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Abstract. We compare two recently proposed approaches for representing prob-
ability distributions over the space of permutations in the context of multi-target
tracking. We show that these two representations, the Fourier approximation and
the information form approximation can both be viewed as low dimensional pro-
jections of a true distribution, but with respect to different metrics. We identify the
strengths and weaknesses of each approximation, and propose an algorithm for
converting between the two forms, allowing for ahybrid approach that draws on
the strengths of both representations. We show experimental evidence that there
are situations where hybrid algorithms are favorable.

1 Introduction

In this paper we consider theidentity management problemwhich arises in a number
of multi-target tracking scenarios in computer vision and robotics. Typical multi-target
tracking systems maintain tracks ofn people and the identity of the person correspond-
ing to each track. A successful tracking system must reason in the face of noisyevidence
events, in which an identity may be partially revealed to be at a particular track, as well
asmixing events, in which identities can be confused when tracks cross paths.

To handle this uncertainty algorithmically, identity management is formalized math-
ematically as a filtering problem for identity-to-track associations, in which one must
maintain a distribution over permutations. Since the spaceof permutations scales fac-
torially in the number of tracked objects,n, however, it is not tractable to explicitly
represent distributions over permutations for nontrivialn. Moreover, typical compact
representations, such as graphical models, are not effective due to the mutual exclusiv-
ity constraints associated with permutations.

To efficiently represent and reason with such distributions, researchers have turned
to a number of compact approximate representations. There are two competing method-
ologies in the identity management literature which have garnered the most atten-
tion in the last decade: theFourier theoreticapproach [6, 7, 11], and theinformation
theoreticapproach [14, 17]. Cosmetically, both methods seem similarin spirit — the
Fourier theoretic approach represents distributions overpossible associations by main-
taining marginal probabilities involving small subsets ofobjects, while the informa-
tion theoretic approach represents similar terms, but working with unnormalized log-
probabilities.

Despite progress made on both approaches over the last several years, there has been
little work in unifying or even comparing the two approaches. In this paper we compare
the Fourier and information approaches, drawing parallelsbetween the two methods,
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and contrasting their strengths and weaknesses. The main contributions of our work is
as follows:

1. Among the many parallels between the two representations, we identify an inter-
esting duality between the two types of events (mixing and evidence) that must
be processed during identity management. [6] showed that mixing events can be
handled within the Fourier representation without increasing representational com-
plexity, while evidence events always increase the representation complexity. We
show that the opposite is true for the information form representation — that while
evidence events can be handled without increased complexity, mixing events can-
not be handled exactly without increasing representation complexity. We also make
a connection between the two representations by viewing them as parametric rep-
resentations of projected distributions with different metrics.

2. We explore the problem of converting between the Fourier and information theo-
retic representations and show that the conversion problemis #P-hard, but that due
to recent advances in permanent approximation theory, approximate conversion is
possible in polynomial time.

3. Using our algorithm for converting between the two forms,we propose a hybrid
method that draws on the strengths of both representations and show experimental
evidence that there are situations where hybrid algorithmsare favorable.

2 Probabilistic Identity Management

In identity management, we are interested in maintaining a distribution over possible
permutations which assignn identities ton tracks maintained by an internal tracker. We
denote permutations asσ , whereσ(k) is the track belonging to thekth identity. Over
time, the distribution over permutations in identity management is subject to change
due to two causes:mixing eventsandobservation events. In a mixing event, a subset
of people can walk too closely together, leading to confusion about the identity-to-
track associations for their respective tracks. This confusion is balanced by observation
events, in which, for example, the color of an individual’s clothing is captured by a
sensor, giving information about his or her identity.

Uncertainty over permutations in identity management can be modeled with a hid-
den Markov model, where the joint probability of a sequence of latent permutations
(σ (1) . . . ,σ (T)) and observed data (z(1), . . . ,z(T)) factors as :

h(σ (1), . . . ,σ (T),z(1), . . . ,z(T)) = h(z(1)|σ (1)) ·
T

∏
t=1

h(z(t)|σ (t)) ·h(σ (t)|σ (t−1)).

We will refer toh(σ (t)|σ (t−1)) as themixing model, which captures, for example, that
tracksi and j swapped identities with some probability. We refer toh(z(t)|σ (t)) as the
observation model, which captures, for example, the probability of observinga green
blob given that Alice was at Track 1.

2.1 Inference Operations
There are two fundamental probabilistic inference operations that we focus on. The first
is theprediction/rollupoperation, which, given the distribution at timet, h(σ (t)|z(1), . . . ,z(t)),
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and a mixing event, computes the distribution at the following timestep by multiplying
by the mixing model and marginalizing over the permutation at the previous timestep:

h(σ (t+1)|z1, . . . ,z(t)) = ∑
π∈Sn

h(σ (t+1)|σ (t) = π) ·h(σ (t) = π|z(1), . . . ,z(t)).

The second is theconditioningoperation, which, given a new observationz(t+1),
performs a Bayesian update to compute the posterior distribution:

h(σ (t+1)|z1, . . . ,z(t+1)) ∝ ℓ(z(t+1)|σ (t+1)) ·h(σ (t+1)|z1, . . . ,z(t)).

For explicit representations of the distributionh(σ (t)), inference is intractable for
all but very smalln with running time complexities ofO((n!)2) andO(n!) for predic-
tion/rollup and conditioning respectively. In this paper,we discuss two methods which
have been proposed in recent years for compactly representing distributions over per-
mutations and how these two inference operations can be performed efficiently with
respect to each representation.

3 Two Dueling Representations
In this section we introduce the Fourier and information representations for distribu-
tions over permutations. In the simplest case, both representations maintain coefficients
corresponding to the event that a single trackj is associated with a single identityk,
for all (track,identity) pairsj,k. Additionally, in both representations, one can also for-
mulate generalizations which maintain coefficients corresponding to joint events that
small subsets of identities map to small subsets of tracks. However, we show that with
respect to the Fourier representation, the prediction/rollup step of inference is ‘easy’ in
the sense that it can be performed efficiently and exactly, while the conditioning step of
inference is ‘difficult’ since it can only be performed approximately. With respect to the
information form representation, the roles are reversed, with prediction/rollup ‘difficult’
and conditioning ‘easy’.

3.1 Fourier Domain Representation
The identity management problem was first introduced by Shinet al. [16], who pro-
posed a representation based on collapsing the factorial sized distribution over permu-
tations to just itsfirst-order marginals, then2 marginal probabilities of the form:

H jk = h(σ : σ(k) = j) = ∑
σ∈Sn :σ(k)= j

h(σ).

The first-order marginals can be represented in a doubly stochastic matrix3 (called
abelief matrixin [16]). As an example, the matrix

H =









Alice Bob Charlie
Track 1 1/4 1/2 1/4
Track 2 3/8 3/8 1/4
Track 3 3/8 1/8 1/2









.

3 A doubly stochastic matrix has rows and columns which sum to 1. In the identitymanagement
setting, it reflects the constraint that every identity must map tosometrack, and that there is
someidentity on every track.
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By simply representing these first-order terms, it is already possible to make useful pre-
dictions. For example, we can predict the track at which the identity Alice is currently
located, or predict the identity currently located at track2.

The first-order marginal probabilities can be generalized to higher-order marginals
which maintain, for example, the probability that a pair of tracks is jointly associated
with a pair of identities. For example, we might be interested in thesecond-orderprob-
ability that Alice and Bob are jointly in Tracks 1 and 2, respectively.

The reason for referring to these simple matrix-of-marginal type representations
as ‘Fourier’ representations is due to the mathematical theory of generalized Fourier
transforms for the symmetric group (see [3, 13, 15]). Just like the Fourier transform of a
function on the real line can be separated into low and high frequency terms, a function
over the symmetric group (the group of permutations) can be separated into low-order
effects and higher-order effects. We remark that the Fourier coefficients of [6, 11] do
not literally take the form of marginal probabilities but instead can be thought of as
a set of coefficients which can be used to uniquely reconstruct the marginals. Loosely
speaking, low-order marginal probabilities of a distribution can always be reconstructed
using a subset of ‘low-frequency’ terms of its Fourier transform. Varying the maximum
represented frequency yields a principled way for trading between accuracy and speed
of inference.

Matrices of marginals can be viewed as acompact summaryof a distribution over
permutations, but they can additionally be viewed as anapproximationto that distribu-
tion by applying the inverse Fourier transform to a truncated Fourier expansion. Given
the first-order marginalsH of a distribution, the approximate distribution is:

h(σ) =
n−1

n!
Tr(HTMσ )−

n−2
n!

,

whereMσ is the first-orderpermutation matrixassociated withσ .4 The above equation
can be generalized to higher-order Fourier representations allowing for successively
better approximations to the original distributionh.

3.2 Information Form Representation
Instead of representing the marginal probability that an identity k will be associated
with track j, in the information form representation, one maintains a ‘score’ Ω jk for
each identity-track pair(k, j). The probability of a joint assignment of identities to
tracks is parameterized as:

h(σ) =
1

ZΩ
exp

(

n

∑
k=1

Ωσ(k),k

)

=
1

ZΩ
exp
(

Tr(Ω TMσ )
)

,

whereMσ is the first-orderpermutation matrixassociated withσ andZΩ is the nor-
malizing constant. We observe that if we add a constant to every entry within a single
row or single column ofΩ , the distribution parameterized byΩ does not change. The

4 Given aσ ∈Sn, the permutation matrix associated withσ is defined as then×n matrixM, with
entriesM jk = 1 if j = σ(k), 0 otherwise. This (first-order) permutation matrix can easily be
generalized to higher-order permutation matrices whose nonzero entries represent assignments
of tuples of identities(k1, . . . ,km) to tuples( j1, . . . , jm) of tracks.
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Inference Operation Fourier (First Order) Information Form (First Order)
Accuracy Complexity Accuracy Complexity

Prediction/Rollup Exact O(n) Approximate O(n)
Conditioning Approximate O(n3) Exact O(n)
Normalization Exact O(n2) Approximate O(n4 logn)
Maximization Exact O(n3) Exact O(n3)

Table 1. We compare common inference operations for the Fourier and information forms assuming the simplest case
using a first-order representation, pairwise mixing, and first-order observations.

entries ofΩ are referred to as theinformation coefficientsof the distributionP. Note
that multiple settings of the information coefficient matrix Ω can correspond to the
same distribution. For example, adding a constantc to any row or column ofΩ does
not change the distribution parameterized byΩ .

As with Fourier coefficients, it is possible to consider generalizations of the infor-
mation form to higher order terms. For example, we can maintain a nonzero ‘score’
Ω ′( j1, j2),(k1,k2)

where( j1, j2) denote a pair of tracks and(k1,k2) denote a pair of identi-
ties. Thus, in the information domain, the probability overpermutations is parameter-
ized as:

h(σ) =
1

ZΩ ′
exp

(

n

∑
k1=1

∑
k2 6=k1

Ω(σ(k1),σ(k2)),(k1,k2)

)

= exp
(

Tr(Ω TMσ )
)

,

whereΩ ′ is asecond-order information coefficient matrix.

3.3 Comparing the Two Representations
We now compare and contrast the two representations. Of particular interest are the
probabilistic inference operations which are common in identity management. The chal-
lenge is how to perform these probabilistic operations using either the Fourier or infor-
mation forms, exactly or approximately, in polynomial time. For simplicity, we will
restrict our focus to first order representations for both the Fourier and information do-
mains. Additionally, we assume that mixing only occurs between a pair of tracksi and
j at any given time, leading to the following simple mixing model in which one draws
a permutationπ ∼mi j (π), where:

mi j (π) =







p if π = id
1− p if π = (i, j)
0 otherwise

,

and setsσ (t+1)← π ·σ (t) (where· represents the composition of two permutations).
We also assume the simple observation model (employed in [6,11]) which assumes

that we get observationsz of the form: ’track j is color r ’. The probability of seeing
color r at track j given an identity-to-track associationσ is

ℓ(σ) = Prob(track j is colorr|σ) = ασ−1( j),r ,

where∑r ασ−1( j),r = 1. The likelihood model parametersα can be constructed based
on prior knowledge of color profiles of the moving targets [6].
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For a tabular summary of the inference operations considered in this section, we
refer the reader to Table 1.

Prediction/Rollup. In general, the pairwise mixing models considered in this paper
can be thought of as a special case of random walk transitionsover a group, which
assume thatσ (t+1) is generated fromσ (t) by drawing a random permutationπ(t) from
some distributionm(t) and settingσ (t+1) = π(t)σ (t). The permutationπ(t) represents a
random identity permutation that might occur among tracks when they get close to each
other (what we call amixing event).

The motivation behind the random walk transition model is that it allows us to
write the prediction/rollup operation as aconvolutionof distributions, and as a result the
familiar convolution theoremof Fourier analysis holds. Below we state the convolution
theorem for the special case of first order Fourier representations, but a more general
statement can be found in, for example, [6].

Proposition 1 (Convolution theorem).Let M(t) be the first order matrix of marginals
for the distribution m(t) and H(t) be the first order matrix for h(σ (t)|z(1), . . . ,z(t)). The
first order matrix for the distribution after the predictionstep, h(σ (t+1)|z(1), . . . ,z(t)) is:

H(t+1) = M(t) ·H(t),

where the operation on the right side is matrix multiplication.

Prediction/rollup in the Fourier domain isexactin the sense that first order marginals
for timestept +1 can be computed exactly from first order marginals at timestep t. In
contrast the same operation cannot be performed exactly with respect to information
form coefficients and in particular, we argue that, if the distribution h(σ (t)) can be
represented with first order information form coefficients,then under pairwise mixing,
second order information form coefficients are necessary and sufficient for representing
the distributionh(σ (t+1)).

Proposition 2. Let Ω (t) be the first order information coefficient matrix for the distri-
bution h(σ (t)|z(1), . . . ,z(t)). There exists a second order information coefficient matrix
Ω (t+1) which exactly parameterizes the distribution obtained by the prediction/rollup
step h(σ (t+1)|z(1), . . . ,z(t)) in the information domain.

Proof. Given information coefficientsΩ which parametrizeh(σ (t)|z(1), . . . ,z(t)), we ar-
gue that there exists ann(n−1)-by-n(n−1) 2nd order information coefficient matrix
Ω ′ which exactly parametrizeh(σ (t+1)|z(1), . . . ,z(t)). To see this, suppose that trackk1
andk2 mixed up, then the distribution after the rollup operation evaluated onσ would
be proportional to

pexp
(

Tr(Ω TMσ )
)

+(1− p)exp
(

Tr(Ω TMπσ )
)

.

In such a expression, any entries inΩ that does not lie in rowk1 or k2 is still an additive
term in the logarithmic space for characterizing the posterior.

For entries that lie in either rowk1 or k2, we need to formn(n−1) 2nd order in-
formation coefficientsΩ(σ(k1),σ(k2)),(k1,k2). With those coefficients, we can represent the
posterior distribution evaluated onσ using logarithmic likelihoodsΩ(σ(k1),σ(k2)),(k1,k2)

together withΩσ(k),k, wherek 6= k1,k2.
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It turns out that the above logarithmic likelihoods can be combined together into a
second order information matrix. This is because the representation theory applies to
the logarithmic space of the information form representation. �

Instead of increasing the size of the representation at eachtimestep, a sensible approx-
imation is to compute a projection ofh(σ (t+1)) to the space of distributions which can
be represented in first-order information form. Schumitschet al. [14] proposed the fol-
lowing update:

Ω (t+1) = log
(

M(t) ·exp(Ω (t))
)

which they showed worked well in practice. The exponential and logarithmic functions
in the formula refer to elementwise operations rather than matrixwise operations.

Conditioning. In contrast with the ease of prediction/rollup operations,conditioning a
distribution in the Fourier domain is more complex and increases the size of the repre-
sentation.

Proposition 3 (Kronecker conditioning [6]). Let H(t+1) be the first order matrix of
marginals for the distribution h(σ (t+1)|z(1), . . . ,z(t)), then there exists a second order
matrix of marginals which exactly parametrize the distribution obtained by the condi-
tioning step h(σ (t+1)|z(1), . . . ,z(t+1)) in the Fourier domain.

Using information coefficients, however, conditioning canbe performed exactly,
and takes a particularly simple and efficient form (that of a local addition) which does
not increase the representation complexity.

Proposition 4 (Schumitsch et al. [14]).If h(σ) ∝ exp
(

Tr(Ω TMσ )
)

, then the update

is of the form
Ω jk←Ω jk + logαk,r .

where k= σ−1( j). The complexity of this update isO(n).

Normalization and Maximization. Normalization is a major inference operation and
appears, for example, as a subroutine of the conditioning and marginalization opera-
tions, i.e., computing∑σ ℓ(·|σ)h(σ | · · ·) or ∑σ h(σ). In the Fourier domain, normaliza-
tion is ‘free’ since thezeroth-ordermarginal is exactly the normalization constantZ =
∑σ h(σ). Thus with respect to the irreducible Fourier coefficients of [6, 11], normal-
ization can be performed by dividing all Fourier coefficients by the lowest-frequency
coefficient. Alternatively, if the matrix of marginals,H, is represented explicitly, the
normalization constantZ is simply the sum across any row or column ofH. One can
then normalize by scaling every entry ofH by Z.

It may be somewhat surprising to realize that the normalization problem is provably
hard in the information domain since the probability of a joint assignment may at first
glance seem to factorize as:

h(σ) ∝
n

∏
k=1

wk,σ(k) = exp(∑
k

Ωσ(k),k),

which would allow one to factor the normalization problem into tractable pieces. How-
ever, due to mutual exclusivity constraints which disallowidentities from mapping to
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the same track, probabilistic independence is not present.Instead, the normalization
constant,Z= ∑σ∈Sn ∏kWk,σ(k), is exactly the matrix permanent ofW = exp(Ω), whose
computation is #P-complete (even for binary matrices). We have:

Proposition 5. Computing the normalization constant of the information form param-
terization is#P-complete.

We remark that despite the dramatic differences with respect to normalization, com-
puting the permutation which is assigned the maximum probability under h (instead
of summing overh) reduces to the same problem for both the Fourier and information
forms due to the fact that the exponential is a monotonic function. In the first-order case,
for example, one must compute argmaxσ Tr

(

HTMσ
)

(see Equation 3.1), which can be
efficiently solved using either linear programming or a number of other combinatorial
algorithms.

Both Forms are Low-Dimensional Projections.Since the Fourier transform is linear
and orthogonal [3], the Fourier approximation of a distribution h over permutations
can be thought of as anℓ2 projection ofh onto a low-frequency Fourier basisV which
can be interpreted as affine marginal constraints. This projection is associated with the
following Pythagorean theorem, which says that ifg is any function lying in the span
of V, then‖g−h‖2ℓ2

= ‖g−h′‖2ℓ2
+ ‖h′−h‖2ℓ2

, whereh′ is the Fourier projection ofh
onto the span ofV.

The information form representation can be thought of, on the other hand, as an
information projection ofh to the same low-frequency Fourier subspaceV using theKL-
divergencemetric. Recall that the KL-divergence, also known as therelative entropyis
defined asD(q||h) = ∑σ q(σ) log q(σ)

h(σ) . Given a doubly stochastic matrixH of first order
marginals, the information projection (IP) can be formulated as follows:

(IP) minq ∑
σ

q(σ) log
q(σ)

h(σ)
(ME) minq ∑

σ
q(σ) logq(σ)

s.t. ∑
σ

q(σ)Mσ = H s.t. ∑
σ

q(σ)Mσ = H

q(σ)≥ 0,∀σ q(σ)≥ 0,∀σ

In the special case, where the distributionh to be projected is uniform, i.e., we have
no prior knowledge, then the information projection problem becomes the maximum
entropy (ME) problem. The objective in(ME) coincides with the maximum entropy
principle in Bayesian probability, where the information entropy of a distributionq over
Sn is H[q] = −∑σ q(σ) logq(σ). The maximum entropy distribution can be thought
of as the least biased distribution encoding some given information (about low-order
marginals in our case). We remark that the normalization constraint ∑σ q(σ) = 1 is
implicitly contained in the first constraint,∑σ q(σ)Mσ = H.

The following result (see proof of Proposition 7) shows thatthe solution to maxi-
mum entropy problemmustbe parametrizable as an information form distribution:

Proposition 6. The solution to(IP) is guaranteed to take the form h(σ)exp
(

Tr(Ω TMσ )
)

while the solution to(ME) is guaranteed to take the form q(σ)∝ exp
(

Tr(Ω TMσ )
)

. The
Pythagorean theoremholds: if g is any function that satisfies the marginal constraints,
then D(g||h) = D(g||h′)+D(h′||h), where h′ is the information projection of h.
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3.4 Discussion

As we have shown, both the Fourier and information forms can be thought of as methods
for approximating distributions over permutations via a low-dimensional projection.
However, we have also argued that each method has their own respective advantages
and disadvantages with respect to the two inference operations of prediction/rollup and
conditioning. While prediction/rollup updates, which increase the information entropy
of the maintained distribution, can be performed exactly with respect to a Fourier repre-
sentation, conditioning updates, which typically decrease the entropy, can be performed
exactly with respect to an information form representation. As a result, Fourier repre-
sentations are typically much more suitable for modeling problems with high uncer-
tainty, while information form representations are more suitable for problems with low
uncertainty. In Section 7, we will validate these claims with experiments.

4 Representation Conversion

In this section we show a natural method for converting between the two representa-
tions. Since the two representations do not describe the same space of functions, con-
version can only be approximate. We show in particular that much like the normaliza-
tion problem which we discussed in the previous section, converting between the two
representations requires solving thematrix permanent problem.

4.1 From Information Coefficients to Fourier Coefficients

We first consider the problem of estimating low-order marginals from information coef-
ficients. Given the information coefficientsΩ , we can compute the first order marginal
probability that identityk maps toj, H jk, by conditioning onσ(k) = j, then normaliz-
ing. Note that the posterior after conditioning can also be written in information form
and that the normalization operation corresponds to takingthe permanent of the infor-
mation matrix of the posterior distribution. We have:

H jk = ∑
σ :σ(k)= j

h(σ) =
exp(Ω jk)perm(exp(Ω̂ jk))

perm(exp(Ω))
.

HereΩ̂ jk denotes then−1 by n−1 submatrix ofΩ with the j ’th row andk’th column
removed. The matrix exp(Ω̂ jk) denotes component-wise exponentials rather than matrix
exponentials. We therefore conclude that to convert from information coefficients to
Fourier coefficients, one must compute matrix permanents.

4.2 From Fourier Coefficients to Information Coefficients

We now discuss the opposite conversion from Fourier coefficients to Information co-
efficients, for which we take the maximum entropy approach described in the previ-
ous section (problem(ME)). Given, say, the first-order marginal probabilities, we are
interested in computing the maximum entropy distribution consistent with the given
marginals, which we argued can be parameterized in information form. We now turn to
the problem of algorithmically optimizing the entropy withrespect to low-order con-
straints. Our approach is to solve the dual problem [1]:
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Proposition 7. The dual problem of(ME) is:

max
Y

Tr
(

YTH
)

−∑
σ

exp
(

Tr(YTMσ )−1
)

,

s.t. Y≤ 0.

Proof. The Lagrangian for(ME) is given by:

∑
σ

q(σ) logq(σ)−∑
σ

sσ q(σ)−Tr
(

YT(∑
σ

q(σ)Mσ −H)
)

,

wheresσ andY are dual variables associated with the constraintq(σ)≥ 0, and∑σ q(σ)Mσ =
Q. The KKT conditions tell us that for(ME):

1+ logq(σ)−sσ −Tr
(

YTMσ

)

= 0.

Assuming allq(σ) > 0, which gives ussσ = 0 becuase of the dual complementary
condition, we have

q(σ) = exp
(

Tr(YTMσ )−1
)

= exp
(

Ω TMσ

)

whereΩ =Y−1/n. Thus implies that the distributionq is completely characterized by
n2 information coefficientsΩ . So the dual objective of(ME) is therefore

Tr
(

YTH
)

−∑
σ

exp
(

Tr(YTMσ )−1
)

. �

Gradient Based Optimization for the Maximum Entropy Problem. We now give a sim-
ple gradient descent algorithm to find the solution of the dual problem. Note that the
gradient of the objective function is given by the matrix

G(Y) = H jk−∑
σ

exp
(

Tr(YTMσ )
)

−1)(Mσ ) jk = H jk−exp(Yjk−1)perm(exp(Ŷjk)).

Thus we can have a simple gradient descent algorithm, where at each iteration we find
an optimal step lengthα such that the objective function values is improved, i.e.,

Tr
(

(Y+αG(Y)TH
)

−∑
σ

exp
(

Tr((Y+αG(Y))TMσ )−1
)

>Tr
(

YTH
)

−∑
σ

exp
(

Tr(YTMσ )−1
)

,

while the feasibilityY+αG(Y) ≤ 0 is still maintained. We note that the estimation of
the gradient involves estimating the matrix permanent which we now discuss.

The pseudocode for the algorithm is given in Algorithm 1.
4.3 Computation of the Matrix Permanent

We have shown that the problems of converting between the twoabove representations
both require one to solve the matrix permanent problem, one of the prototypically #P-
complete problems (even when all of the entries are binary [9]). The fastest known
general exact algorithm is due to Ryser [12] based on the inclusion-exclusion formula.
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Algorithm 1 Computing Information CoefficientsΩ from MarginalsQ
Y⇐ 0
while ‖G(Y)‖ ≥ ε do

Find an optimal step lengthα
Y⇐Y+αG(Y)

end while
Ω ⇐Y

In some special cases, polynomial time algorithms exist forestimating the matrix per-
manent (e.g., for planar graphs [10]), but we have not found any such special cases to
be applicable for general identity management problems.

When the entries of the matrix are non-negative, which is truein our setting there is
an FPRAS (fully polynomial-time randomized approximationscheme) for approximat-
ing the permanent in probabilistic polynomial time [8, 9].

Finally, the fastest approximation that we are aware of is based on the Bethe free
energy approximation [5, 18, 19] which frames the permanentproblem as an inference
problem in a graphical model, which can then be solved using loopy belief propagation.

5 A Hybrid Approach for Identity Management

Using the conversion algorithms presented in the previous section, we now present a
hybrid identity management approachin which we switch between the Fourier and
information form domains depending on which domain is more convenient for certain
inference operations. There are several issues that one must consider in designing a
scheme for switching between the two domains. In this section, we present three simple
switching strategies which we compare experimentally in Section 7.

We have argued that to handle mixing events, it is better to use a Fourier represen-
tation and that to handle evidence events, it is better to usethe information form rep-
resentation. A simple switching strategy (which we call themyopic switchingscheme)
thusalwaysswitches to either the Fourier or information form domain depending on
whether it must perform a prediction/rollup operation or a conditioning operation.

In a similar spirit, we can also consider asmoothness based switchingscheme, in
which we switch based on the diffuseness of the distribution. In our implementation, we
consider a heuristic in which we switch to a Fourier representation whenever the first-
order matrix of marginals is withinε of a uniform matrix with respect to the Frobenius
norm. Similarly, we switch to the information form representation whenever the first-
order matrix comes withinε of some delta distribution.

What both the myopic and smoothness based approaches ignore,however, is the
computational cost of switching between representations.To minimize this switching
cost, we finally propose thelagged block switchingscheme in which switching is only
allowed to happen everyk timeslices, wherek is a parameter set by the user. In lagged
block switching, we allow the identity management algorithm to lag the incoming data
by k timesteps and therefore it can look ahead to see whether there are more mixing
events or evidence events in the nextk timesteps. As with myopic switching, the al-
gorithm switches to Fourier if there are a majority of mixingevents, and switches to
information form if there are a majority of evidence events.After potentially switching,
the algorithm processes the nextk timesteps sequentially.
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Fig. 1. (a) A view of the simulated data. (b) Running time comparison of different approaches in computing matrix perma-
nent. (c) Comparing the running time of the three approaches.

6 An Adaptive Approach for Identity management
There are two extremal cases in the identity management problem: if we are completely
uncertain about the assignment of target identities to tracks, then we have a uniform dis-
tribution over permutations, this smooth distribution canbe represented compactly with
Fourier coefficients; at the limit when we know the location of every identity, our distri-
bution becomes very peaked, and we can use information coefficients to represent such
a distribution compactly. In a real tracking scenario, we can pull highly certain or uncer-
tain groups of targets out of a global Fourier or informationrepresentation and represent
them separately, so that the problem breaks up into independent subproblems [7]. We
now propose a method based on exploiting probabilistic independence of distributions
over permutations, which can achieve significantly improved scalability.

Due to the mutual exclusivity constraints associated with permutations, we say the
distributionh(σ) has a independence factorization if there exists a subsetX of identities
and a subsetY of tracks, and also their corresponding complement subsetsX̄ andȲ,
such thath(σ) can be factorized into a product of two distributions over all mappings
betweenX andY and all mappings between̄X andȲ.

It turns out that whenever probabilistic independence holds, then both first order
Fourier coefficients and information coefficients can be rendered block diagonal under
an appropriate reordering of the rows and columns [7]. SinceX andY are unknown,
our task is to find permutations of the rows and columns of the first order Fourier or
information coefficients to obtain a block diagonal matrix.Viewing such a matrix as a
set of edge weights on a bipartite graph between identities and tracks, we can approach
the detection step as a biclustering problem with an extra balance constraint forcing
|X| = |Y|. In practice, we use a cubic time SVD-based technique presented in [20]
which finds bipartite graph partitions optimizing the normalized cut measure modified
to satisfy the balance constraint. We note that such bipartite graph partitioning problems
can be approached using either theℓ2 metric [20] or KL-divergence metric [2].

7 Experiments
In this section, we perform several experiments to compare the Fourier approach, infor-
mation approach and the proposed hybrid approach. We use theDelta3D game engine
to generate simulated crowds of up to 50 moving targets whichwalk around in an out-
door market [4]; Figure 1-(a) depicts a snapshot view of the simulated crowd. Such a
simulation approach allows us to obtain accurate ground truth for large crowds than
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Fig. 2. Comparing tracking accuracy of the three approaches with different parameters.

would be feasible in a typical physical testbed. The data contains interesting movement
patterns and we can extract mixing and observation events directly from the data. We
log a mixing event whenever two targets get within some distance of each other and an
observation event whenever one target is separated from allthe other targets for some
distance. The percentages of observation events can be controlled by adjusting those
distance parameters. We measure tracking errors using the fraction of mislabeled target
identities over the tracks.

We first run an experiment for testing the running time performance of different
algorithms in estimating the matrix permanent. As shown in Figure 1-(b), we gener-
ate random matrices and compare the running time of the four approaches: the naive
method which sums up all products of matrix elements that liein different rows and
columns, the fastest known exact algorithm by Ryser [12], the Monte Carlo sampling
algorithm by Huber et al. [8], and the loopy belief propagation algorithm by Huang et
al. [5]. The naive approach has a super-exponential complexity and the Ryser’s formula
has an exponential complexity, thus, they scale poorly as the matrix size grows; On the
other hand, the two randomized approximate algorithms havemuch better running time
performance than the exact algorithms. In the hybrid algorithm, we use Monte Carlo
sampling algorithms [8]. for estimating the matrix permanent.

In our experiments, we can control two sets of parameters which determine the
tracking quality, one is the swapping probability — if we cankeep track of who is
who when two targets mix with high probability during the prediction/rollup opera-
tion, we can achieve better tracking performance; the otheris the likelihood function, if
the likelihood for observing the identity of a target is high, then conditioning step can
resolve the ambiguities better. We set up nine cases to explore the tracking accuracy
with different swapping probability and likelihood function parameters. As depicted in
Figure 2, the probabilityp characterizing confusions of the mixing events grows larger
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Fig. 3. Compare the errors in distribution of the three approaches. The white intervalsdenote the rollup steps and the grey
intervals denote the conditioning steps.
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Fig. 4. (a,b) Tracking accuracy and running time of the hybrid approach with different algorithms for estimating matrix
permanent. (c,d) Tracking accuracy and running time of the hybrid approach with different rules for switching.

from left to right, and the likelihoodℓ for observing target identity grows larger from
top to bottom. We can get better tracking accuracy ifp is small orℓ is large.

From Figure 2, we can see that the information approach outperforms the Fourier
approach in most cases, while the Fourier approach can beat the information approach
only slightly in some cases, e.g., the casep = .5, ℓ = .75 where the mixings are quite
confusing. The tracking accuracy can be improved if we incorporate high order Fourier
coefficients. We can achieve better performances in lots of cases if we use the hybrid
approach, whose tracking accuracy are comparable to the 2ndorder or even 3rd order
Fourier approach. The running time for those approaches areshown in Figure 1-(c).
In general, the Fourier approach has a fundamental trade-off between tracking com-
plexity in terms of the number of coefficients used and the tracking accuracy: we can
improve tracking accuracy by using more coefficients. The hybrid approach makes a
good balance which can improve tracking accuracy when thereare observation events
that confirm the target identities (largeℓ) with moderate running time. We can see that
the running time for the hybrid approach is strictly less than the second order Fourier
approach. This is because the complexity for the conditioning step in the Fourier do-
main is very expensive if we use high order Fourier coefficients.

We also compare the errors of approximating the distribution over permutations of
the three approaches (see Figure 3). It turns out that the Fourier approach decrease (in-
crease) the errors during the rollup (conditioning) steps,while the information approach
decrease (increase) the errors during the conditioning (rollup) steps. However, if we use
the hybrid approach, we can always keep the errors at a much lower level.

We also compare the tracking accuracy and runing time of the hybrid approach by
varing the algorithms for estimating the matrix permanent,as well as varying the strate-
gies for switching between two domains. Specifically, we compare Ryser, Huber, and
the LBP algorithms for estimating matrix permanents. The tracking accuracy of those
approaches does not differ too much. However, the two approximation algorithms (by
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Fig. 5. Tracking accuracy and running time of the adaptive approach compared with the nonadaptive approach.

Huber and the loopy belief propagation method) have longer running times for the small
scale experiments because it takes longer time to converge in solving the maximum en-
tropy problem (see Figure 4-(a,b)). We also evaluate our three different switching strate-
gies for the hybrid approach. Compared with the smoothness based switching strategy
which switches 38 times, the lagged block strategy switchesbetween two domains 91
times among the 1000 timesteps while can not improve the tracking accuracy too much
and take very long running time. The myopic strategy suffersa little on the tracking
accuracy while the running time can be improved because there are only 20 times of
switchings (see Figure 4-(c,d)).

We finally evaluate the performance of the adaptive approach. As depicted in Fig-
ure 5, the tracking accuracy for the adaptive approach is comparable to the nonadaptive
approach, while the running time can always be controlled using the adaptive approach.
In particular, the tracking accuracy for the adaptive approach is often worse than the
nonadaptive approach when the number of targets is small because it is usually difficult
to factorize the problem in those cases. When the number of targets is larger, however,
the benefit of adaptive approach becomes more evident in bothtracking accuracy and
complexity.

8 Conclusion

In this paper we have compared the computational advantagesand disadvantages of two
popular distributional representations for the identity management problem. We show
that the two approaches are complementary - the Fourier representation is closed under
prediction operations and is thus better suited for handling problems with high uncer-
tainty while the information form representation is closedunder conditioning operations
and is better suited for handling problems in which a lot of observations are available.
As our experiments show, using a combination of both approaches seems to often be the
best approach. While converting between the two representations is a #P-hard problem
in general, we show that with some of the modern permanent approximation algorithms,
conversion is tractable and yields surprisingly good performance in practice.

We have focused primarily on the first-order versions of boththe Fourier and infor-
mation form approximations. It would be interesting to develop a higher order analysis
with the hybrid approach.

9 Acknowledgement

The authors would like to thank Prof. Yinyu Ye for the helpfuldiscussion. Thanks
also to Kyle Heath for providing experimental data. Xiaoye Jiang and Leonidas Guibas
wish to acknowledge the support of ARO grants W911NF-10-1-0037 and W911NF-07-
2-0027, as well as NSF grant CCF 1011228 and a gift from the Google Corporation.
Jonathan Huang acknowledges the support from the grant ONR MURI N000140710747.



16 Jiang, Huang and Guibas

References

1. S. Agrawal, Z. Wang, and Y. Ye. Parimutuel betting on permutations. In the Workshop on
Internet and Network Economics (WINE), pages 126–137, 2008.

2. I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. InPro-
ceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 89–98, 2003.

3. P. Diaconis.Group Representations in Probability and Statistics. Institute of Mathematical
Statistics, 1988.

4. K. Heath and L. J. Guibas. Multi-person tracking from sparse 3d trajectories in a camera
sensor network. InProceedings of IEEE ICDSC, 2008.

5. B. Huang and T. Jebara. Approximating the permanent with belief propagation.Computing
Research Repository, 2009.

6. J. Huang, C. Guestrin, and L. J. Guibas. Fourier theoretic probabilistic inference over per-
mutations.Journal of Machine Learning Reserach (JMLR), 10:997–1070, 2009.

7. J. Huang, C. Guestrin, X. Jiang, and L. J. Guibas. Exploiting probabilistic independence for
permutations. InProceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), 2009.

8. M. Huber and J. Law. Fast approximation of the permanent for very dense problems. InPro-
ceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), Proceedings of ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 681–689, 2008.

9. M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximationalgorithm for
the permanent of a matrix with non-negative entries. InACM Symposium on Theory of
Computing, pages 712–721, 2001.

10. P. W. Kasteleyn. The statistics of dimers on a lattice. i. the number of dimer arrangements
on a quadratic lattice.Physica, page 12091225, 1961.

11. R. Kondor, A. Howard, and T. Jebara. Multi-object tracking with representations of the
symmetric group. InProceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS), 2007.

12. H. Ryser.Combinatorial Mathematics - The Carus Mathematical Monographs Series. the
Mathematical Association of America, 1963.

13. B. Sagan.The Symmetric Group: Representations, Combinatorial Algorithms, and Symmet-
ric Functions. Springer-Verlage, 2001.

14. B. Schumitsch, S. Thrun, G. Bradski, and K. Olukotun. The information-form data associa-
tion filter. InProceedings of the Neural Information Processing Systems (NIPS), Cambridge,
MA, 2005. MIT Press.

15. J.-P. Serre.Linear Representation of Finite Groups. Springer-Verlag, 1977.
16. J. Shin, L. J. Guibas, and F. Zhao. A distributed algorithm for managing multi-target identi-

ties in wireless ad-hoc sensor networks. InProceedings of the International Conference on
Information Processing in Sensor Networks (IPSN), pages 223–238, 2003.

17. J. Shin, N. Lee, S. Thrun, and L. J. Guibas. Lazy inference on object identities in wireless
sensor networks. InProceeings of the International Conference on Information Processing
in Sensor Networks (IPSN), 2005.

18. P. Vontobel. The bethe permanent of a non-negative matrix. InProceedings of the Allerton
Conference on Communications, Control, and Computing, 2010.

19. Y. Watanabe and M. Chertkov. Belief propagation and loop calculus for the permanent of a
non-negative matrix.Journal of Physics A: Mathematical and Theoretical, 43(24):242002,
2010.

20. H. Zha, X. He, C. Ding, H. Simon, and M. Gu. Bipartite graph partitioning and data cluster-
ing. In Proceedings of the International Conference on Information and Knowledge Man-
agement (CIKM), pages 25–32, 2001.


