image correspondence, B-Spline fitting,
co-recognition, video texture editing.

I. INTRODUCTION

F INDING dense, reliable correspondences between images
that have content in common is a key problem for many

interesting applications in image processing and computer
vision, including object detection/recognition, video encod-
ing/compression, image and video editing, and 3D scene
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reconstruction. Given this importance, researchers in the past
have proposed a variety of different correspondence algo-
rithms that are able to compute robust correspondences under
different conditions. For example, for pairs of images with
small motions, optical-flow [2] is fairly robust and can find
dense correspondence fields. However, these kinds of methods
cannot deal with significant differences in lighting or large
changes in the poses of the shared objects in the images.

Other methods such as SIFT [3] utilize sparse features
which makes them more robust to geometric and photometric
variations. To produce reliable matches, however, these meth-
ods are usually followed by a geometric filtering step like
RANSAC, which removes outliers based on the assumption
that the scene is rigid [3]. New methods like the Non-Rigid
Dense Correspondence (NRDC) work of HaCohen et al. [1]
have sought to relax the rigidity assumption and enable the
generation dense correspondences for non-rigid objects, based
on local matching of nearest neighbor patches in the
two images. Although this method works quite well for a
variety of scenes, the correspondence field produced is still
too sparse and noisy for complex scenes to be useful for
applications such as image editing.

A possible approach to solve this problem is to apply
RANSAC after NRDC. However, because RANSAC uses
a linear function to approximate correspondences, it cannot
handle non-rigid scenes (e.g., see Fig. 9). In order to improve
correspondences for non-rigid objects, we need a more
flexible geometric filter and in this work we propose to use a
B-Spline [4] for this purpose. Our idea is motivated by
the observation that if a shared non-rigid object can be
approximated by a smooth surface, its correspondence map
should also be smooth. Since B-Spline surfaces are good
at approximating smooth surfaces, we hypothesize that they
would also be a good approximation for the correspondence
map.

To do this, we first generate an initial correspondence map
using NRDC [1]. We then use different B-Spline surfaces to
approximate the correspondence maps of different shared parts
between the two images. Because of the smooth continuity
of the B-Spline surface, the outliers and noise of the initial
correspondence map are smoothed away. To further increase
the size of the regions with valid correspondence, we propose
a new correspondence map extension algorithm that leverages
the B-Spline approximations to provide global guidance when
creating correspondences for these regions.

Compared to previous work, our new method can com-
pute more reliable, continuous, and denser correspondences
between images despite significant geometric and photometric
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Fig. 1. Initial correspondences and our improved B-Spline approximation.
We would like to find a correspondence field from the (a) source image to
the (c,d) target image, so that edits on the source will be mapped to the
target. In this case, we examine how pixels on the green line in the source are
mapped to the target. (b) Plot of the y coordinate of the correspondences from
the green line as a function of the x position using both NRDC correspon-
dences (blue) and our B-Spline fit (red). (c) The initial correspondences using
NRDC map the green line to the blue line in the target, which is quite noisy.
(d) Our B-Spline fit produces correspondences shown by the red line, which
are smoother and less noisy.

variations. For example, Fig. 1 shows how a scanline in the
source image (shown by the green line) is mapped to the
target image via the calculated correspondences. Because these
images differ only by a change in perspective and this part of
the scene is relatively planar, the correspondences are given by
a homography and so the green line in the source should map
to a line in the other. The blue trajectory is computed using the
initial correspondences from NRDC, but it is quite noisy and
is not a good approximation for a straight line. The red line
represents the correspondences approximated by our B-Spline
fit, which is smoother and less noisy. This is how our method
is able to eliminate errors and find accurate correspondences.

We can also extend our surface approximation idea beyond
simply finding correspondences between static images by
using a Trivariate-Spline approximation [5] for space-time
correspondences. This allows us to ensure the continuity of
correspondences not only in space but also in time, which is
crucial for video editing applications. Compared to previous
methods which use optical-flow as a basic approach to enforce
long-term temporal continuity [6], our method can generate
more robust correspondences between a source frame and the
others, making it more suitable for video editing.

We begin the paper by discussing relevant previous work
in Sec. II. We then present the details of our algorithm
in Sec. III and perform a thorough evaluation of it in Sec. IV,
specifically demonstrating the improved density, precision,
and continuity of the correspondence fields generated by
our algorithm. In Sec. V, we apply our algorithm to
two different applications of interest to the computer graphics
and vision communities: unsupervised image recognition and
video texture editing. Finally, we conclude in Sec. VI by

talking about some limitations of our approach and proposing
some potential areas of future exploration.

II. RELATED WORK

A. Finding Correspondences in Images

Algorithms for finding correspondences were first developed
for stereo vision applications [2]. Optical flow and stereo
reconstruction can be used for adjacent frames with small
motions or minor changes in lighting, in which cases they
can generate dense correspondence fields with high accuracy.
However, when viewpoint and environment change signifi-
cantly, shared objects will appear very different in both images
and these simpler methods would lose their effectiveness.

Algorithms like SIFT [3] perform well on finding
reliable correspondences in these harder cases, but their
correspondence fields are sparse. Geometric filtering steps like
RANSAC are often used to generate more reliable matches and
enlarge the correspondence fields, but they assume that objects
in the scene are rigid.

Other more powerful methods have been proposed which
combine sparse features with dense matching. They are able
to deal with large-displacement optical flow [7] and highly
different scenes [8], but they do not work well on images
with significant change in rotation or scale. Other approaches
initially find a few reliable feature matches and “densify” the
correspondences [9]. However, these methods are not very
accurate and perform poorly on pixelwise correspondences.

Another set of methods use pixel patches (i.e., square blocks
of pixels) to compute correspondences between images. For
example, the Image Analogies algorithm [10] uses the approx-
imate nearest neighbor (ANN) correspondence [11] from each
patch in a target image to a pair of source images in order to
mimic a filter that has been applied to the source. Later,
Barnes et al. demonstrated that computing ANN correspon-
dences can be significantly accelerated by the randomized
PatchMatch algorithm [12], which assumes coherency in
the nearest-neighbor correspondence field to approximate it
quickly.

Essentially, the PatchMatch algorithm leverages the fact that
if patch B in the source is a good match for patch A in the
target, then the neighboring patches of A are likely to find
good matches in the neighborhood of B . The PatchMatch
algorithm has been instrumental in enabling many power-
ful image editing and image synthesis algorithms based on
patch-based synthesis, such as image morphing [13], image
melding [14], and patch-based high-dynamic range image
reconstruction [15], [16].

Although the original PatchMatch algorithm assumes that
corresponding objects do not rotate or scale in the
two images, this assumption was later relaxed with the gen-
eralized PatchMatch method [17], which increases the search
space by taking rotation and scale changes into consideration.
There has also been research to address other shortcomings
of PatchMatch, such as making it more robust in regions with
smooth gradients [14] or near object boundaries [18].

Building upon generalized PatchMatch, HaCohen et al. [1]
introduced the Non-Rigid Dense Correspondence
algorithm (NRDC), a new method for finding correspondences
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Fig. 2. Overview of our method for finding correspondences between two input images. (a) Source and target input images. In this case, we see that the cup
has two visible surfaces (the body and lid). (b) Initial correspondence map from NRDC (Sec. III-A). (c) Result of the automated segmentation step, which
breaks up the image into super-pixels (Sec. III-B). (d) Intermediate result consisting of five B-Spline surfaces after merging step (Sec. III-B). (e) Extension of
the five B-Spline correspondence maps (Sec. III-C). (f) Final correspondence results. Only regions with high confidence are shown, the others are grayed out.

in images by finding matching patches in both.
Generalized PatchMatch method by itself is not effective for
computing reliable dense correspondence maps, since it only
finds nearest-neighbor matches locally on a single scale and
does not try to capture consistent regions or take into account
global constraints. For this reason, NRDC [1] uses generalized
PatchMatch in an iterative, coarse-to-fine refinement that
does several key things: (1) performs a constrained search
using generalized PatchMatch based on parameters computed
in the earlier iteration, (2) aggregates consistent matching
regions, (3) computes a color transformation model to map
one region to another, and (4) adjusts the search ranges for
the next iteration using generalized PatchMatch to improve
the correspondence computation.

The NRDC algorithm is able to generate dense, reliable
correspondence maps for non-rigid objects. However, when the
differences in viewpoint, lighting, or transformation are more
extreme, the reliable correspondences from NRDC remain
fairly sparse (see, e.g., Fig. 10). Hence, the challenge of
finding good, dense correspondences in cases of non-rigid
motion and significant changes is still an open problem that
we seek to address in this work.

B. Editing Textures in Video Sequences

When editing a video, a user may want to add/edit elements
in the scene, such as putting new pictures on the wall,
modifying the textures on various surfaces, or changing the
lighting in different parts of the scene. It is usually possible
for the user to edit one frame of the video, but it is very
time-consuming (and unfeasible) to edit all the frames in this
manner. Moreover, since our eyes are sensitive to temporal
inconsistencies which appear as flickering in the final video,
it is not easy to perform this editing manually in a way that
will look natural and plausible.

Video texture editing techniques allow a user to edit just
one frame and propagate his/her operations to the whole video
automatically. This relieves the users from having to do all that
tedious work and allows them to generate high-quality, edited
videos. Because this is an important problem, there has been
some previous work to try to address this.

For example, Rav-Acha et al. [19] proposed a method for
editing video textures called unwrap mosaics. Their basic idea

maps every frame of video to a texture map that is unwrapped
in the u, v domain. This texture can be edited manually and
then the changes would be automatically propagated to all
video frames. Although their algorithm produced remarkable
results even in cases of non-rigid objects, complex deforma-
tions, or occlusions, unlike our approach their algorithm does
not solve explicitly for a correspondence field between frames.
This means that it cannot be used directly in applications that
require a correspondence field such as stereo reconstruction,
shared object recognition, and others.

More recently, Crivelli et al. [6] proposed an automatic
method for mapping textures between images. They use optical
flow as a basic algorithm to find trajectories with space-
time continuity over the frames of video. They calculate
correspondences between adjacent frames and propose a new
strategy to produce trajectories from the correspondences.
However, this approach of texture editing still loses accuracy
in the long term, because errors will be amplified gradually.
Our Trivariate-Spline approximation method, on the other
hand, generates more reliable correspondences and ensures the
continuity of correspondences in space and time. Because the
work of Crivelli et al. is considered the state-of-the-art in this
field, we compare against it in Sec. V-B.

III. ALGORITHM

Our goal is to find dense, continuous, and precise corre-
spondences between two images with variations in lighting,
viewpoint, and motion. In this section, we present our B-Spline
correspondences algorithm (see overview in Alg. 1, as well as
an illustration of the different key steps in Fig. 2) that can
do this even in complex scenes with multiple shared objects.
By combining global and local features, we also introduce a
surface extension method to improve density of the resulting
correspondence field. Finally, we extend our approach to find
space-time correspondences.

We begin by describing how we can use B-Splines to
improve correspondences for a single shared surface.

A. Single Surface Correspondence Approximation

A correspondence map is a 2D function q = f (p),
f : R

2 �→ R
2, that maps each 2D-pixel coordinate p
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Algorithm 1 B-Spline Correspondences Algorithm

from the source image to its corresponding pixel coordinate
q in the target image. Algorithms using nearest-neighbor
patch-matching algorithms [12], [17] can compute reason-
ably robust, dense correspondence maps in the presence of
deformable, non-rigid objects [1]. However, because they
only consider features in a local area, their results often
still have objectionable errors and noise in cases of extreme
variation.

Patch-based correspondence algorithms usually fail because
of two reasons. First, because of extreme changes or noise
in the images, the patch with the closest distance might not
be the correct one geometrically. We treat these correspon-
dences as outliers (matches with large errors). Furthermore,
the PatchMatch algorithm (which significantly accelerates the
process) does not search through all the candidate patches
and might stop before the best match is found. This sit-
uation leads to matches with small errors (correspondence
noise). Because of these reasons, methods that rely only
on patch-based correspondences are not as robust as
necessary.

However, these methods could be used to compute
a preliminary correspondence map fo that could be refined
later. Therefore, we propose to first compute an initial corre-
spondence map with NRDC, and then apply geometric filtering
to discard outliers and eliminate noise in order to produce a
better correspondence field closer to the desired f . Our key
observation is that the shared objects between two images
typically have a smooth correspondence map, so we can
approximate the mapping function f with a smooth, B-Spline
approximation f�:

∀p ∈ �i , f (p) ≈ f�i (p), (1)

where �i is the region of a single, shared smooth surface
in the source image IS , f (p) is the unknown ground-truth
correspondence map, and f�i (p) is the B-Spline function that
approximates f (p) well in region �i . For now, our discussion
assumes that there is only one shared surface �i in both
images, so it can be approximated with a single B-Spline.
We will relax this assumption later in Sec. III-B.
To represent f�i , we use the uniform, 2D cubic B-Spline:

fS(x, y)=
3∑

i=0

3∑

j=0

d(i+�wx�, j+�wy�)N3
i ({wx})N3

j ({wy}),

(2)

TABLE I

COMPARISON OF AVERAGE SQUARED ERROR (ASE) BETWEEN

POLYNOMIAL AND B-SPLINE APPROXIMATIONS OF DIFFERENT

DEGREES FOR THE SCENE IN FIG. 2. GROUND TRUTH

CORRESPONDENCES WERE OBTAINED BY MANUALLY

MODELING THE SCENE TO FIT THE IMAGES AND

COMPUTING THE ACTUAL CORRESPONDENCES

BETWEEN THEM

where fS(x, y) is a 2D vector-valued function, w = 1/30 is
the inverse distance between adjacent control points of the
B-Spline in pixels, d(i, j) is the 2D position of control point
(i, j), N3

i (u) represents the i -th basis function of order 3 for
the uniform cubic B-Spline, and {·} is the fractional operator
that takes the fraction of a real number (e.g., {3.14} = 0.14).
Note that because the region of �i in the source image may
be irregular, we define x and y as the horizontal and vertical
offsets of pixel p from the top-left pixel of �i ’s bounding box.

The idea is to compute f�i by fitting a smooth B-Spline of
the form fS to the initial correspondence map fo computed
with NRDC. We do this by minimizing sum of square differ-
ence between fS and fo:

f�i = arg min
fS

∑

(x,y)∈�i

‖ fS(x, y)− fo(x, y)‖2. (3)

This linear equation takes O(|�i |) to solve. Once f�i has
been calculated, it acts as our enhanced correspondence map,
where outliers and noise have been eliminated because the
B-Spline approximation acts as a geometric filtering step.
Fig. 1 shows the efficacy of B-Spline approximation in
smoothing the noisy correspondences. Here, the green line
maps to the blue line using initial correspondence map from
NRDC. After our B-Spline approximation process, however,
the green line maps to the red one which is smoother and more
accurate.

As an aside, we could have considered using a polynomial
curve instead of a smooth B-Spline to approximate the
correspondence field. We experimented with this initially, but
found that it did not work as well. Table I shows the numerical
comparison of average squared error (ASE) between our
cubic B-Spline and a polynomial approximation of different
degrees for the scene in Fig. 2. We see that even a
second-degree B-Spline works better than a fourth-degree
polynomial. Furthermore, since the cubic B-Spline behaves
almost as well as quartic B-Spline, we adopt it as our geomet-
ric filter. For reference, we also compared against RANSAC
with a homography (the planar assumption), which performs
poorly on curved objects like the cup and resulted in a much
higher ASE of 795.

B. Unsupervised Segmentation for Multiple Shared Surfaces

Although a B-Spline can successfully approximate the
correspondence map for a single shared smooth surface in
two images, it cannot do so for two or more different surfaces,
something that is common in real scenes. For example,
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Fig. 3. Finding correspondences using our method and its application for object recognition. (a) Source image. (b) Target image. (c) B-Spline approximation
for the correspondence field computed by our method (the value of the function plotted is the x coordinate of the pixel in the target image corresponding to
a given pixel in the source image). One application of our work is to recognize shared content in both the (d) source and (e) target images.

in Fig. 2(a) we see that the cup has two surfaces (the body
and the lid) which need to be approximated by two different
B-Spline surfaces instead of only one.

To handle these situations, we need to automatically split
(or segment) the image plane into several regions, each repre-
senting the surface of a different shared object. In this case, for
example, our algorithm uses two B-Spline surfaces to approx-
imate the cup and three more to approximate the background.
Fig. 3 shows another example of a set of books cluttering a
desk. In this case, there are six shared surfaces for books,
so we need six B-Splines to denote the correspondence field
(shown in Fig. 3(c)). Our algorithm automatically segments
the images into several regions (see Fig. 3(d)), where each
color indicates a different shared surface.

Once the surface has been segmented into regions �i ,
we can then compute the surface approximation by solv-
ing the minimization in Eq. 3 in each separate region to
determine precise correspondence maps f�i . We now must
focus on the algorithm for the automatic segmentation of the
image into smooth, coherent surfaces, which is not a trivial
problem.

Since image segmentation is an important problem in image
processing and computer vision, many approaches have been
developed over the years. Some are based on extracting
contours in the image [20], but it is often difficult to obtain
closed boundaries which leads to incorrect segmentation.
Others use thresholding based on image histograms [21], but
it is not easy to choose the appropriate threshold. Algorithms
based on region-growing methods [22] start from a seed and
add points on the boundary that satisfy some criterion of
homogeneity. Unfortunately, these methods do not apply to
images with complex textures. Chen et al. [23] and
Chan and Vasconcelos [24] consider segmentation using tex-
ture information and generate good results. Their methods
need temporal information, however, and are hard to apply
to pixelwise correspondences.

We observe that the correspondences in each segment
should be smooth, so the segmentation process should
somehow try to preserve this smoothness. Although segmen-
tation algorithms based on smoothness have been proposed
(e.g., [25]), they have been applied to segment surfaces from
point cloud data based on curvature estimation, which does
not permit much noise in the input points. In our case, the
initial correspondences of the surfaces have considerable noise,
so these methods lose their efficacy. Therefore, we need to
develop our own algorithm for segmentation.

Our algorithm is based on the observation that if a group
of segments belong to a single smooth surface, they can be
approximated by a single B-Spline. Based on this observation,
we can convert the problem of segmentation into the problem
of merging small, pre-defined segments. Therefore, we first
segment images into superpixels that are fairly small and then
only merge those that are well-approximated by a single
B-Spline. We now discuss each of the two steps in turn.

1) Segmentation Step: First, we require an algorithm to
break up the source image into superpixels �i . To do this,
we use the method of Ren and Malik [26], results of
which are shown in Fig. 2(b). Their content-based method
effectively segregates different object surfaces, where each
superpixel belongs to only one surface. In our experiments,
every super-pixel contains at least 50 pixels and one source
image is usually segmented into 1000 non-overlapping super-
pixels. This ensures that each resulting superpixel contains
enough pixels to make each |�i | reasonably large for accurate
B-Spline approximation.

After applying this method to segment the image, we
next approximate each superpixel with a B-Spline surface as
described in Sec. III-A. However, superpixels with NRDC
confidence value less than 0.8 are deemed unreliable and are
discarded. Furthermore, the initial correspondence map may
also have outliers which make their corresponding superpixels
poorly approximated by B-Spline surfaces. These superpixels
are discarded if the distance between the B-Spline approxi-
mation and the NRDC correspondence map is greater than
some fixed distance, using a distance calculation similar to
that in Eq. 4. Once these unreliable superpixels have been
discarded, we are ready to begin the merging process.

2) Merging Step: In the next step, we merge superpixels that
have similar B-Spline approximations together to form larger
coherent regions. In order to accelerate the merging process,
we use an iterative greedy algorithm outlined in Alg. 2.
At every iteration, we only merge regions that are adjacent
to one another if they can be approximated well by a single
B-Spline. If no such pair of regions can be found, the merging
step terminates. Fig. 4 illustrates the overall merging process
by showing selected pairs of regions at different iterations.

In order to decide which pair of regions should be selected
to merge at any moment in time, we abstract the image
regions and their adjacency relationships as a graph. Here,
regions are denoted by vertices and adjacent regions are
connected by edges. The merging operation effectively
collapses adjacent vertices and their edge into a single vertex.
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Algorithm 2 Merge And Fit Splines( fo,� = {�1, . . . , �k})

Fig. 4. Merging process through different iterations. The edges of the regions
are shown in blue, while the red lines represent edges of the graph. Green
lines represent the selected pairs of regions to be merged. (a) Iteration 1.
(b) Iteration 4. (c) Iteration 7.

At the beginning, we initialize the graph so that all adjacent
superpixels have edges to each other so that they are eligible
to be merged together.

In each iteration, we select a pair of adjacent regions (call
them �U and �V ). Note that two regions are considered
adjacent if the minimal distance between pairs of pixels in
these regions equals 1. We then calculate the B-Spline approx-
imation for the union of the two by setting � = �U∪�V when
minimizing Eq. 3, and measure the difference D(�,�U ,�V )
between the correspondences with this new joint B-Spline and
the original correspondences from the individual B-Splines.
Formally, we can write the calculation for D(�,�U ,�V ) as:

D(�,�U ,�V ) = 1

|�|
[ ∑

p∈�U

‖IT ( f�(p))− IT ( f�U (p))‖2

+
∑

p∈�V

‖IT ( f�(p))− IT ( f�V (p))‖2
]
,

(4)

where IT (q) represents value of pixel q in the target image.
Note that this distance is calculated by comparing the pxiel

Fig. 5. Segmentation results with different values for d, the threshold below
which we merge two different regions. When d = 3 we see that the divisions
within a single surface are preserved, while when d = 30 we see that multiple
surfaces are merged into one, both of which are undesirable effects. In our
experiments, we found d = 10 gave the best results. (a) d = 3. (b) d = 10.
(c) d = 30.

values (and not the flows directly) because in the end we only
care that the pixel values of the correspondences match, not
that the actual offset vectors are the same.

If our distance D(�,�U ,�V ) is less than some constant d ,
we merge the regions by combining the vertices in the graph
and updating the correspondence map. Otherwise, we delete
the edge between them so that we do not try to merge them
again. We found that setting the threshold d = 10 achieved
reasonably good segmentation results, as shown in Fig. 5. Note
that unconnected pixels in Fig. 5(c) may be merged together,
because their respective regions are adjacent.

Note that since the same sets of super-pixels are covered
by the final B-Splines, the order in which we merge the
regions does not affect the result much. Therefore, we simply
merge these superpixels in an arbitrary order based on our
graph traversal algorithm. When the edge set is empty, no
more regions can be merged and we have fit B-Splines to all
regions �i . Note, however, that the regions containing valid
B-Spline correspondence approximations do not necessarily
cover all pixels in the source image IS since we have discarded
pixels with low confidence values. Since it is important to
have correspondences in these regions as well, we extend the
surfaces with an algorithm described in the next section.

C. Correspondence Map Extension

We now describe a novel way to extend the merged corre-
spondence field f� into one that is larger but still reliable, as
described in Alg. 3. Our idea is that since we have computed
B-Spline surfaces in the merging step, we can use them as
global information to further extend our correspondence field.
Specifically, we observe that a good extension should satisfy
three rules:

1) Correspondences in regions of high confidence (where
we have fit a good B-Spline approximation f�i ) should
remain unchanged.

2) Low-confidence pixels immediately outside the
high-confidence regions should have a continuous
correspondence field with their high-confidence
neighbors.
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Algorithm 3 Extend Correspondences(�= {�1, . . . , �n})

Fig. 6. After merging, several contiguous regions with robust correspon-
dences have been identified, shown here as �i and � j . The purpose of
the extension step is to propagate these correspondences into neighboring
regions. We first identify the extension region �′i , and for every pixel
p ∈ �′i we find the nearest pixel q ∈ �. We then linearly extrapolate the

correspondence of q to p to compute a preliminary correspondencêf�i . Since
this correspondence may not be correct, we search patches in a neighborhood
around this correspondence to find the closest patch. If a good match is found,
p will be added to �i , else it is discarded. After processing all the pixels in
�i in this manner, we fit a new approximate B-spline to the new �i and the
algorithm repeats again.

3) Pixels in regions with low confidence should belong to
patches that also have similar correspondences.

Our algorithm iteratively adds more pixels to the high-
confidence regions, fits new B-Splines to them, and then tries
to add more pixels in the next iteration. We begin by describing
what happens in the first iteration, referring to Fig. 6 for
illustration.

For every surface �i found after the merging step, we
identify pixels p in source image IS that lie in a small
region surrounding �i that are not in any of the other regions

p /∈ ⋃n
j=1 � j . This region, called �′i , is where we want to

extend the correspondence map to enlarge it. We then identify
the pixel q that is nearest to p but still inside the original �i .
Note that the region to be extended �′i is small enough that
‖p− q‖ ≤ 5.

Since q ∈ �i , it has a highly-confident correspondence
map that is well-approximated by a B-Spline f�i (q). Because
there should be some coherency between the correspondences
of q and p, our idea is to linearly extrapolate the valid
correspondence field from q to p (leveraging rule #2), but then
adjust it to fix problems by doing a local patch-based search
(leveraging rule #3). Specifically, we can linearly extrapolate
the correspondence field at p using the B-Spline approximation
at q in the following way:

f̂�i (p) = f�i (q)+∇ f�i (q) · (p− q), (5)

where the hat over f̂�i indicates that it is the temporary
correspondence map because the linear extrapolation is not
likely to produce accurate correspondences.

To find a more accurate correspondence, we must search
around the region indicated by the linear extrapolation to
find the patch in the target that is the most similar to the
source patch. To do this, the 7 × 7 patch of pixels around
p in the source (call it PS(p)) must be transformed to the
potential corresponding patch in the target image IT (call it
PT (p)), but we need to know more than just the offset from
the correspondence map (given by t = f̂�i (p) − p) since
patches could rotate, scale, or deform when they map from
IS to IT . Fortunately, we can approximate this deformation
by computing the Jacobian of f�i at pixel q:

Jq =

⎡

⎢⎢⎣

∂ f�i,1 (q)

∂x

∂ f�i,1 (q)

∂y
∂ f�i,2 (q)

∂x

∂ f�i,2 (q)

∂y

⎤

⎥⎥⎦ (6)

where f�i,1 and f�i,2 refer to the first and second components,
respectively, of the vector-valued function f�i which is a
B-Spline of the form in Eq. 2. The resulting Jq is a 2×2 matrix
that encodes the rotation, scaling, and other deformations
(approximately) induced locally to the patch of pixels around
q by the correspondence map f�i (q).

Since we assume coherency in the correspondence map
from q to p, we can use the same transformation for the
patch PS(p) around p to map it to target IT . To search the
neighborhood of patches around this transformation, we allow
the patch transformation to have slight variations in translation,
rotation, and scale, similar to what was done for Generalized
PatchMatch [17]. Specifically, we compute a new offset vector
t′(�x,�y) = t + [�x,�y]T , where �x,�y ∈ {−1, 0, 1}
which means that the new patch will be within a one-pixel
offset of the original linearly-extrapolated correspondence f̂�i .
In a similar way, we compute a new deformation matrix
J′(θ, s) = R(θ) ·S(s) ·Jq in which the original transformation
Jq is first multiplied by 2 × 2 scaling matrix S(s) (where
s ∈ {0.9, 1.0, 1.1}), and then by 2 × 2 rotation matrix R(θ)
(where θ ∈ {−5°, 0, 5°}). The new patch translation t′
and deformation J′ can then be combined into
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a single 3× 3 transformation matrix M:

M(θ, s,�x,�y) =
[

J′(θ, s) t′(�x,�y)

0T 1

]

We can then apply transformation matrix M to the patch of
pixels around p to get our potential target patch PT (p):

PT (p, θ, s,�x,�y) = IT (M(θ, s,�x,�y) ·N (p)),

where N (p) outputs the coordinates of pixels in the
7 × 7 patch around p in homogeneous coordinates
(a 3×72 matrix) which are then multiplied by the 3×3 matrix
M which warps them and adds an offset. The resulting
3× 72 matrix is used to sample target image IT with bilinear
interpolation to produce the potential corresponding target
patch PT (p). We must search through all the potential patches
to find the one that gives us the minimum error with respect to
the source patch, given by PS(p) = IS(N (p)), by minimizing:

E(PS, PT ) = min
θ,s,�x,�y

‖P∗S(p)− P∗T (p, θ, s,�x,�y)‖2 (7)

where the ∗ superscripts for the patches indicate that we
are using LAB color space when computing differences and
standardized them by subtracting the mean of the patch and
dividing by its standard deviation, i.e., P∗ = (P − P)/σ (P),
which helps account for changes in lighting and tone
mapping.

If the error E(PS, PT ) in Eq. 7 is greater than a certain
threshold (set to 0.1 in our experiments), a correspondence for
pixel p has not been properly found and so p is removed from
the extension region �′i . If the error is below this threshold,
then the offset discovered during this search is added to the
pixel coordinate and used as the new correspondence map at
this pixel:

f�i (p) = t + [�x,�y]T + p,

where �x,�y are the offset deltas that resulted in the
minimum error in Eq. 7. This process is then repeated for
all pixels in the extension region �′i . Once this process is
finished, only pixels with good correspondences will remain
in �′i since the others have been removed.

Note that although pixels may not be connected with
the original region �i , we still accept them without the
requirement of pixel adjacency by approximating the entire
unconnected region with a single B-Spline surface. In this way,
these unconnected pixels will not degenerate the approxima-
tion. Finally, to complete the iteration, the original region is
combined with its extension �i ← �i ∪ �′i and a B-Spline
approximation f�i is computed to fit to the entire new region
�i as shown in Eq. 8.

f�i = arg min
fS

∑

(x,y)∈�i

‖ fS(x, y)− f�i (x, y)‖2. (8)

Note this is similar to the minimization we did earlier
in Eq. 3, except that in this case we fit to the previous B-Spline
approximations, not the original correspondences from NRDC.
The iterative process then repeats again and a new extension
region is identified. This extension process continues until no
new pixels are added to any of the current surfaces �i .

Once all n regions have been extended, they are
combined together into a single correspondence map
f ← f�1 ∪ f�2 ∪ . . . ∪ f�n for output. Here, each f�n is
a correspondence map approximated by a single B-Spline
for surface �i . This final correspondence map f can be
used for recognizing objects in common between the two
images, mapping a texture from one image to another, or other
applications.

D. Space-Time Correspondence

Our algorithm is not limited to finding correspondences
between two static images. We further extend it to compute
space-time consecutive correspondences between a source
frame IS and a sequence of target frames ITi , commonly
presented as a video. The principle is similar as before:
since motions of objects are often smooth over time, the
correspondence map should also be smooth over time and can
be well-approximated by a spline function. We first initialize
correspondence map fo(p, t) and confidence map c(p, t)
between IS and ITt using NRDC. We then detect shared sur-
faces �t in the source image and approximate correspondences
by fitting a spline to the initial correspondence map.

To ensure space-time continuity, we use the Trivariate-
Spline [5] to approximate correspondences for each detected
surface in the source image:

fS(x, y, t) =
3∑

i=0

3∑

j=0

3∑

k=0

di+�wx�, j+�wy�,k+�lt�,

·N3
i ({wx})N3

j ({wy})N3
k ({lt}) (9)

where l = 1/15 is the inverse temporal distance between
adjacent control points in frames, w = 1/30 is the inverse
spatial distance between control points (as in Eq. 2),
and di, j,k are the positions of the control points. We then fit
the spline by solving a standard least squares problem:

f�i (p, t) = arg min
f S

∑
(p∈�i )

‖ fS(p, t)− fo(p, t)‖2. (10)

Although f�i (p, t) is R
3 �→ R

3, note that the initial
correspondences fo(p, t) are computed frame by frame. There-
fore, fo(p, t) will preserve the time value and only affect the
x and y offsets in p. This ensures that the first two dimensions
of f�i (p, t), which are the correspondences of p at frame t ,
can be solved independently of t . To handle multiple shared
surfaces, we use our split-and-merge method and approximate
each surface with Trivariate-Spline.

IV. EVALUATION

We implemented the algorithm presented in Sec. III using
combination of C++ and MATLAB. For a 640 × 480 pixel
image, our implementation takes about 4 to 7 seconds to
initialize a correspondence map and an extra 5 seconds
to do surface approximation and merging on a 2.9GHz
Intel Core i7(2640M) Dell laptop. We test our approach
on several datasets and compare our results with previous
algorithms.
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Fig. 7. Mapping a texture from the source to the target using our
correspondence field. Given a pair of (a) source and (b) target images showing
a wall from different perspectives, we manually added a texture (in this case
the “Lena” image) to the wall in the source and used the correspondence
field from different algorithms to resample the source to automatically
re-project the texture onto the target image. While the result from (d) NRDC
has objectionable artifacts because of noise and error in the correspondence
field, our B-Spline approximation produces a smoother correspondence field
that is free from visible artifacts (e). (a) source. (b) target. (c) source +
texture. (d) NRDC result. (e) Our result.

Fig. 8. Mapping user strokes from a source to a target, with the strokes
labeled by numbers. Although NRDC maps strokes 1 and 3 fairly reasonably,
it does a poorer job for strokes 2 and 5, and loses stroke 4 altogether. On the
other hand, our algorithm produces a more robust correspondence that is able
to map the user’s edits to the target image in a reliable manner. (a) source.
(b) source + strokes. (c) NRDC result. (d) Our result.

A. Continuity

To test continuity of our correspondence map, we manually
added a texture (i.e., a 2D bitmap) to a source image and
viewed the surface from another angle in the target image,
using our correspondence map to resample the texture from the
source to the target. We also tried to do this using NRDC [1]
by itself, since it is the most successful previous method for
finding dense and reliable correspondences. As we can see
in the comparison in Fig. 7, the result obtained with our
correspondence map is smooth and undistorted because our
B-Spline approximation is able to eliminate noise and outliers,
while the result produced by NRDC has visible artifacts.

Our surface approximation can also handle curved sur-
faces which can be more challenging. In Fig. 8, we map
a user’s color strokes on a cup from the source image to

Fig. 9. Performance on real world scenes, taken from HaCohen et al. [1].
Here, we compute the correspondences from the source to target using various
algorithms (NRDC, NRDC + RANSAC, and our own), and then map pixels
from the target back to the source using the correspondences to visualize
their quality. The first and fourth rows show the source images remapped
with pixels from the target using the correspondence map, with exception of
the first column which is simply the original source (the highlighted regions
in each image are those with robust correspondence maps). The second and
fifth rows show the target images with the matching region shown, while
the third and sixth rows show a magnified inset from the remapped source.
By comparing the results with the (a) original source images, we can tell if
the correspondence maps are accurate and smooth. In both cases, we see that
(b) NRDC’s correspondences are not accurate and that the remapped image
has lost important texture detail. Furthermore, trying to use (c) RANSAC
to eliminate NRDC’s outliers results in serious distortion of the scene.
(d) Our method, on the other hand, produces an accurate and continuous
correspondence map of a reasonably large region.

the target. In this case, NRDC’s correspondence map distorts
patterns 2 and 5 and is simply not big enough to cover pattern 4
on the cup’s body. On the other hand, our algorithm automat-
ically splits the body and cover of the cup into two surfaces
(see correspondence map shown in Fig. 2) and performs
surface approximation on each of them. This helps us eliminate
noise and outliers and map patterns 2 and 5 without distortion.
Furthermore, our surface extension algorithm enlarges the
region containing valid correspondence fields, so we can map
pattern 4 correctly to the cup in the target image.

B. Real Scenes With Non-Rigid Objects

The proposed algorithm also works well for natural scenes
with shared, non-rigid objects. In Fig. 9, we directly map
pixels from the source to the target by computing corre-
spondences with NRDC only, with NRDC combined with
RANSAC in an attempt to get rid of outliers, and with
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Fig. 10. Two examples from the dataset by Mikolajczyk et al. [27] (in each the top row is the source, the bottom is the target). The first example exhibits
significant change in viewpoint, while the second features a strong difference in rotation and scale. We compare the correspondence matches found by a
variety of algorithms: (b) sparse SIFT features, (c) Generalized PatchMatch, (d) SIFT-Flow, (e) Non-Rigid Dense Correspondence, and (f) our algorithm.
We highlight regions where errors less than or equal to 15 pixels. We can see that our algorithm is able to produce larger, more contiguous regions with
high-quality correspondences than the other state-of-the-art approaches. (a) Inputs. (b) SIFT. (c) GPM. (d) SIFT-Flow. (e) NRDC. (f) Ours.

our algorithm. In rows 3 and 6 of Fig. 9(b), NRDC alone
produces correspondences that are not entirely accurate
resulting in the loss of details. Objects mapped by
NRDC+RANSAC are seriously distorted, as shown in
rows 3 and 6 of Fig. 9, which are zoomed-in views of the
insets in rows 1 and 4, respectively. In row 3 of Fig. 9(c),
the head of the man is deformed, while in row 6 of Fig. 9(c),
the mountain is lower than it should be. Our method is able
to reproduce the target image from the source more faithfully
because it finds better correspondences.

C. Density and Accuracy

There are many state-of-the-art methods that can generate
reliable correspondences. To demonstrate the density and
accuracy of our approach, we compare our results with some
of the top dense correspondence methods in the literature:
Generalized PatchMatch (GPM) [17], SIFT-Flow [8], and
NRDC [1], as well as the original sparse SIFT correspondence
algorithm [3] for completeness.

Fig. 10 shows two examples from the dataset by
Mikolajczyk et al. [27]. The first pair of images are taken with
a significant change in viewpoint, and the second pair show big
difference in rotation and scale. In these cases, other methods
are not able to find dense correspondence maps, because the
variations from one image to another are too great. However,
our method is able to find good correspondences in a region
of reasonable size.

We also adopt the metric proposed by Liu et al. [8] to
measure accuracy and density of the correspondence field.
Here, the correspondence at a pixel is considered correct
if its distance in pixels from the ground truth location is

Fig. 11. Comparison between our method and other approaches on the
dataset by Mikolajczyk et al. [27]. The horizontal axis represents the size
of threshold r , the distance from the ground truth correspondence, and the
vertical axis represents the percentage of correct correspondences for each r .

less than threshold r . In Fig. 11, we plot the proportion of
correct matches with respect to r while comparing state-of-
the-art methods against our own for the entire dataset of
Mikolajczyk et al. [27]. In this case, SIFT’s result is too
sparse and not effective for finding dense correspondences.
SIFT-Flow cannot handle large scale and rotation differences.
While GPM is robust to differences in scale and rotation, its
nearest neighbor patch feature is not enough to find reliable
matches. NRDC generates the best result of the previous
methods, but still fails in the case of extreme scale and rotation
such as those shown earlier.

On the other hand, our method is able to find a higher
percentage of correct correspondences at all values of r .
Specifically, our result finds 66.9% correct correspondences
on average with error less than 1 pixel, while for the other
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Fig. 12. Results of unsupervised co-recognition using our algorithm. The first line shows the BOOKS example, and the second line shows the JIGSAW

example. (a) Source images. (b) Reference images. (c) Source images highlighted with NRDC correspondences. (d) Reference images highlighted with NRDC
correspondences. (e) Source image segmentation. (f) Objects detected in source images by our algorithm. (g) Objects detected in reference images by our
algorithm. Different objects are masked with different colors. Our method recognizes most parts of shared objects accurately.

algorithms the percentage of correspondences found with this
degree of accuracy ranges from 2.1% to 30.4%. In terms
of density, our method generates larger correspondence field,
finding more than 90% correspondences with errors less than
15 pixels, while the other methods find 30.4% to 70.6% correct
correspondences with this accuracy.

V. APPLICATIONS

We demonstrate the advantages of our method by applying
it to two important problems in image processing and com-
puter vision: (i) unsupervised recognition and segmentation of
multiple common objects, and (ii) editing of textures in video
sequences. We shall talk about each application in turn.

A. Unsupervised Recognition and Segmentation
of Multiple Common Objects

Our method can be used to recognize objects in common
between two images. To do this, we first select one image
as the source and the other as the target. We then calculate
correspondences between the two images and approximate
them with B-Spline surfaces as described in Sec. III. Because
our algorithm only merges regions that have a smooth cor-
respondence field together, after the algorithm is finished
each region covered by a different B-Spline surface can be
considered a different shared object.

To test our approach, we use the challenging dataset from
Cho et al. [9], where the scenes are cluttered and objects are
occluded in complex ways. Fig. 12 presents our recognition
results. Given source image (a) and reference image (b), we
calculate NRDC correspondence map (c, d) and segment the
source image (e). We merge the segments and finally detect
different objects with dense correspondences (f, g).

These results can be evaluated by the hit-ratio hr and
background ratio br metrics1 defined by Cho et al. [9].
Essentially, hr denotes fraction of the area that is correctly
matched for shared objects, so higher hr means that more
correct correspondences are detected. Analogously, br denotes
fraction of wrong correspondences (i.e., false positives), so
lower br means a method with higher accuracy.

1hr = |GroundTruth ∩ Result|
|GroundTruth| , br = |Result| − |Result ∩ GroundTruth|

|Result|

TABLE II

NUMERICAL COMPARISON BETWEEN CO-RECOGNITION [9], NRDC [1],

AND OUR ALGORITHM. HIGHER hr AND LOWER br INDICATE BETTER

RESULTS. WITH THE EXCEPTION OF THE FIRST TWO SCENES

(SEEN IN FIG. 12), ALL OTHER SCENES ARE IN

THE SUPPLEMENTARY MATERIAL

Fig. 13. Trajectory found by Crivelli et al.’s algorithm [6], initial correspon-
dences from NRDC [1], and the result of our Trivariate-Spline approximation.
Errors in Crivelli et al.’s result are large, while the trajectory from NRDC is
perhaps more accurate but very noisy (high variance). Our method eliminates
these errors and generates a trajectory that is both accurate and precise.

To test our algorithm against other methods, we performed
a numerical comparison of our results with those of the
Co-recognition work of Cho et al. [9] and NRDC [1], shown
in Table II. In these cases, Cho et al. [9] find large cor-
respondences field, but their method does not scale well to
dense pixel-to-pixel correspondences on large images. There-
fore, their results have a large number of false positives
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Fig. 14. Comparison between Crivelli et al.’s method [6] and our approach for modifying textures in a video sequence. The leftmost column shows (from top
to bottom) the original frame of the video, and the bitmap to be added to the surface, respectively for the two scenes. The next four columns show selected
frames of the video sequence. Last frames are resulting frames with the bitmaps in place. The first and third rows show the results of Crivelli et al.’s method,
and the second and fourth rows are generated using our approach. Note how our approach is able to produce plausible mappings whereas the other method
breaks down when the change in viewpoint is too great. Please refer to supplemental video.

(br = 22.4% on average) and are therefore inaccurate. On the
other hand, NRDC is more selective and is able to achieve a
high amount of accuracy (br = 4.68% on average). However,
its correspondence field is not big enough to cover the entire
shared surface (hr = 64.5% on average), and it is not able to
segment different objects from its correspondence map. Our
algorithm generates a large correspondence field with high
precision (hr = 83.7%, br = 4.18%).

B. Video Texture Editing

When editing a video, a user may want to add new elements
such as pictures on the walls, modify the textures on surfaces,
or add lighting effects. Not only is it very time-consuming to
edit each individual frame of the video, but it is not easy
to produce a natural result in this manner since our eyes
are particularly sensitive to temporal inconsistencies between
frames. In this section, we discuss the application of our cor-
respondence algorithm for video texture editing, a technique
that allows the user to edit just one frame of the video and
propagates the modifications to the entire video automatically.

As discussed earlier, there has been limited work on this
difficult problem. The state-of-the-art is the approach of
Crivelli et al. [6], which uses optical-flow to find trajectories
with space-time continuity across many frames. They do this
by calculating correspondences between adjacent frames and
using a novel method to compute motion trajectories from

these correspondences. However, this approach of propagating
texture edits will lose accuracy in the long term, because cor-
respondence errors will be gradually amplified. Furthermore,
this approach has the limitation that it restricts the frame that
can be edited (the source frame) to the last frame of the video.

By contrast, our method is able to robustly compute corre-
spondences between the source frame and all the other frames
in the video because our Trivariate-Spline approximation (see
section III-D) ensures continuity in both space and time. Fur-
thermore, the user can edit any frame of the video as the source
frame and still produce dense, robust correspondence maps
that accurately propagate the user’s edits to the entire video.
However, because Crivelli et al.’s algorithm is considered
state-of-the-art, we implemented it and compared against it
in our experiments.

Fig. 13 shows the trajectory of one pixel in the source frame
for the first example in Fig. 14, plotted over all the frames of
the sequence as generated by the different methods. Since the
last frame of the sequence is chosen as the source image,
Crivelli et al.’s method is more accurate towards the end of
the video but less so at the beginning, as can be seen by the
divergence of the green line from the others at small frame
numbers. Furthermore, the NRDC is too noisy and not usable
for texture-mapping. Our Trivariate-Spline approximation can
eliminate these errors and generate an accurate trajectory.

Fig. 14 shows two scenes where one of the surfaces has
been manually modified by adding a bitmap to it. In the
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Fig. 15. Example of our new application of video light mapping. The first row shows selected frames from original video. In this application the user chooses
one frame (marked with red rectangle) to adjust the lighting. Here, the illumination gain is adjusted to give the appearance of a spotlight (see visualization
in the second row). Only one frame has to be edited, and the new lighting is then automatically propagated by our algorithm to the entire video to produce a
new relit result, shown in the third row. Please refer to supplemental video.

first case, Crivelli et al.’s method suffers from the change in
scale between the source and target images, causing distortion
of the bitmap pattern particularly in the early frames of the
video sequence. In the second case, their optical-flow suffers
from significant change in viewpoint as well as by the change
in scale, also resulting in artifacts. By contrast, our algorithm is
able to produce reliable correspondences and produce smooth,
natural-looking results. Our Trivariate-Spline approximation
can also handle curved objects with rotation, zoom, and other
complex motions, as shown in Fig. 14 (row 6). Readers are
encouraged to look at the supplemental video to see the
temporal behavior of the two algorithms more clearly.

In our last application of video editing, we introduce a
new kind of editing approach we call light mapping, which
enables the user to relight the scene by modifying the lighting
in the source frame. As shown in Fig. 15, the user can edit
the lighting in one frame of the video and we automatically
propagate the lighting effects to all other frames. Such an
approach could have applications in consumer video editing.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a new algorithm for finding robust,
dense correspondences between two images with fairly large
differences in viewpoint, lighting, or deformation, as well
as between a single video frame and the rest of the video
sequence. The robustness of the proposed method comes from
the underlying B-Spline approximation that reduces noise and
eliminates outliers in the correspondence field. When coupled
with an unsupervised segmentation algorithm to detect the
different surfaces in the scene, plus a correspondence extension
to grow the regions with valid correspondences, our algorithm
is able to produce correspondence maps that are better than
those from state-of-the-art approaches. Since finding reliable
correspondences is critical for many applications in image
processing and computer vision, our algorithm could be used
to improve a variety of applications. To demonstrate this, we

have shown improvement over prior work in applications such
as shared object recognition and video texture editing.

Our approach can be further improved in two ways. First,
patch-based algorithms have difficulty finding reliable matches
in large, smooth regions, such as clear sky [1], [14]. Since
we utilize patch-based techniques, we may generate unreliable
matches in such cases. This could be improved by either
modifying the PatchMatch search to include a smooth gradient
term (as in the work of image melding [14]), or by collecting
more matching candidates in the extension step and selecting
the one that best fits the B-Spline. Second, the B-Spline
approximation requires a minimum amount of data for an
accurate fit. This means that the correspondences of a small
object in the source image might be treated as outliers and
discarded by the algorithm. Although this did not turn out to be
a serious problem in our experiments, it would be interesting
to study techniques to solve the problem.

Finally, our method could be applied to other applications,
such as video segmentation [28] or stereo reconstruction, to
name a couple. We will release our code upon publication so
that others can build upon this approach and use it for other
applications that require robust correspondences.
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