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Abstract. We compare two recently proposed approaches for representing pro
ability distributions over the space of permutations in the context of multitarge
tracking. We show that these two representations, the Fourier apptxinaad

the information form approximation can both be viewed as low dimensional p
jections of a true distribution, but with respect to different metrics. Wetitiethe
strengths and weaknesses of each approximation, and proposeodthaigor
converting between the two forms, allowing fohgbrid approach that draws on
the strengths of both representations. We show experimental evidextidbdhe
are situations where hybrid algorithms are favorable.

1 Introduction

In this paper we consider thidentity management problewhich arises in a number
of multi-target tracking scenarios in computer vision aobatics. Typical multi-target
tracking systems maintain tracksmopeople and the identity of the person correspond-
ing to each track. A successful tracking system must reastheiface of noisgvidence
eventsin which an identity may be partially revealed to be at aipalar track, as well
asmixing eventsin which identities can be confused when tracks cross paths

To handle this uncertainty algorithmically, identity mgeaent is formalized math-
ematically as a filtering problem for identity-to-track asmtions, in which one must
maintain a distribution over permutations. Since the sdqeermutations scales fac-
torially in the number of tracked objects, however, it is not tractable to explicitly
represent distributions over permutations for nontriviaMoreover, typical compact
representations, such as graphical models, are not efediie to the mutual exclusiv-
ity constraints associated with permutations.

To efficiently represent and reason with such distributioesearchers have turned
to a number of compact approximate representations. Thetesa competing method-
ologies in the identity management literature which havenged the most atten-
tion in the last decade: thigourier theoreticapproach [6, 7, 11], and thaformation
theoreticapproach [14, 17]. Cosmetically, both methods seem sirmilapirit — the
Fourier theoretic approach represents distributions pgssible associations by main-
taining marginal probabilities involving small subsetsafifiects, while the informa-
tion theoretic approach represents similar terms, but imgriwith unnormalized log-
probabilities.

Despite progress made on both approaches over the lashbgwars, there has been
little work in unifying or even comparing the two approacheshis paper we compare
the Fourier and information approaches, drawing paralietsveen the two methods,
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and contrasting their strengths and weaknesses. The matinbcdions of our work is
as follows:

1. Among the many parallels between the two representatieasdentify an inter-
esting duality between the two types of events (mixing andesce) that must
be processed during identity management. [6] showed thdahgievents can be
handled within the Fourier representation without inciegsepresentational com-
plexity, while evidence events always increase the reptaten complexity. We
show that the opposite is true for the information form reprgation — that while
evidence events can be handled without increased complexiting events can-
not be handled exactly without increasing representatiomptexity. We also make
a connection between the two representations by viewing @ parametric rep-
resentations of projected distributions with differenttrios.

2. We explore the problem of converting between the Founeriaformation theo-
retic representations and show that the conversion proisié-hard, but that due
to recent advances in permanent approximation theorypappate conversion is
possible in polynomial time.

3. Using our algorithm for converting between the two forme, propose a hybrid
method that draws on the strengths of both representatiwhstaow experimental
evidence that there are situations where hybrid algoritaragavorable.

2 Probabilistic Identity Management

In identity management, we are interested in maintainingsildution over possible
permutations which assignidentities ton tracks maintained by an internal tracker. We
denote permutations as wherea (k) is the track belonging to thkth identity. Over
time, the distribution over permutations in identity maeamgnt is subject to change
due to two causesnixing eventsandobservation eventdn a mixing event, a subset
of people can walk too closely together, leading to confusibout the identity-to-
track associations for their respective tracks. This csiofuis balanced by observation
events, in which, for example, the color of an individuallstbing is captured by a
sensor, giving information about his or her identity.

Uncertainty over permutations in identity management aambdeled with a hid-
den Markov model, where the joint probability of a sequent&tent permutations
(oW ...,0(M) and observed data'p, ...,ZT)) factors as :

T
h(o‘(l)7 . O'(T)7z(l)7 . 7z(T>) — h(z<1)|o'(1)) . r!h(z(t)k)-(t)) . h(o’(t) ‘o‘(tfl)).
t—

We will refer toh(a¥|at-1)) as themixing modelwhich captures, for example, that
tracksi and j swapped identities with some probability. We refehta) |g)) as the
observation modelwhich captures, for example, the probability of obsernéngreen
blob given that Alice was at Track 1.

2.1 Inference Operations

There are two fundamental probabilistic inference operatthat we focus on. The first
is theprediction/rollupoperation, which, given the distribution at timé(a® |z, ..., 2Y),
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and a mixing event, computes the distribution at the follayiimestep by multiplying
by the mixing model and marginalizing over the permutatibtine previous timestep:

h(o®|2, ... ZV) = %h(a(t“)m(t) =m-h(c® =mzY,....ZY).
IS

The second is theonditioningoperation, which, given a new observatigh™,
performs a Bayesian update to compute the posterior disitviix

h(o® |2, ... 25 0o |gt D) . h(aTHY|2, .. ZD).

For explicit representations of the distributibfo(t)), inference is intractable for
all but very smalin with running time complexities a®((n!)?) andO(n!) for predic-
tion/rollup and conditioning respectively. In this papeg discuss two methods which
have been proposed in recent years for compactly repragedistributions over per-
mutations and how these two inference operations can berpeetl efficiently with
respect to each representation.

3 Two Dueling Representations

In this section we introduce the Fourier and informationrespntations for distribu-
tions over permutations. In the simplest case, both reptasens maintain coefficients
corresponding to the event that a single tradk associated with a single identiky
for all (track,identity) pairg, k. Additionally, in both representations, one can also for-
mulate generalizations which maintain coefficients cqoesling to joint events that
small subsets of identities map to small subsets of trackaeder, we show that with
respect to the Fourier representation, the predictidnfsdtep of inference is ‘easy’ in
the sense that it can be performed efficiently and exactlilevithe conditioning step of
inference is ‘difficult’ since it can only be performed apgiroately. With respect to the
information form representation, the roles are reversét,pvediction/rollup ‘difficult’
and conditioning ‘easy’.

3.1 Fourier Domain Representation

The identity management problem was first introduced by &hial. [16], who pro-
posed a representation based on collapsing the factared slistribution over permu-
tations to just itdirst-order marginalsthen? marginal probabilities of the form:

Hk=h(c:ak) =]) = z h(o).
geS:o(k)=]j

The first-order marginals can be represented in a doublyastic matriX (called
abelief matrixin [16]). As an example, the matrix

| Alice Bob Charlie
Track1| 1/4 1/2 1/4
Track 2| 3/8 3/8 1/4
Track 3| 3/8 1/8 1/2

3 A doubly stochastic matrix has rows and columns which sum to 1. In the idemsitagement
setting, it reflects the constraint that every identity must magotoetrack, and that there is
someidentity on every track.
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By simply representing these first-order terms, it is alygaassible to make useful pre-
dictions. For example, we can predict the track at which desiity Alice is currently
located, or predict the identity currently located at track

The first-order marginal probabilities can be generalizekigher-order marginals
which maintain, for example, the probability that a pair mafcks is jointly associated
with a pair of identities. For example, we might be interdstethesecond-ordeprob-
ability that Alice and Bob are jointly in Tracks 1 and 2, resipely.

The reason for referring to these simple matrix-of-margtgpe representations
as ‘Fourier’ representations is due to the mathematicairthef generalized Fourier
transforms for the symmetric group (see [3, 13, 15]). Justtle Fourier transform of a
function on the real line can be separated into low and higéfency terms, a function
over the symmetric group (the group of permutations) careparated into low-order
effects and higher-order effects. We remark that the Foweoefficients of [6,11] do
not literally take the form of marginal probabilities busstead can be thought of as
a set of coefficients which can be used to uniquely recortstinecmarginals. Loosely
speaking, low-order marginal probabilities of a distribatcan always be reconstructed
using a subset of ‘low-frequency’ terms of its Fourier tfans. Varying the maximum
represented frequency yields a principled way for tradietyieen accuracy and speed
of inference.

Matrices of marginals can be viewed asa@mpact summargf a distribution over
permutations, but they can additionally be viewed aa@proximationto that distribu-
tion by applying the inverse Fourier transform to a trunddteurier expansion. Given
the first-order marginalsl of a distribution, the approximate distribution is:

n—-1 n—2
h(o —Tr H™Mg) — —=
( ) n ( 0') n| )
whereMy, is the first-ordepermutation matrixassociated witlw.* The above equation
can be generalized to higher-order Fourier representatidlowing for successively
better approximations to the original distributibn

3.2 Information Form Representation

Instead of representing the marginal probability that amnfiy k will be associated
with track j, in the information form representation, one maintainscars’ Qj. for
each identity-track paitk, j). The probability of a joint assignment of identities to
tracks is parameterized as:

h(o) exp(Z Qo ) iexp(Tr(QTMg))

whereMy is the first-ordempermutation matrixassociated witto andZo is the nor-
malizing constant. We observe that if we add a constant toyesrry within a single
row or single column of2, the distribution parameterized §y does not change. The

4 Given ag € Sy, the permutation matrix associated withs defined as tha x n matrix M, with
entriesMj = 1 if j = a(k), 0 otherwise. This (first-order) permutation matrix can easily be
generalized to higher-order permutation matrices whose nonzerosaefpi@sent assignments
of tuples of identitiegky, ..., km) to tuples(j1,..., jm) of tracks.
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Inference Operatigh Fourier (First Order) (Information Form (First Order)
Accuracy Complexity Accuracy Complexity
Prediction/Rollup Exact O(n)  |Approximate 0o(n)
Conditioning  ||{Approximate  &(n°) Exact o(n)
Normalization Exact 0(n?) |Approximate  ¢(n*logn)
Maximization Exact o(nd) Exact o(nd)

5

Table 1. we compare common inference operations for the Fourier and information forms agshmisimplest case
using a first-order representation, pairwise mixing, and first-order observations

entries ofQ are referred to as thiaformation coefficientsf the distributionP. Note
that multiple settings of the information coefficient mat2 can correspond to the
same distribution. For example, adding a constaiat any row or column o2 does
not change the distribution parameterized®y

As with Fourier coefficients, it is possible to consider gafiezations of the infor-
mation form to higher order terms. For example, we can mairdanonzero ‘score’
Q(/jl,jz).(kl.kz) where(j1, j2) denote a pair of tracks ar{t;, ky) denote a pair of identi-
ties. Thus, in the information domain, the probability opermutations is parameter-
ized as:

h(o) = Ziz/ exp( i

k1=1ko#kq

Q(U(kl)ﬁ(kz))ﬁ(kl,kz)) = eXP(Tf(QTMa)),

whereQ' is asecond-order information coefficient matrix

3.3 Comparing the Two Representations

We now compare and contrast the two representations. Otplart interest are the
probabilistic inference operations which are common imi¢ management. The chal-
lenge is how to perform these probabilistic operationsaisither the Fourier or infor-
mation forms, exactly or approximately, in polynomial tinteor simplicity, we will
restrict our focus to first order representations for bothRburier and information do-
mains. Additionally, we assume that mixing only occurs leswa pair of tracksand

j at any given time, leading to the following simple mixing nebth which one draws
a permutatiornt ~ my; (17), where:

p if m=id
0 otherwise

and setsr*Y « 1. ¢V) (where- represents the composition of two permutations).
We also assume the simple observation model (employed i1 [Bwhich assumes
that we get observatiorsof the form: 'trackj is colorr’. The probability of seeing

colorr at trackj given an identity-to-track associatianis
(o) = Prolqtrack ] is colorr|o) = a1}y

wherey, a,-1(j), = 1. The likelihood model parameteesscan be constructed based
on prior knowledge of color profiles of the moving targets [6]
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For a tabular summary of the inference operations congidier¢his section, we
refer the reader to Table 1.

Prediction/Rollup. In general, the pairwise mixing models considered in thisepa
can be thought of as a special case of random walk transitees a group, which
assume thaor('*1 is generated frono" by drawing a random permutationi!) from
some distributiom® and settingg(+Y = 7! gV}, The permutatiomV) represents a
random identity permutation that might occur among trackemthey get close to each
other (what we call anixing event

The motivation behind the random walk transition model iat tih allows us to
write the prediction/rollup operation aganvolutionof distributions, and as a result the
familiar convolution theorerof Fourier analysis holds. Below we state the convolution
theorem for the special case of first order Fourier represents, but a more general
statement can be found in, for example, [6].

Proposition 1 (Convolution theorem).Let MY be the first order matrix of marginals

for the distribution nff) and HY be the first order matrix for fo |z, ..., zY). The

first order matrix for the distribution after the predictiatep, o™V |Zb ..., 2V) is:
HED) — MmO . H®

where the operation on the right side is matrix multipliceti

Prediction/rollup in the Fourier domain &xactin the sense that first order marginals
for timestept + 1 can be computed exactly from first order marginals at tiegestin
contrast the same operation cannot be performed exacttyrespect to information
form coefficients and in particular, we argue that, if thetritistion h(c®)) can be
represented with first order information form coefficietb&gn under pairwise mixing,
second order information form coefficients are necessathgafiicient for representing
the distributiorh(g(t+1).

Proposition 2. Let Q) be the first order information coefficient matrix for the dist
bution (a®|2Y ... ZY). There exists a second order information coefficient matrix
Q1 which exactly parameterizes the distribution obtained sy prediction/rollup
step Hot V|2V ... ZY) in the information domain.

Proof. Given information coefficient® which parametrizé(a®|ZY, ..., 2Y), we ar-
gue that there exists ar{n — 1)-by-n(n— 1) 2nd order information coefficient matrix
Q' which exactly parametrize(g(t+1 |z ... ZY). To see this, suppose that track
andk, mixed up, then the distribution after the rollup operatisaleated ono would
be proportional to

pexp(Tr(Q™Mg)) + (1 p) exp(Tr(Q " Mp)) .

In such a expression, any entrierthat does not lie in rovy or ks is still an additive
term in the logarithmic space for characterizing the paster

For entries that lie in either roky or kp, we need to forrm(n— 1) 2nd order in-
formation coefficient$2 5 (,) o (k). (ki ko) - With those coefficients, we can represent the
posterior distribution evaluated anusing logarithmic likelihood$2¢k,).(k,)), (ki k)
together withQg i) k, wherek # ki, k.
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It turns out that the above logarithmic likelihoods can bebmed together into a
second order information matrix. This is because the reptasion theory applies to
the logarithmic space of the information form represeatati O

Instead of increasing the size of the representation attaelstep, a sensible approx-
imation is to compute a projection bfa{"*1) to the space of distributions which can
be represented in first-order information form. Schumitsical. [14] proposed the fol-
lowing update:

QY —jog (M(‘) -exp(Qm))

which they showed worked well in practice. The exponentia garithmic functions
in the formula refer to elementwise operations rather thatrirwise operations.

Conditioning. In contrast with the ease of prediction/rollup operatia@msditioning a
distribution in the Fourier domain is more complex and iases the size of the repre-
sentation.

Proposition 3 (Kronecker conditioning [6]). Let H!*Y) be the first order matrix of
marginals for the distribution fot+1) |z, ... ZY), then there exists a second order
matrix of marginals which exactly parametrize the disttibo obtained by the condi-
tioning step o2V ... 2D in the Fourier domain.

Using information coefficients, however, conditioning da@ performed exactly,
and takes a particularly simple and efficient form (that ad@al addition) which does
notincrease the representation complexity.

Proposition 4 (Schumitsch et al. [14])If h(o) O exp(Tr(QTMg)), then the update

is of the form
_ij — _ij + |OgC¥k,r.

where k= 0~1(j). The complexity of this update d&(n).

Normalization and Maximization. Normalization is a major inference operation and
appears, for example, as a subroutine of the conditionitgnaarginalization opera-
tions, i.e., computing ; £(-|o)h(a|---) or 3 s h(o). In the Fourier domain, normaliza-
tion is ‘free’ since thezeroth-ordemarginal is exactly the normalization const@nt
Y oh(o). Thus with respect to the irreducible Fourier coefficierfts[@®, 11], normal-
ization can be performed by dividing all Fourier coefficebty the lowest-frequency
coefficient. Alternatively, if the matrix of marginalsi, is represented explicitly, the
normalization constar® is simply the sum across any row or columntbf One can
then normalize by scaling every entryldfby Z.

It may be somewhat surprising to realize that the normadingiroblem is provably
hard in the information domain since the probability of axjassignment may at first
glance seem to factorize as:

n
h(o) O [ Wkon = eXp(Z Qo (k) k)
k=1

which would allow one to factor the normalization problernvitractable pieces. How-
ever, due to mutual exclusivity constraints which disalioentities from mapping to
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the same track, probabilistic independence is not presestead, the normalization
constantZ =y 5, [k Wk o(k)» iS €xactly the matrix permanent\f = exp(Q), whose
computation is B-complete (even for binary matrices). We have:

Proposition 5. Computing the normalization constant of the informatiomf@aram-
terization is#P-complete.

We remark that despite the dramatic differences with rasfgenormalization, com-
puting the permutation which is assigned the maximum pritibabinder h (instead
of summing ovelh) reduces to the same problem for both the Fourier and infiioma
forms due to the fact that the exponential is a monotonictfancin the first-order case,
for example, one must compute arg gax (HTMU) (see Equation 3.1), which can be
efficiently solved using either linear programming or a nemaf other combinatorial
algorithms.

Both Forms are Low-Dimensional Projections. Since the Fourier transform is linear
and orthogonal [3], the Fourier approximation of a disttidb h over permutations
can be thought of as afa projection ofh onto a low-frequency Fourier basiswhich
can be interpreted as affine marginal constraints. Thieptigin is associated with the
following Pythagorean theorepwhich says that ify is any function lying in the span
of V, then|lg—h||Z = [g—H||2 + [[W —h||2 , wherel is the Fourier projection off
onto the span of .

The information form representation can be thought of, endther hand, as an
information projection oh to the same low-frequency Fourier subspdagsing thekL-
divergencametric. Recall that the KL-divergence, also known asrtiative entropyis

defined a®(q||h) =S ,q(0o)log % Given a doubly stochastic matrik of first order
marginals, the information projection (IP) can be formethas follows:

(IP) ming ¥ q(0)log Eggi (ME) ming ¥ q(o)logq(0)
s.t. zq(a)MU =H s.t. Zq(o—)McI =H
qo(ff) >0,Vo Uq(a) >0,Vo

In the special case, where the distributioto be projected is uniform, i.e., we have
no prior knowledge, then the information projection prablbecomes the maximum
entropy (ME) problem. The objective ifME) coincides with the maximum entropy
principle in Bayesian probability, where the informatiortrepy of a distributiorg over
S isH[g = —S,0(0)logg(o). The maximum entropy distribution can be thought
of as the least biased distribution encoding some giverrnmdtion (about low-order
marginals in our case). We remark that the normalizatiorscamty ,q(o) =1 is
implicitly contained in the first constrainy,; q(o)Mg = H.

The following result (see proof of Proposition 7) shows ttiet solution to maxi-
mum entropy problermustbe parametrizable as an information form distribution:

Proposition 6. The solution t¢IP) is guaranteed to take the fornid) exp(Tr(Q"My))
while the solution t§ME) is guaranteed to take the forni@) 0 exp(Tr(2"My)) . The
Pythagorean theorehmlds: if g is any function that satisfies the marginal coastts,
then D(g||h) = D(g||h") + D(K||h), where h s the information projection of h.
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3.4 Discussion

As we have shown, both the Fourier and information forms esthbught of as methods
for approximating distributions over permutations via a-dimensional projection.
However, we have also argued that each method has their @peative advantages
and disadvantages with respect to the two inference opasadif prediction/rollup and
conditioning. While prediction/rollup updates, which iaase the information entropy
of the maintained distribution, can be performed exactihwéspect to a Fourier repre-
sentation, conditioning updates, which typically deceghg entropy, can be performed
exactly with respect to an information form representatids a result, Fourier repre-
sentations are typically much more suitable for modelingbfgms with high uncer-
tainty, while information form representations are moriadle for problems with low
uncertainty. In Section 7, we will validate these claimswékperiments.

4 Representation Conversion

In this section we show a natural method for converting betwthe two representa-
tions. Since the two representations do not describe the saace of functions, con-
version can only be approximate. We show in particular thathrike the normaliza-
tion problem which we discussed in the previous sectionyeximg between the two
representations requires solving thatrix permanent problem

4.1 From Information Coefficients to Fourier Coefficients

We first consider the problem of estimating low-order maatgrirom information coef-
ficients. Given the information coefficien, we can compute the first order marginal
probability that identityk maps toj, Hjk, by conditioning oro (k) = j, then normaliz-
ing. Note that the posterior after conditioning can also ligten in information form
and that the normalization operation corresponds to takiagpermanent of the infor-
mation matrix of the posterior distribution. We have:

exp(Qji)permexp(Qjc))
D R CCC)

Herefzjk denotes the — 1 by n— 1 submatrix ofQ with the j'th row andk’th column

removed. The matrix e>(p§ jk) denotes component-wise exponentials rather than matrix
exponentials. We therefore conclude that to convert froforimation coefficients to
Fourier coefficients, one must compute matrix permanents.

4.2 From Fourier Coefficients to Information Coefficients

We now discuss the opposite conversion from Fourier coefftsito Information co-
efficients, for which we take the maximum entropy approactcdeed in the previ-
ous section (probleniME)). Given, say, the first-order marginal probabilities, we ar
interested in computing the maximum entropy distributiemsistent with the given
marginals, which we argued can be parameterized in inféom&rm. We now turn to
the problem of algorithmically optimizing the entropy witespect to low-order con-
straints. Our approach is to solve the dual problem [1]:
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Proposition 7. The dual problem ofME) is:
) _ T _
max Tr(Y H) ;exp<Tr(Y Mg) 1),
s.t. Y<O.

Proof. The Lagrangian fo(ME) is given by:

S d(0)loga(9) - ¥ s6a(0) ~Tr(YT(F a(0)Mo —H)),

a

wheres; andY are dual variables associated with the constigiia) > 0, and$ , q(0)Mg =
Q. The KKT conditions tell us that fofME):

1+logq(o) — sy — Tr(YTM(,) =0.

Assuming allg(o) > 0, which gives uss; = 0 becuase of the dual complementary
condition, we have

q(o) = exp(Tr(YT Mg) — 1) = exp(QTMa)

whereQ =Y —1/n. Thus implies that the distributianis completely characterized by
n? information coefficient%2. So the dual objective dME) is therefore

Tr(YTH) —Zexp(Tr(YTMU) —1). O

Gradient Based Optimization for the Maximum Entropy PrahléVe now give a sim-
ple gradient descent algorithm to find the solution of thel guablem. Note that the
gradient of the objective function is given by the matrix

G(Y) = ij — Z exp(Tr(YTMg)) — 1)(|\/|g)jk = ij — exp(ij — l)pern’(exp(\?jk)).

Thus we can have a simple gradient descent algorithm, whesach iteration we find
an optimal step lengttr such that the objective function values is improved, i.e.,

Tr<(Y+aG(Y)TH) -y exp(Tr((Y+ aG(Y)™Mg) — 1) > Tr(YTH) -y exp(Tr(YT Mg) — 1),

while the feasibilityY + aG(Y) < 0 is still maintained. We note that the estimation of
the gradient involves estimating the matrix permanent tviaie now discuss.

The pseudocode for the algorithm is given in Algorithm 1.
4.3 Computation of the Matrix Permanent

We have shown that the problems of converting between thebege representations
both require one to solve the matrix permanent problem, dtiregprototypically #-
complete problems (even when all of the entries are binafy The fastest known
general exact algorithm is due to Ryser [12] based on thesimh-exclusion formula.
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Algorithm 1 Computing Information Coefficient®@ from MarginalsQ
Y<«<O0
while ||G(Y)|| > € do
Find an optimal step length
Y<Y+aG(Y)
end while
Q<Y

In some special cases, polynomial time algorithms exiseftimating the matrix per-
manent (e.g., for planar graphs [10]), but we have not founydsaich special cases to
be applicable for general identity management problems.

When the entries of the matrix are non-negative, which isitrweir setting there is
an FPRAS (fully polynomial-time randomized approximatsmneme) for approximat-
ing the permanent in probabilistic polynomial time [8, 9].

Finally, the fastest approximation that we are aware of seteon the Bethe free
energy approximation [5, 18, 19] which frames the permapesitlem as an inference
problem in a graphical model, which can then be solved usiogy belief propagation.

5 A Hybrid Approach for Identity Management

Using the conversion algorithms presented in the previeaan, we now present a
hybrid identity management approaahn which we switch between the Fourier and
information form domains depending on which domain is manavenient for certain
inference operations. There are several issues that oneamusider in designing a
scheme for switching between the two domains. In this sectie present three simple
switching strategies which we compare experimentally ictia 7.

We have argued that to handle mixing events, it is better écauSourier represen-
tation and that to handle evidence events, it is better ta¢hesénformation form rep-
resentation. A simple switching strategy (which we call imgopic switchingscheme)
thusalwaysswitches to either the Fourier or information form domaipeleding on
whether it must perform a prediction/rollup operation ooaditioning operation.

In a similar spirit, we can also consideiseoothness based switchiagheme, in
which we switch based on the diffuseness of the distributioour implementation, we
consider a heuristic in which we switch to a Fourier represémn whenever the first-
order matrix of marginals is withia of a uniform matrix with respect to the Frobenius
norm. Similarly, we switch to the information form repretsion whenever the first-
order matrix comes withig of some delta distribution.

What both the myopic and smoothness based approaches ifnowveyer, is the
computational cost of switching between representatibogninimize this switching
cost, we finally propose thagged block switchingcheme in which switching is only
allowed to happen evellytimeslices, wherd is a parameter set by the user. In lagged
block switching, we allow the identity management algamtto lag the incoming data
by k timesteps and therefore it can look ahead to see whethex #iermore mixing
events or evidence events in the nkximesteps. As with myopic switching, the al-
gorithm switches to Fourier if there are a majority of mixiegents, and switches to
information form if there are a majority of evidence evetiier potentially switching,
the algorithm processes the nétimesteps sequentially.
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Fig. 1. (a) A view of the simulated data. (b) Running time comparison of different amhies in computing matrix perma-
nent. (c) Comparing the running time of the three approaches.

6 An Adaptive Approach for Identity management

There are two extremal cases in the identity managemenlgmmolf we are completely
uncertain about the assignment of target identities ti&g;aben we have a uniform dis-
tribution over permutations, this smooth distribution barepresented compactly with
Fourier coefficients; at the limit when we know the locatidmeweery identity, our distri-
bution becomes very peaked, and we can use information cieeff$ to represent such
a distribution compactly. In a real tracking scenario, we gall highly certain or uncer-
tain groups of targets out of a global Fourier or informatiepresentation and represent
them separately, so that the problem breaks up into indeperstibproblems [7]. We
now propose a method based on exploiting probabilisticpeddence of distributions
over permutations, which can achieve significantly impcosealability.

Due to the mutual exclusivity constraints associated wihnmutations, we say the
distributionh(o) has a independence factorization if there exists a sibsgidentities
and a subseY of tracks, and also their corresponding complement sub&etsdY,
such thath(o) can be factorized into a product of two distributions ovémn@ppings
betweenX andY and all mappings betweetandy.

It turns out that whenever probabilistic independence $adllden both first order
Fourier coefficients and information coefficients can belezad block diagonal under
an appropriate reordering of the rows and columns [7]. SK@dY are unknown,
our task is to find permutations of the rows and columns of tts dirder Fourier or
information coefficients to obtain a block diagonal matkfiewing such a matrix as a
set of edge weights on a bipartite graph between identitidgdracks, we can approach
the detection step as a biclustering problem with an extlaniba constraint forcing
|X| = |Y]. In practice, we use a cubic time SVD-based technique preden [20]
which finds bipartite graph partitions optimizing the notized cut measure modified
to satisfy the balance constraint. We note that such btpaytaph partitioning problems
can be approached using either thanetric [20] or KL-divergence metric [2].

7 Experiments

In this section, we perform several experiments to compga&burier approach, infor-
mation approach and the proposed hybrid approach. We ug2eltes3D game engine
to generate simulated crowds of up to 50 moving targets wivak around in an out-
door market [4]; Figure 1-(a) depicts a snapshot view of theukated crowd. Such a
simulation approach allows us to obtain accurate grountth fiar large crowds than
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Fig. 2. Comparing tracking accuracy of the three approaches with different parameters.
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would be feasible in a typical physical testbed. The dataains interesting movement
patterns and we can extract mixing and observation evergsthyi from the data. We

log a mixing event whenever two targets get within some distaof each other and an
observation event whenever one target is separated frotineatither targets for some
distance. The percentages of observation events can beletby adjusting those

distance parameters. We measure tracking errors usinggttteoh of mislabeled target
identities over the tracks.

We first run an experiment for testing the running time perfance of different
algorithms in estimating the matrix permanent. As shownigufe 1-(b), we gener-
ate random matrices and compare the running time of the foproaches: the naive
method which sums up all products of matrix elements thainlidifferent rows and
columns, the fastest known exact algorithm by Ryser [13,Monte Carlo sampling
algorithm by Huber et al. [8], and the loopy belief propagatalgorithm by Huang et
al. [5]. The naive approach has a super-exponential coritpkend the Ryser’s formula
has an exponential complexity, thus, they scale poorly @asthtrix size grows; On the
other hand, the two randomized approximate algorithms hraweh better running time
performance than the exact algorithms. In the hybrid alorj we use Monte Carlo
sampling algorithms [8]. for estimating the matrix permatne

In our experiments, we can control two sets of parametergtwlietermine the
tracking quality, one is the swapping probability — if we cegep track of who is
who when two targets mix with high probability during the giction/rollup opera-
tion, we can achieve better tracking performance; the aghtbe likelihood function, if
the likelihood for observing the identity of a target is highen conditioning step can
resolve the ambiguities better. We set up nine cases to rexfiie tracking accuracy
with different swapping probability and likelihood funati parameters. As depicted in
Figure 2, the probabilitp characterizing confusions of the mixing events grows large
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Fig. 4. (a,b) Tracking accuracy and running time of the hybrid approach with different digwifor estimating matrix
permanent. (c,d) Tracking accuracy and running time of the hybrid approach with diffelesifor switching.

from left to right, and the likelihood for observing target identity grows larger from
top to bottom. We can get better tracking accuraqyig small or/ is large.

From Figure 2, we can see that the information approach dotpes the Fourier
approach in most cases, while the Fourier approach cantieatformation approach
only slightly in some cases, e.g., the case .5,/ = .75 where the mixings are quite
confusing. The tracking accuracy can be improved if we ipooaite high order Fourier
coefficients. We can achieve better performances in lotasé< if we use the hybrid
approach, whose tracking accuracy are comparable to ther2ied or even 3rd order
Fourier approach. The running time for those approachestayen in Figure 1-(c).
In general, the Fourier approach has a fundamental trédeebfieen tracking com-
plexity in terms of the number of coefficients used and thekiray accuracy: we can
improve tracking accuracy by using more coefficients. Thierldyapproach makes a
good balance which can improve tracking accuracy when ter®bservation events
that confirm the target identities (largewith moderate running time. We can see that
the running time for the hybrid approach is strictly lessittiae second order Fourier
approach. This is because the complexity for the conditigpisitep in the Fourier do-
main is very expensive if we use high order Fourier coeffisien

We also compare the errors of approximating the distriloudieer permutations of
the three approaches (see Figure 3). It turns out that thedf@pproach decrease (in-
crease) the errors during the rollup (conditioning) stegsle the information approach
decrease (increase) the errors during the conditionirigosteps. However, if we use
the hybrid approach, we can always keep the errors at a muahr level.

We also compare the tracking accuracy and runing time of yheidhapproach by
varing the algorithms for estimating the matrix permanastyell as varying the strate-
gies for switching between two domains. Specifically, we pare Ryser, Huber, and
the LBP algorithms for estimating matrix permanents. Theking accuracy of those
approaches does not differ too much. However, the two appition algorithms (by
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Fig. 5. Tracking accuracy and running time of the adaptive approach compared with the nreadpproach.

Huber and the loopy belief propagation method) have longaming times for the small
scale experiments because it takes longer time to convergEhiing the maximum en-
tropy problem (see Figure 4-(a,b)). We also evaluate oeetbifferent switching strate-
gies for the hybrid approach. Compared with the smoothnassdswitching strategy
which switches 38 times, the lagged block strategy swittleteween two domains 91
times among the 1000 timesteps while can not improve th&itrg@accuracy too much
and take very long running time. The myopic strategy suféefittle on the tracking
accuracy while the running time can be improved because e only 20 times of
switchings (see Figure 4-(c,d)).

We finally evaluate the performance of the adaptive approashiepicted in Fig-
ure 5, the tracking accuracy for the adaptive approach igeoable to the nonadaptive
approach, while the running time can always be controllégguhe adaptive approach.
In particular, the tracking accuracy for the adaptive apphois often worse than the
nonadaptive approach when the number of targets is smallisedt is usually difficult
to factorize the problem in those cases. When the numberg#tsis larger, however,
the benefit of adaptive approach becomes more evident intkaatking accuracy and
complexity.

8 Conclusion

In this paper we have compared the computational advantagkdisadvantages of two
popular distributional representations for the identitgmagement problem. We show
that the two approaches are complementary - the Fourieegeptation is closed under
prediction operations and is thus better suited for hagdtimblems with high uncer-
tainty while the information form representation is closeder conditioning operations
and is better suited for handling problems in which a lot cdevations are available.
As our experiments show, using a combination of both appremseems to often be the
best approach. While converting between the two represensas a #P-hard problem
in general, we show that with some of the modern permanembajppation algorithms,
conversion is tractable and yields surprisingly good penémce in practice.

We have focused primarily on the first-order versions of libéhFourier and infor-
mation form approximations. It would be interesting to depea higher order analysis
with the hybrid approach.
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