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Abstract We propose a number of techniques for obtaining a global ranking
from data that may be incomplete and imbalanced — characteristics that are
almost universal to modern datasets coming from e-commerce and internet
applications. We are primarily interested in cardinal data based on scores
or ratings though our methods also give specific insights on ordinal data.
From raw ranking data, we construct pairwise rankings, represented as edge
flows on an appropriate graph. Our statistical ranking method exploits the
graph Helmholtzian, which is the graph theoretic analogue of the Helmholtz
operator or vector Laplacian, in much the same way the graph Laplacian
is an analogue of the Laplace operator or scalar Laplacian. We shall study
the graph Helmholtzian using combinatorial Hodge theory, which provides a
way to unravel ranking information from edge flows. In particular, we show
that every edge flow representing pairwise ranking can be resolved into two
orthogonal components, a gradient flow that represents the l2-optimal global
ranking and a divergence-free flow (cyclic) that measures the validity of the
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global ranking obtained — if this is large, then it indicates that the data
does not have a good global ranking. This divergence-free flow can be further
decomposed orthogonally into a curl flow (locally cyclic) and a harmonic flow
(locally acyclic but globally cyclic); these provides information on whether
inconsistency in the ranking data arises locally or globally.

When applied to statistical ranking problems, Hodge decomposition sheds
light on whether a given dataset may be globally ranked in a meaningful way
or if the data is inherently inconsistent and thus could not have any reason-
able global ranking; in the latter case it provides information on the nature
of the inconsistencies. An obvious advantage over the NP-hardness of Ke-
meny optimization is that the discrete Hodge decomposition may be easily
computed via a linear least squares regression. We also investigated the l1-
projection of edge flows, showing that this has a dual given by correlation
maximization over bounded divergence-free flows, and the l1-approximate
sparse cyclic ranking, showing that this has a dual given by correlation max-
imization over bounded curl-free flows. We discuss connections with well-
known ordinal ranking techniques such as Kemeny optimization and Borda
count from social choice theory.

Keywords Statistical ranking · rank aggregation · combinatorial Hodge
theory · discrete exterior calculus · combinatorial Laplacian · graph
Helmholtzian · Kemeny optimization · Borda count

Mathematics Subject Classification (2000) 68T05 · 58A14 · 90C05 ·
90C27 · 91B12 · 91B14

1 Introduction

The problem of ranking in various contexts has become increasingly im-
portant in machine learning. Many datasets require some form of ranking
to facilitate identification of important entries, extraction of principal at-
tributes, and to perform efficient search and sort operations. Modern in-
ternet and e-commerce applications have spurred an enormous growth in
such datasets: Google’s search engine, CiteSeer’s citation database, eBay’s
feedback-reputation mechanism, Netflix’s movie recommendation system, all
accumulate a large volume of data that needs to be ranked.

These modern datasets typically have one or more of the following fea-
tures that render traditional ranking methods (such as those in social choice
theory) inapplicable or ineffective: (1) unlike traditional ranking problems
such as votings and tournaments, the data often contains cardinal scores in-
stead of ordinal orderings; (2) the given data is largely incomplete with most
entries missing a substantial amount of information; (3) the data will al-
most always be imbalanced where the amount of available information varies
widely from entry to entry and/or from criterion to criterion; (4) the given
data often lives on a large complex network, either explicitly or implicitly,
and the structure of this underlying network is itself important in the rank-
ing process. These new features have posed new challenges and call for new
techniques. In this paper we will look at a method that addresses them to
some extent.
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A fundamental problem here is to globally rank a set of alternatives based
on scores given by voters. Here the words ‘alternatives’ and ‘voters’ are used
in a generalized sense that depends on the context. For example, the al-
ternatives may be websites indexed by Google, scholarly articles indexed by
CiteSeer, sellers on eBay, or movies on Netflix; the voters in the corresponding
contexts may be other websites, other scholarly articles, buyers, or viewers.
The ‘voters’ could also refer to groups of voters: e.g. websites, articles, buy-
ers, or viewers grouped respectively by topics, authorship, buying patterns,
or movie tastes. The ‘voters’ could even refer to something entirely abstract,
such as a collection of different criteria used to judge the alternatives.

The features (1)–(4) can be observed in the aforementioned examples.
In the eBay/Netflix context, a buyer/viewer would assign cardinal scores
(1 through 5 stars) to sellers/movies instead of ranking them in an ordi-
nal fashion; the eBay/Netflix datasets are highly incomplete since most buy-
ers/viewers would have rated only a very small fraction of the sellers/movies,
and also highly imbalanced since a handful of popular sellers/blockbuster
movies will have received an overwhelming number of ratings while the vast
majority will get only a moderate or small number of ratings. The datasets
from Google and CiteSeer have obvious underlying network structures given
by hyperlinks and citations respectively. Somewhat less obvious are the net-
work structures underlying the datasets from eBay and Netflix, which come
from aggregating the pairwise comparisons of buyers/movies over all sell-
ers/viewers. Indeed, we shall see that in all these ranking problems, graph
structures naturally arise from pairwise comparisons, irrespective of whether
there is an obvious underlying network (e.g. from citation, friendship, or hy-
perlink relations) or not, and this serves to place ranking problems of seem-
ingly different nature on an equal graph-theoretic footing. The incomplete-
ness and imbalance of the datasets could then be manifested as the (edge)
sparsity structure and (vertex) degree distribution of pairwise comparison
graphs.

In collaborative filtering applications, one often encounters a personalized
ranking problem, when one needs to find a global ranking of alternatives
that generates the most consensus within a group of voters who share similar
interests/tastes. While the statistical ranking problem investigated in this
paper plays a fundamental role in such personalized ranking problems, there
is also the equally important problem of clustering voters into interest groups,
which our methods do not address. We would like to stress that in this paper
we only concern ourselves with the ranking problem but not the clustering
problem. So while we have made use of the Netflix prize dataset to motivate
our studies, our paper should not be viewed as an attempt to solve the Netflix
prize problem.

The method that we will use to analyze pairwise rankings, which we rep-
resent as edge flows on a graph, comes from discrete or combinatorial Hodge
theory. Among other things, combinatorial Hodge theory provides us with
a mean to determine a global ranking that also comes with a ‘certificate of
reliability’ for the validity of this global ranking. While Hodge theory is well-
known to pure mathematicians as a corner stone of geometry and topology,
and to applied mathematician as an important tool in computational electro-
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magnetics and fluid dynamics, its application to statistical ranking problems
has, to the best of our knowledge, never been studied1.

In all our proposed methods, the graph in question has as its vertices
the alternatives to be ranked, voters’ preferences are then quantified and
aggregated (we will say how later) into an edge flow on this graph. Hodge
theory then yields an orthogonal decomposition of the edge flow into three
components: a gradient flow that is globally acyclic, a harmonic flow that
is locally acyclic but globally cyclic, and a curl flow that is locally cyclic.
This decomposition is known as the Hodge decomposition. The usefulness of
the decomposition lies in the fact that the gradient flow component induces
a global ranking of the alternatives. Unlike the computationally intractable
Kemeny optimal, this may be easily computed via a linear least squares prob-
lem. Furthermore, the l2-norm of the least squares residual, which represents
the contribution from the sum of the remaining curl flow and harmonic flow
components, quantifies the validity of the global ranking induced by the
gradient flow component. If the residual is small, then the gradient flow ac-
counts for most of the variation in the underlying data and therefore the
global ranking obtained from it is expected to be a majority consensus. On
the other hand, if the residual is large, then the underlying data is plagued
with cyclic inconsistencies (i.e. intransitive preference relations of the form
a � b � c � · · · � z � a) and one may not assign any reasonable global
ranking to it.

We would like to point out here that cyclic inconsistencies are not nec-
essarily due to error or noise in the data but may very well be an inherent
characteristic of the data. As the famous impossibility theorems from social
choice theory [2,39] have shown, inconsistency (or, rather, intransitivity) is
inevitable in any societal preference aggregation that is sophisticated enough.
Social scientists have, through empirical studies, observed that preference
judgement of groups or individuals on a list of alternatives do in fact ex-
hibit such irrational or inconsistent behavior. Indeed in any group decision
making process, a lack of consensus is the norm rather than the exception in
our everyday experience. This is the well-known Condorcet paradox [10]: the
majority prefers a to b and b to c, but may yet prefer c to a. Even a single
individual making his own preference judgements could face such dilemma
— if he uses multiple criteria to rank the alternatives. As such, the cyclic
inconsistencies is intrinsic to any real world ranking data and should be thor-
oughly analyzed. Hodge theory again provides a mean to do so. The curl flow
and harmonic flow components of an edge flow quantify respectively the local
and global cyclic inconsistencies.

Loosely speaking, a dominant curl flow component suggests that the in-
consistencies are of a local nature while a dominant harmonic flow component
suggests that they are of a global nature. If most of the inconsistencies come
from the curl (local) component while the harmonic (global) component is
small, then this roughly translates to mean that the ordering of closely ranked
alternatives is unreliable but that of very differently ranked alternatives is
reliable, i.e. we cannot say with confidence whether the ordering of the 27th,

1 Nevertheless, Hodge theory has recently found other applications in statistical
learning theory [40].
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28th, 29th ranked items makes sense but we can say with confidence that the
4th, 60th, 100th items should be ordered according to their rank. In other
words, Condorcet paradox may well apply to items ranked closed together
but not to items ranked far apart. For example, if a large number of gourmets
(voters) are asked to state their preferences on an extensive range of food
items (alternatives), there may not be a consensus for their preferences with
regard to hamburgers, hot dogs, and pizzas and there may not be a consensus
for their preferences with regard to caviar, foie gras, and truffles; but there
may well be a near universal preference for the latter group of food items over
the former group. In this case, the inconsistencies will be mostly local and we
should expect a large curl flow component. If in addition the harmonic flow
component is small, then most of the inconsistencies happen locally and we
could interpret this to mean that the global ranking is valid on a coarse scale
(ranking different groups of food) but not on a fine scale (ranking similar food
items belonging to a particular group). We refer the reader to Section 8.1 for
an explicit example based on the Netflix prize dataset.

When studied in conjunction with robust regression and compressed sens-
ing, the three orthogonal subspaces given by Hodge decomposition provide
other insights. In this paper we will see two results involving l1-optimizations
where these subspaces provide meaningful and useful interpretations in the
primal-dual way: (a) the l1-projection of an edge flow onto the subspace of
gradient flows has a dual problem as the maximal correlation over bounded
cyclic flows, i.e. the sum of curl flows and harmonic flows; (b) the l1 -
approximation of a sparse cyclic flow, has a dual problem as the maximal
correlation over bounded locally acyclic flows. These results indicate that the
three orthogonal subspaces could arise even in settings where orthogonality
is lost.

1.1 What’s New

The main contribution of this paper is in the application of Hodge decomposi-
tion to the analysis of ranking data. We show that this approach has several
attractive features: (i) it generalizes the classical Borda Count method in
voting theory to data that may have missing values; (ii) it provides a way
to analyze inherent inconsistencies or conflicts in the ranking data; (iii) it
is flexible enough to be combined with other techniques: these include other
ways to form pairwise rankings reflecting prior knowledge and the use of l1
minimization in place of l2 minimization to encourage robustness or sparsity.
Although relatively straightforward and completely natural, the l1 aspects
of Hodge theory in Section 6 has, to the best of our knowledge, never been
discussed before.

We emphasize two conceptual aspects underlying this work that are par-
ticularly unconventional: (1) We believe that obtaining a global ranking,
which is the main if not the sole objective of all existing work on rank ag-
gregation, gives only an incomplete picture of the ranking data — one also
needs a ‘certificate of reliability’ for the global ranking. Our method provides
this certificate by measuring also the local and global inconsistent compo-
nents of the ranking data. (2) We believe that with the right mathematical
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model, rank aggregation need not be a computationally intractable task. The
model that we proposed in this paper reduces rank aggregation to a linear
least squares regression, avoiding usual NP-hard combinatorial optimization
problems such as finding Kemeny optima or minimum feedback arc sets.

Hodge and Helmholtz decompositions are of course well-known in mathe-
matics and physics, but usually in a continuous setting where the underlying
spaces have the structure of a Riemannian manifold or an algebraic variety.
The combinatorial Hodge theory that we presented here is arguably a trivial
case with the simplest possible underlying space — a graph. Many of the
difficulties in developing Hodge theory in differential and algebraic geome-
try simply do not surface in our case. However this also makes combinatorial
Hodge theory accessible — the way we developed and presented it essentially
requires nothing more than some elementary matrix theory and multivariate
calculus. We are unaware of similar treatments in the existing literature and
would consider our elementary treatment a minor expository contribution
that might help popularize the use of Hodge decomposition and the graph
Helmholtzian, possibly to other areas in data analysis and machine learning.

1.2 Organization of this Paper

In Section 2 we introduce the main problem and discuss how a pairwise
comparison graph may be constructed from data comprising cardinal scores
by voters on alternatives and how a simple least squares regression may be
used to compute the desired solution. We define the combinatorial curl, a
measure of local (triangular) inconsistency for such data, and also the com-
binatorial gradient and combinatorial divergence. Section 3 presents a purely
matrix-theoretic view of Hodge theory, but at the expense of some geomet-
ric insights. These are covered when we formally introduce Hodge theory in
Section 4. We first remind the reader how one may construct a d-dimensional
simplicial complex from any given graph (the pairwise comparison graph in
our case) by simply filling-in all its k-cliques for k ≤ d. Then we will in-
troduce combinatorial Hodge theory for a general d-dimensional simplicial
complex but focusing on the d = 2 case and its relevance to the ranking
problem. In Section 5 we discuss the implications of Hodge decomposition
applied to ranking, with a deeper analysis on the least squares method in Sec-
tion 2. Section 6 extends the analysis to two closely related l1-minimization
problems, the l1-projection of pairwise ranking onto gradient flows and the
l1-approximate sparse cyclic ranking. A discussion of the connections with
Kemeny optimization and Borda count in social choice theory can be found in
Section 7. Numerical experiments on three real datasets are given in Section 8
to illustrate some basic ideas in this paper.

1.3 Notations

Let V be a finite set. We will adopt the following notation from combinatorics:(
V

k

)
:= set of all k-element subset of V .
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In particular
(
V
2

)
would be the set of all unordered pairs of elements of V

and
(
V
3

)
would be the set of all unordered triples of elements of V (the sets

of ordered pairs and ordered triples will be denoted V ×V and V ×V ×V as
usual). We will not distinguish between V and

(
V
1

)
. Ordered and unordered

pairs will be delimited by parentheses (i, j) and braces {i, j} respectively,
and likewise for triples and n-tuples in general.

We will use positive integers to label alternatives and voters. Henceforth,
V will always be the set {1, . . . , n} and will denote a set of alternatives to
be ranked. In our approach to statistical ranking, these alternatives would
be represented as vertices of a graph. Λ = {1, . . . ,m} will denote a set of
voters. For i, j ∈ V , we write i � j to mean that alternative i is preferred
over alternative j. If we wish to emphasize the preference judgement of a
particular voter α ∈ Λ, we will write i �α j.

Since our approach mandates that we borrow terminologies from graph
theory, vector calculus, linear algebra, algebraic topology, as well as various
ranking theoretic terms, we think that it would help to summarize some of
the correspondence here.

Graph theory Linear algebra Vec. calculus Topology Ranking

Function on Vector in Rn Potential 0-cochain Score
vertices function function
Edge flow Skew-symmetric Vector field 1-cochain Pairwise

matrix in Rn×n ranking
Triangular flow Skew-symmetric hyper- Tensor field 2-cochain Triplewise

-matrix in Rn×n×n ranking

As the reader will see, the notions of gradient, divergence, curl, Laplace
operator, and Helmholtz operator from vector calculus and topology will
play important roles in statistical ranking. One novelty of our approach lies
in extending these notions to the other three columns, where most of them
have no well-known equivalent. For example, what we will call a harmonic
ranking is central to the question of whether a global ranking is feasible. This
notion is completely natural from the vector calculus or topology point-of-
view, they correspond to solutions of the Helmholtz equation or homology
classes. However, it will be hard to define harmonic ranking directly in social
choice theory without this insight, and we suspect that it is the reason why
the notion of harmonic ranking has never been discussed in existing studies
of ranking in social choice theory and other fields.

2 Statistical Ranking on Graphs

The main problem discussed in this paper is that of determining a global
ranking from a dataset comprising a set of alternatives ranked by a set of
voters. This is a problem that has received attention in fields including de-
cision science [35,36], financial economics [4,28], machine learning [5,12,17,
20], social choice [2,39,34], statistics [15,25,26,29–32], among others. Our ob-
jective towards statistical ranking is two-fold: like everybody else, we want
to deduce a global ranking from the data whenever possible; but in addition
to that, we also want to detect when the data does not permit a statistically
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meaningful global ranking and in which case characterize the data in terms
of its local and global inconsistencies.

Let V = {1, . . . , n} be the set of alternatives to be ranked and Λ =
{1, . . . ,m} be a set of voters. The implicit assumption is that each voter
would have rated, i.e. assigned cardinal scores or given an ordinal ordering
to, a small fraction of the alternatives. But no matter how incomplete the
rated portion is, one may always convert such ratings into pairwise rankings
that has no missing values as follows. For each voter α ∈ Λ, the pairwise
ranking matrix of α is a skew-symmetric matrix Y α ∈ Rn×n, i.e. for each
ordered pair (i, j) ∈ V × V , we have

Y αij = −Y αji .

Informally, Y αij measures the ‘degree of preference’ of the ith alternative over
the jth alternative held by the αth voter. Studies of ranking problems in
different disciplines have led to rather different ways of quantifying such
‘degree of preference’. In Section 2.2.1, we will see several ways of defining
Y αij (as score difference, score ratio, and score ordering) coming from decision
science, machine learning, social choice theory, and statistics. If the voter α
did not compare alternatives i and j, then Y αij is considered a missing value
and set to be 0 for convenience; this manner of handling missing values allows
Y α to be a skew-symmetric matrix for each α ∈ Λ. Nevertheless we could have
assigned any arbitrary value or a non-numerical symbol to represent missing
values, and this would have not affected our algorithmic results because of
our use of the following weight function.

Define the weight function w : Λ × V × V → [0,∞) as the indicator
function

wαij = w(α, i, j) =

{
1 if α made a pairwise comparison for {i, j},
0 otherwise.

Therefore wαij = 0 iff Y αij is a missing value. Note that Wα = [wαij ] is a
symmetric {0, 1}-valued matrix; but more generally, wαij may be chosen as
the capacity (in the graph theoretic sense) if there are multiple comparisons
of i and j by voter α. The pairs (i, j) for which w(α, i, j) = 1 for some α ∈ Λ
are known as crucial pairs in the machine learning literature (we thank the
reviewers for pointing this out).

Our general paradigm for statistical ranking is to minimize a weighted
sum of pairwise loss of a global ranking on the given data over a model
class M of all global rankings. We begin with a simple sum-of-squares loss
function,

min
X∈MG

∑
α,i,j

wαij(Xij − Y αij )2, (1)

where the model class MG is a subset of the skew-symmetric matrices,

MG = {X ∈ Rn×n | Xij = sj − si, s : V → R}. (2)

Any X ∈ MG induces a global ranking on the alternatives 1, . . . , n via the
rule i � j iff si ≥ sj . Note that ties, i.e. i � j and j � i, are allowed and this
happens precisely when si = sj .
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For ranking data given in terms of cardinal scores, this simple scheme pre-
serves the magnitudes of the ratings, instead of merely the ordering, when
we have globally consistent data (see Definition 3). Moreover, it may also be
computed more easily than many other loss functions (though the computa-
tional cost depends also on the choice of M). This simple scheme is not as
restrictive as it first seems. For example, Kemeny optimization in classical
social choice theory may be realized as a special case where Y αij ∈ {±1} and
M is the Kemeny model class,

MK := {X ∈ Rn×n | Xij = sign(sj − si), s : V → R}. (3)

The function sign : R → {±1} takes nonnegative numbers to 1 and nega-
tive numbers to −1. A binary valued Y αij is the standard scenario in binary
pairwise comparisons [1,2,13,20,26]; in this context, a global ranking is usu-
ally taken to be synonymous as a Kemeny optimal. We will discuss Kemeny
optimization in greater details in Section 7.

2.1 Pairwise Comparison Graphs and Pairwise Ranking Flows

A graph structure arises naturally from ranking data as follows. Let G =
(V,E) be an undirected graph whose vertex set is V , the set of alternatives
to be ranked, and whose edge set is

E =
{
{i, j} ∈

(
V
2

) ∣∣ ∑
αw

α
ij > 0

}
, (4)

i.e. the set of pairs {i, j} where pairwise comparisons have been made. We
call such G a pairwise comparison graph. One can further associate weights
on the edges as capacity, e.g. wij =

∑
α w

α
ij .

A pairwise ranking can be viewed as edge flows on G, i.e. a function
X : V × V → R that satisfies

X(i, j) = −X(j, i) if {i, j} ∈ E,
X(i, j) = 0 otherwise. (5)

It is clear that a skew-symmetric matrix [Xij ] induces an edge flow and vice
versa. So henceforth we will not distinguish between edge flows and skew-
symmetric matrices and will often write Xij in place of X(i, j).

We will now borrow some terminologies from vector calculus. An edge
flow of the form Xij = sj − si, i.e. X ∈MG, can be regarded as the gradient
of a function s : V → R, which will be called a potential function (or negative
potential, depending on sign convention). In the context of ranking, a poten-
tial function is a score function or utility function on the set of alternatives,
assigning a score s(i) = si to alternative i. Note that any such function de-
fines a global ranking as discussed after (2). To be precise, we define gradient
as follows.

Definition 1 The combinatorial gradient operator maps a potential func-
tion on the vertices s : V → R to an edge flow grad s : V × V → R via

(grad s)(i, j) = sj − si. (6)

An edge flow that has this form will be called a gradient flow.
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In other words, the combinatorial gradient takes global rankings to pair-
wise rankings. Pairwise rankings that arise in this manner will be called
globally consistent (formally defined in Definition 3). Given a globally con-
sistent pairwise ranking X, we can easily solve grad(s) = X to determine a
score function s (up to an additive constant), and from s we can obtain a
global ranking of the alternatives in the manner described after (2). Observe
that the set of all globally consistent pairwise rankings in (2) may be written
as MG = {grad s | s : V → R} = im(grad).

For convenience, we will drop the adjective ‘combinatorial’ from ‘combi-
natorial gradient’. We may sometimes also drop the adjective ‘pairwise’ in
‘globally consistent pairwise ranking’ when there is no risk of confusion.

The optimization problem (1) can be rewritten in the form of a weighted
l2-minimization on a pairwise comparison graph

min
X∈MG

‖X − Ȳ ‖22,w = min
X∈MG

[∑
{i,j}∈E

wij(Xij − Ȳij)2
]

(7)

where
wij :=

∑
αw

α
ij and Ȳij :=

∑
α w

α
ijY

α
ij∑

α w
α
ij

. (8)

An optimizer thus corresponds to an l2-projection of a pairwise ranking edge
flow Ȳ onto the space of gradient flows. We note that W = [wij ] =

∑
αW

α

is a symmetric nonnegative-valued matrix. This choice of W is not intended
to be rigid. One could for example define W to incorporate prior knowledge
of the relative importance of the paired comparisons as judged by the voters.

An interesting variation of this scheme is an analogous l1-projection onto
the space of gradient flows,

min
X∈MG

‖X − Ȳ ‖1,w = min
X∈MG

[∑
{i,j}∈E

wij |Xij − Ȳij |
]
. (9)

Its solutions are more robust to outliers or large deviations in Ȳij as (9)
may be regarded as the least absolute deviation (LAD) method in robust
regression. We will discuss this problem in greater details in Section 6.1.

Combinatorial Hodge theory will provide a geometric interpretation of
the optimizer and residuals of (7) as well as further insights on (9). Before
going deeper into the analysis of such optimization problems, we present
several examples of pairwise ranking arising from applications.

2.2 Pairwise Rankings

Humans are unable to make accurate preference judgement on even moder-
ately large sets. In fact, it has been argued that most people can rank only
between 5 to 9 alternatives at a time [37]. This is probably why many rating
scales (e.g. the ones used by Amazon, eBay, Netflix, YouTube) are all based
on a 5-star scale. Hence one expects large human-generated ranking data to
be at best partially ordered (with chains of lengths about 5 to 9, if [37] is
accurate). For most people, it is a harder task to rank or rate 20 movies than
to compare the movies a pair at a time. In certain settings such as tennis



Ranking with Hodge theory 11

tournaments and wine tasting, only pairwise comparisons are possible. Pair-
wise comparison methods, which involve the smallest partial rankings, is thus
natural for analyzing ranking data.

Pairwise comparisons also help reduce bias due to the arbitrariness of
rating scale by adopting a relative measure. As we will see in Section 2.2.1,
pairwise comparisons provide a way to handle missing values, which are ex-
pected because of the general lack of incentives or patience for a human to
process a large dataset. For these reasons, pairwise comparison methods have
been popular in psychology, statistics, and social choice theory [42,26,13,35,
2]. Such methods are also getting increasing attention from the machine
learning community as they may be adapted for studying classification prob-
lems [19,17,20]. We will present two very different instances where pairwise
rankings arise: recommendation systems and exchange economic systems.

2.2.1 Recommendation systems

The generic scenario in recommendation systems is that there are m voters
rating n alternatives. For example, in the Netflix context, viewers will rate
a movie on a scale of 5 stars [5]; in financial markets, analysts will rate a
stock or a security by 5 classes of recommendations [4]. In these cases, we
let A = [aαi] ∈ Rm×n represent the voter-alternative matrix. A typically
has a large number of missing values; for example, the dataset that Netflix
released for its prize competition contains a viewer-movie matrix with 99%
of its values missing. The standard problem here is to predict these missing
values from the given data but we caution the reader again that this is not
the problem addressed in our paper. Instead of estimating the missing values
of A, we want to learn a global ranking of the alternatives from A, without
having to first estimate the missing values.

Even though the matrix A may be highly incomplete, we may aggregate
over all voters to get a pairwise ranking matrix using one of the four following
methods.

1. Arithmetic mean of score differences: The score difference refers to
Y αij = aαj − aαi. The arithmetic mean over all customers who have rated
both i and j is

Ȳij =
∑
α(aαj − aαi)

#{α | aαi, aαj exist}
.

This is translation invariant.
2. Geometric mean of score ratios: Assuming A > 0. The score ratio

refers to Y αij = aαj/aαi. The (log) geometric mean over all customers who
have rated both i and j is

Ȳij =
∑
α(log aαj − log aαi)

#{α | aαi, aαj exist}
.

This is scale invariant.
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3. Binary comparison: Here Y αij = sign(aαj − aαi). Its average is the
probability difference that the alternative j is preferred to i than the
other way round,

Ȳij = Pr{α | aαj > aαi} − Pr{α | aαj < aαi}.

This is invariant up to a monotone transformation.
4. Logarithmic odds ratio: As in the case of binary comparison, except

that we adopt a logarithmic scale

Ȳij = log
Pr{α | aαj ≥ aαi}
Pr{α | aαj ≤ aαi}

.

This is also invariant up to a monotone transformation.

Each of these four statistics is a form of “average pairwise ranking” over
all voters. The first model leads to the concept of position-rules in social
choice theory [34] and it has also been used in machine learning recently [12].
The second model has appeared in multi-criteria decision theory [35]. The
third and fourth models are known as linear model [32] and Bradley-Terry
model [6] respectively in the statistics and psychology literature. There are
other plausible choices for defining Ȳij , e.g. [42,29–31], but we will not discuss
more of them here. It suffices to note that there is a rich variety of techniques
to preprocess raw ranking data into the pairwise ranking edge flow Ȳij that
serves as input to our Hodge theoretic method. However, it should be noted
that the l2- and l1-optimization on graphs in (7) and (9) may be applied
with any of the four choices above since only the knowledge of Ȳij is required
but the sum-of-squares and Kemeny optimization in (1) and (3) require the
original score difference or score order data be known for each voter.

2.2.2 Exchange economic systems

A purely exchange economic system may be described by a graph G = (V,E)
with vertex set V = {1, . . . , n} representing the n goods and edge set E ⊆

(
V
2

)
representing feasible pairwise transactions. If the market is complete in the
sense that every pair of goods is exchangeable, then G is a complete graph.
Suppose the exchange rate between the ith and jth goods is given by

1 unit i = aij unit j, aij > 0.

Then the exchange rate matrix A = [aij ] is a reciprocal matrix (possibly with
missing values), i.e. aij = 1/aji for all i, j ∈ V . The reciprocal matrix was
first used in the studies of paired preference aggregation by Saaty [35]; it was
also used by Ma [28] to study currency exchange markets. A pricing problem
here is to look for a universal equivalent which measures the values of goods
(this is in fact an abstraction of the concept of money), i.e. π : V → R such
that

aij =
πj
πi
.

In complete markets where G is a complete graph, there exists a universal
equivalent if and only if the market is triangular arbitrage-free, i.e. aijajk =
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aik for all distinct i, j, k ∈ V ; since in this case the transaction path i→ j → k
provides no gain nor loss over a direct exchange i→ k.

Such purely exchange economic system is equivalent to pairwise ranking
via the logarithmic map,

Xij = log aij .

The triangular arbitrage-free condition is then equivalent to the transitivity
condition in (11), i.e.

Xij +Xjk +Xki = 0.

So asking if a universal equivalent exists is the same as asking if a global
ranking s : V → R exists so that Xij = sj − si with si = log πi.

2.3 Measure of Triangular Inconsistency: combinatorial curl

Upon constructing pairwise rankings from the raw data, we need a statistics
to quantify the inconsistency in the pairwise rankings. Again we will borrow
a terminology from vector calculus and define a notion of combinatorial curl
as a measure of triangular inconsistency.

Given a pairwise ranking represented as an edge flow X on a graph G =
(V,E), we expect the following ‘consistency’ property: following a loop i →
j → · · · → i where each edge is in E, the amount of the scores raised should
be equal to the amount of the scores lowered; so after a loop of comparisons
we should return to the same score on the same alternative. Since the simplest
loop is a triangular loop i → j → k → i, the ‘basic unit’ of inconsistency
should be triangular in nature and this leads us to the combinatorial curl in
Definition 2.

We will first define a notion analogous to edge flows. The triangular flow
on G is a function Φ : V × V × V → R that satisfies

Φ(i, j, k) = Φ(j, k, i) = Φ(k, i, j) = −Φ(j, i, k) = −Φ(i, k, j) = −Φ(k, j, i),

i.e. an odd permutation of the arguments of Φ changes its sign while an
even permutation preserves its sign2. A triangular flow describes triplewise
rankings in the same way an edge flow describes pairwise rankings.

Definition 2 Let X be an edge flow on a graph G = (V,E). Let

T (E) :=
{
{i, j, k} ∈

(
V
n

) ∣∣ {i, j}, {j, k}, {k, i} ∈ E}
be the collection of triangles with every edge in E. We define the combina-
torial curl operator that maps edge flows to triangular flows by

(curlX)(i, j, k) =

{
Xij +Xjk +Xki if {i, j, k} ∈ T (E),
0 otherwise.

(10)

2 A triangular flow is an alternating 3-tensor and may be represented as a skew-
symmetric hypermatrix [Φijk] ∈ Rn×n×n, much like an edge flow is an alternating
2-tensor and may be represented by a skew-symmetric matrix [Xij ] ∈ Rn×n. We
will often write Φijk in place of Φ(i, j, k).



14 X. Jiang, L.-H. Lim, Y. Yao, Y. Ye

In other words, the combinatorial curl takes pairwise rankings to triple-
wise rankings. Again, we will drop the adjective ‘combinatorial’ when there
is no risk of confusion. The skew-symmetry of X, i.e. Xij = −Xji, guarantees
that curlX is a triangular flow, i.e.

(curlX)(i, j, k) = (curlX)(j, k, i) = (curlX)(k, i, j)
= −(curlX)(j, i, k) = −(curlX)(i, k, j) = −(curlX)(k, j, i).

The curl of a pairwise ranking measures its triangular inconsistency. This
extends the consistency index of Kendall and Smith [26], which counts the
number of circular triads, from ordinal settings to cardinal settings. Note
that for binary pairwise ranking where Xij ∈ {±1}, the absolute value
|(curlX)(i, j, k)| may only take two values, 1 or 3. The triangle {i, j, k} ∈
T (E) contains a cyclic ranking or circular triad if and only if |(curlX)(i, j, k)| =
3. If G is a complete graph, the number of circular triads has been shown
[26] to be

N =
n

24
(n2 − 1)− 1

8

∑
i

[∑
j
Xij

]2
.

For ranking data given in terms of cardinal scores and that is generally
incomplete, curl plays an extended role in addition to just quantifying the
triangular inconsistency. We now formally define some ranking theoretic no-
tions in terms of the combinatorial gradient and combinatorial curl.

Definition 3 Let X : V × V → R be a pairwise ranking edge flow on a
pairwise comparison graph G = (V,E).

1. X is called consistent on {i, j, k} ∈ T (E) if it is curl-free on {i, j, k}, i.e.

(curlX)(i, j, k) = Xij +Xjk +Xki = 0.

Note that this implies that curl(X)(σ(i), σ(j), σ(k)) = 0 for every permu-
tation σ.

2. X is called globally consistent if it is a gradient flow of a score function,
i.e.

X = grad s for some s : V → R.

3. X is called locally consistent or triangularly consistent if it is curl-
free on every triangle in T (E), i.e. every 3-clique of G.

Clearly any gradient flow must be curl-free everywhere, i.e. the well-known
identity in vector calculus

curl ◦ grad = 0

is also true for combinatorial curl and combinatorial gradient (a special case
of Lemma 1). So global consistency implies local consistency. A qualified
converse may be deduced from the Hodge decomposition theorem (see also
Theorem 4): a curl-free flow on a complete graph must necessarily be a gra-
dient flow, or putting it another way, a locally consistent pairwise ranking
must necessarily be a globally consistent pairwise ranking when there are
no missing values, i.e. if the pairwise comparison graph is a complete graph
(every pair of alternatives has been compared).
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Fig. 1 A harmonic pairwise ranking, which is locally consistent on every triangles
but inconsistent along the loop A→ B → C → D → E → F → A.

When G is an incomplete graph, the condition that X is curl-free on every
triangle in the graph will not be enough to guarantee that it is a gradient
flow. The reason lies in that curl only takes into account the triangular incon-
sistency; but since there are missing edges in the pairwise comparison graph
G, it is possible that non-triangular cyclic rankings of lengths greater than
three can occur. For example, Figure 1 shows a pairwise ranking that is lo-
cally consistent on every triangle but globally inconsistent, since it contains a
cyclic ranking of length six. Fortunately, Hodge decomposition theorem will
tell us that all such cyclic rankings lie in a subspace of harmonic rankings,
which can be characterized as the kernel of some combinatorial Laplacians.

3 A Matrix Theoretic View of Hodge Decomposition

We will see in this section that edge flows, gradient flows, harmonic flows, and
curl flows can all be represented as specially structured skew-symmetric ma-
trices. In this framework, the Hodge decomposition theorem may be viewed
as an orthogonal direct sum decomposition of the space of skew-symmetric
matrices into three subspaces. A formal treatment of combinatorial Hodge
theory will be given in Section 4.

Recall that a matrix X ∈ Rn×n is said to be skew-symmetric if Xij =
−Xji for all i, j ∈ V := {1, . . . , n}. One knows from linear algebra that any
square matrix A may be written uniquely as a sum of a symmetric and a
skew-symmetric matrix,

A = 1
2 (A+A>) + 1

2 (A−A>).

We will denote3

A := {X ∈ Rn×n | X> = −X}, and S := {X ∈ Rn×n | X> = X}.

It is perhaps interesting to note that semidefinite programming takes place
in the cone of symmetric positive definite matrices in S but the optimization
problems in this paper take place in the exterior space A.

3 More common notations for A are son(R) (Lie algebra of SO(n)) and ∧2(Rn)
(second exterior product of Rn) but we avoided these since we use almost no Lie
theory and exterior algebra.
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One simple way to construct a skew-symmetric matrix is to take a vector
s = [s1, . . . , sn]> ∈ Rn and define X by

Xij := si − sj .

Note that if X 6= 0, then rank(X) = 2 since it can be expressed as se>− es>
with e := [1, . . . , 1]> ∈ Rn. These are in a sense the simplest type of skew-
symmetric matrices — they have the lowest rank possible for a non-zero
skew-symmetric matrix (recall that the rank of a skew-symmetric matrix
is necessarily even). In this paper, we will call these gradient matrices and
denote them collectively by MG,

MG := {X ∈ A | Xij = si − sj for some s ∈ Rn}.

For T ⊆
(
V
3

)
, we define the set of T -consistent matrices as

MT := {X ∈ A | Xij +Xjk +Xki = 0 for all {i, j, k} ∈ T}. (11)

We can immediately observe every X ∈MG is T -consistent for any T ⊆
(
V
3

)
,

i.e. MG ⊆MT . Conversely, a matrix X that satisfies

Xij +Xjk +Xki = 0 for every triple {i, j, k} ∈
(
V

3

)
.

is necessarily a gradient matrix, i.e.

MG =M(V3). (12)

Given T ⊆
(
V
3

)
, it is straightforward to verify that both MG and MT

are subspaces of Rn×n. The preceding discussions then imply the following
subspace relations:

MG ⊆MT ⊆ A. (13)

Since these are strict inclusions in general, several complementary subspaces
arise naturally. With respect to the usual inner product 〈X,Y 〉 = tr(X>Y ) =∑
i,j XijYij , we obtain orthogonal complements ofMG andMT in A as well

as the orthogonal complement of MG in MT , which we denote by MH :

A =MG ⊕M⊥G, A =MT ⊕M⊥T , MT =MG ⊕MH .

We will call the elements of MH harmonic matrices as we shall see that
they are discrete analogues of solutions to the Laplace equation (or, more
accurately, the Helmholtz equation). An alternative characterization ofMH

is
MH =MT ∩M⊥G,

which may be viewed as a discrete analogue of the condition of being simulta-
neously curl-free and divergence-free. More generally, this discussion applies
to any weighted inner product 〈X,Y 〉w =

∑
i,j wijXijYij . The five subspaces

MG,MT ,MH ,M⊥T ,M⊥G of A play a central role in our techniques. As we
shall see later, the Helmholtz decomposition in Theorem 2 may be viewed as
the orthogonal direct sum decomposition

A =MG ⊕MH ⊕M⊥T .
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4 Combinatorial Hodge Theory

In this section we will give a brief introduction to combinatorial Hodge the-
ory, paying special attention to its relevance in statistical ranking. One may
wonder why we do not rely on our relatively simple matrix view in Section
3. The reasons are two fold: firstly, important geometric insights are lost
when the actual motivations behind the matrix picture are disregarded; and
secondly, the matrix approach applies only to the case of 2-dimensional sim-
plicial complex but combinatorial Hodge theory extends to any k-dimensional
simplicial complex. While so far we did not use any simplicial complex of di-
mension higher than 2 in our study of statistical ranking, it is conceivable
that higher-dimensional simplicial complex could play a role in future studies.

4.1 Extension of Pairwise Comparison Graph to Simplicial Complex

Let G = (V,E) be a pairwise comparison graph. To characterize the trian-
gular inconsistency or curl, one needs to study the triangles formed by the
3-cliques4, i.e. the set

T (E) :=
{
{i, j, k} ∈

(
V
3

) ∣∣ {i, j}, {j, k}, {k, i} ∈ E}.
A combinatorial object of the form (V,E, T ) where E ⊆

(
V
2

)
, T ⊆

(
V
3

)
, and

{i, j}, {j, k}, {k, i} ∈ E for all {i, j, k} ∈ T is called a 2-dimensional simplicial
complex. This is a generalization of the notion of a graph, which is a 1-
dimensional simplicial complex. In particular, given a graph G = (V,E), the
2-dimensional simplicial complex (V,E, T (E)) is called the 3-clique complex
of G.

More generally, a simplicial complex (V,Σ) is a vertex set V = {1, . . . , n}
together with a collection Σ of subsets of V that is closed under inclusion,
i.e. if τ ∈ Σ and σ ⊂ τ , then σ ∈ Σ. The elements in Σ are called simplices.
For example, a 0-simplex is just an element i ∈ V (recall that we do not
distinguish between

(
V
1

)
and V ), a 1-simplex is a pair {i, j} ∈

(
V
2

)
, a 2-

simplex is a triple {i, j, k} ∈
(
V
3

)
, and so on. For k ≤ n, a k-simplex is a

(k + 1)-element set in
(
V
k+1

)
and Σk ⊂

(
V
k+1

)
will denote the set of all k-

simplices in Σ. In the previous paragraph, Σ0 = V , Σ1 = E, Σ2 = T , and
Σ = V ∪ E ∪ T . In general, given any undirected graph G = (V,E), one
obtains a (k− 1)-dimensional simplicial complex Kk

G := (V,Σk−1) called the
k-clique complex 5 of G by ‘filling in’ all its j-cliques for j = 1, . . . , k, or
more precisely, by setting Σ = {j-cliques of G | j = 1, . . . , k}. The k-clique
complex of G where k is maximal is just called the clique complex of G and
denoted KG.

In this paper, we will mainly concern ourselves with studying the 3-clique
complex K3

G = (V,E, T (E)) where G is a pairwise comparison graph. Note
that we could also look at the simplicial complex (V,E, Tγ(E)) where

Tγ(E) :=
{
{i, j, k} ∈ T (E)

∣∣ |Xij +Xjk +Xki| ≤ γ
}

4 Recall that a k-clique of G is just a complete subgraph of G with k vertices.
5 Note that a k-clique is a (k − 1)-simplex.



18 X. Jiang, L.-H. Lim, Y. Yao, Y. Ye

where 0 ≤ γ ≤ ∞. For γ =∞, we get K3
G but for general γ we get a subcom-

plex of K3
G. We have found this to be a useful multiscale characterization of

the inconsistencies of pairwise rankings but the detailed discussion will have
to be left to a future paper.

4.2 Cochains, Coboundary Maps, and Combinatorial Laplacians

We will now introduce some discrete exterior calculus on a simplicial com-
plex where potential functions (scores or utility), edge flow (pairwise rank-
ing), triangular flow (triplewise ranking), gradient (global ranking induced
by scores), curl (local inconsistency) become just special cases of a much
more general framework. We will now also define the notions of combinato-
rial divergence and combinatorial Laplacians. A 0-dimensional combinatorial
Laplacian is just the usual graph Laplacian but the case of greatest interest
to us is the 1-dimensional combinatorial Laplacian, or what we will call the
graph Helmholtzian.

Definition 4 Let K be a simplicial complex and recall that Σk denotes its
set of k-simplices. A k-dimensional cochain is a real-valued function on k-
tuples of vertices that is alternating on each of the k-simplex and 0 otherwise,
i.e. f : V k → R such that

f(iσ(0), . . . , iσ(k)) = sign(σ)f(i0, . . . , ik),

for all (i0, . . . , ik) ∈ V k and all σ ∈ Sk+1, the permutation group on k + 1
elements, and that

f(i0, . . . , ik) = 0 if {i0, . . . , ik} /∈ Σk.

The set of all k-cochains on K is denoted Ck(K,R).

For simplicity we will often just write Ck for Ck(K,R). In particular, C0

is the space of potential functions (score/utility functions), C1 is the space
of edge flows (pairwise rankings), and C2 is the space of triangular flows
(triplewise rankings).

The k-cochain space Ck can be given a choice of inner product. In view
of the weighted l2-minimization for our statistical ranking problem (7), we
will define the following inner product on C1,

〈X,Y 〉w =
∑
{i,j}∈E

wijXijYij , (14)

for all edge flows X,Y ∈ C1. In the context of a pairwise comparison graph
G, it may not be immediately clear why this defines an inner product since
we have noted after (8) that W = [wij ] is only a nonnegative matrix and it is
possible that some entries are 0. However observe that by definition wij = 0
iff no voters have rated both alternatives i and j and therefore {i, j} 6∈ E by
(4) and so any edge flow X will automatically have Xij = 0 by (5). Hence
we indeed have that 〈X,X〉w = 0 iff X = 0, as required for an inner product
(the other properties are trivial to check).

The operators grad and curl are all special instances of coboundary maps
as defined below.
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Definition 5 The kth coboundary operator δk : Ck(K,R)→ Ck+1(K,R)
is the linear map that takes a k-cochain f ∈ Ck to a (k + 1)-cochain δkf ∈
Ck+1 defined by

(δkf)(i0, i1, . . . , ik+1) :=
∑k+1

j=0
(−1)jf(i0, . . . , ij−1, ij+1, . . . , ik+1).

Note that ij is omitted from jth term in the sum, i.e. coboundary maps
compute an alternating difference with one input left out. In particular, δ0 =
grad, i.e. (δ0s)(i, j) = sj − si, and δ1 = curl, i.e. (δ1X)(i, j, k) = Xij +Xjk +
Xki.

Given a choice of an inner product 〈·, ·〉k on Ck, we may define the adjoint
operator of the coboundary map, δ∗k : Ck+1 → Ck in the usual manner, i.e.
〈δkfk, gk+1〉k+1 = 〈fk, δ∗kgk+1〉k.

Definition 6 The combinatorial divergence operator div : C1(K,R) →
C0(K,R) is the adjoint of δ0 = grad, i.e.

div := −δ∗0 . (15)

Divergence will appear in the minimum norm solution to (7) and can be
used to characterizeM⊥G. As usual, we will drop the adjective ‘combinatorial’
when there is no cause for confusion.

For statistical ranking, it suffices to consider the cases k = 0, 1, 2. Let G
be a pairwise comparison graph and KG its clique complex6. The cochain
maps,

C0(KG,R) δ0−→ C1(KG,R) δ1−→ C2(KG,R) (16)

and their adjoint,

C0(KG,R)
δ∗0←− C1(KG,R)

δ∗1←− C2(KG,R), (17)

have the following ranking theoretic interpretation with C0, C1, C2 represent-
ing the spaces of score or utility functions, pairwise rankings, and triplewise
rankings respectively,

scores
grad−−−→ pairwise curl−−→ triplewise,

scores
− div=grad∗←−−−−−−−− pairwise curl∗←−−− triplewise.

In summary, the formulas for combinatorial gradient, curl, and divergence
are given by

(grad s)(i, j) = (δ0s)(i, j) = sj − si,
(curlX)(i, j, k) = (δ1X)(i, j, k) = Xij +Xjk +Xki,

(divX)(i) = −(δ∗0X)(i) =
∑

j s.t. {i,j}∈E
wijXij

6 It does not matter whether we consider KG or K3
G or indeed any Kk

G where
k ≥ 3; the higher-dimensional k-simplices where k ≥ 3 do not play a role in the
coboundary maps δ0, δ1, δ2.
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with respect to the inner product 〈X,Y 〉w =
∑
{i,j}∈E wijXijYij on C1.

As an aside, it is perhaps worth pointing out that there is no special name
for the adjoint of curl coming from physics because in 3-space, C1 may be
identified with C2 via a property called Hodge duality and in which case curl
is a self-adjoint operator, i.e. curl∗ = curl. This will not be true in our case.

If we represent functions on vertices by n-vectors, edge flows by n × n
skew-symmetric matrices, and triangular flows by n×n×n skew-symmetric
hypermatrices, i.e.

C0 = Rn,
C1 = {[Xij ] ∈ Rn×n | Xij = −Xji} = A,
C2 = {[Φijk] ∈ Rn×n×n | Φijk = Φjki = Φkij = −Φjik = −Φikj = −Φkji},

then in the language of linear algebra introduced in Section 3, we have the
following correspondence

im(δ0) = im(grad) =MG, ker(δ1) = ker(curl) =MT ,

ker(δ∗0) = ker(div) =M⊥G, im(δ∗1) = im(curl∗) =M⊥T ,

where T = T (E).
Coboundary maps have the following important property.

Lemma 1 (Closedness) δk+1 ◦ δk = 0.

For k = 0, this and its adjoint are well-known identities in vector calculus,

curl ◦ grad = 0, div ◦ curl∗ = 0. (18)

Ranking theoretically, the first identity simply says that a global ranking
must be consistent.

We will now define combinatorial Laplacians, higher-dimensional ana-
logues of the graph Laplacian.

Definition 7 Let K be a simplicial complex. The k-dimensional combina-
torial Laplacian is the operator ∆k : Ck(K,R)→ Ck(K,R) defined by

∆k = δ∗k ◦ δk + δk−1 ◦ δ∗k−1. (19)

In particular, for k = 0,

∆0 = δ∗0 ◦ δ0 = div ◦ grad

is a discrete analogue of the scalar Laplacian or Laplace operator while for
k = 1,

∆1 = δ∗1 ◦ δ1 + δ0 ◦ δ∗0 = curl∗ ◦ curl− grad ◦ div

is a discrete analogue of the vector Laplacian or Helmholtz operator. In the
context of graph theory, if K = KG, then ∆0 is called the graph Laplacian
[11] while ∆1 is called the graph Helmholtzian.

The combinatorial Laplacian has some well-known, important properties.
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Lemma 2 ∆k is a positive semidefinite operator. Furthermore, the dimen-
sion of ker(∆k) is equal to kth Betti number of K.

We will call a cochain f ∈ ker(∆k) harmonic since they are solutions to
higher-dimensional analogue of the Laplace equation

∆kf = 0.

Strictly speaking, the Laplace equation refers to ∆0f = 0. The equation
∆1X = 0 is really the Helmholtz equation. But nonetheless, we will still call
an edge flow X ∈ ker(∆1) a harmonic flow.

4.3 Hodge Decomposition Theorem

We now state the main theorem in combinatorial Hodge theory.

Theorem 1 (Hodge Decomposition Theorem) Ck(K,R) admits an or-
thogonal decomposition

Ck(K,R) = im(δk−1)⊕ ker(∆k)⊕ im(δ∗k).

Furthermore,
ker(∆k) = ker(δk) ∩ ker(δ∗k−1).

An elementary proof targeted at a computer science readership may be
found in [18]. For completeness we include a proof here.

Proof We will use Lemma 1. First, Ck = im(δk−1)⊕ker(δ∗k−1). Since δkδk−1 =
0, taking adjoint yields δ∗k−1δ

∗
k = 0, which implies that im(δ∗k) ⊆ ker(δ∗k−1).

Therefore ker(δ∗k−1) = [im(δ∗k)⊕ker(δk)]∩ker(δ∗k−1) = [im(δ∗k)∩ker(δ∗k−1)]⊕
[ker(δk) ∩ ker(δ∗k−1)] = im(δ∗k) ⊕ [ker(δk) ∩ ker(δ∗k−1)]. It remains to show
that ker(δk)∩ker(δ∗k−1) = ker(∆k) = ker(δk−1δ

∗
k−1 + δ∗kδk). Clearly ker(δk)∩

ker(δ∗k−1) ⊆ ker(∆k). For any X = δ∗kΦ ∈ im(δ∗k) where 0 6= Φ ∈ Ck+1,
Lemma 1 again implies δk−1δ

∗
k−1X = δk−1δ

∗
k−1δ

∗
kΦ = 0, but δ∗kδkX =

δ∗kδkδ
∗
kΦ 6= 0, which implies that ∆kX 6= 0. Similarly for X ∈ im(δ0). Hence

ker(∆k) = ker(δk) ∩ ker(δ∗k−1).

While Hodge decomposition holds in general for any simplicial complex
and in any dimension k, the case k = 1 is more often called the Helmholtz
decomposition theorem7. We will state it here for the special case of a clique
complex.

Theorem 2 (Helmholtz Decomposition Theorem) Let G = (V,E) be
an undirected, unweighted graph and KG be its clique complex. The space of
edge flows on G, i.e. C1(KG,R), admits an orthogonal decomposition

C1(KG,R) = im(δ0)⊕ ker(∆1)⊕ im(δ∗1)
= im(grad)⊕ ker(∆1)⊕ im(curl∗). (20)

Furthermore,

ker(∆1) = ker(δ1) ∩ ker(δ∗0) = ker(curl) ∩ ker(div). (21)
7 On a simply connected manifold, the continuous version of the Helmholtz de-

composition theorem is just the fundamental theorem of vector calculus.
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ker(curl)
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Inconsistent (divergence-free)

Locally consistent (curl-free)

im(grad)

Harmonic flows

ker(∆1)

Curl flows

im(curl∗)

(locally acyclic)

Gradient flows

(globally acyclic)

ker(div)

(locally cyclic)

Fig. 2 Hodge/Helmholtz decomposition of pairwise rankings

The clique complex KG above may be substituted with any Kk
G with

k ≥ 3 (see Footnote 6). The equation (21) says that an edge flow is harmonic
iff it is both curl-free and divergence-free. Figure 4.3 illustrates (20).

To understand the significance of this theorem, we need to discuss the
ranking theoretic interpretations of each subspace in the theorem.

1. im(δ0) = im(grad) denotes the subspace of pairwise rankings that are the
gradient flows of score functions. Thus this subspace comprises the globally
consistent or acyclic pairwise rankings. Given any pairwise ranking from
this subspace, we may determine a score function on the alternatives
that is unique up to an additive constant8 and then we may rank all
alternatives globally in terms of their scores.

2. ker(δ∗0) = ker(div) denotes the subspace of divergence-free pairwise rank-
ings, whose total in-flow equals total out-flow for each alternative i ∈ V .
Such pairwise rankings may be regarded as cyclic rankings, i.e. rankings
of the form i � j � k � · · · � i, and they are clearly inconsistent. Since
ker(div∗) = im(grad)⊥, cyclic rankings have zero projection on global
rankings.

3. ker(δ1) = ker(curl) denotes the subspace of curl-free pairwise rankings
with zero flow-sum along any triangle in KG. This corresponds to locally
consistent (i.e. triangularly consistent) pairwise rankings. Note that by
the Closedness Lemma curl ◦ grad = 0 and so im(grad) ⊆ ker(curl). In
general, the globally consistent pairwise rankings induced by gradient
flows of score functions only account for a subset of locally consistent
rankings. The remaining ones are the locally consistent rankings that
are not globally consistent and they are precisely the harmonic rankings
discussed below.

4. ker(∆1) = ker(curl)∩ker(div) denotes the subspace of harmonic pairwise
rankings, or just harmonic rankings in short. It is the space of solutions
to the Helmholtz equation. Harmonic rankings are exactly those pair-
wise rankings that are both curl-free and divergence-free. These are only
locally consistent with zero curl on every triangle in T (E) but are not

8 Note that ker(δ0) = ker(grad) is the set of constant functions on V and so
grad(s) = grad(s+ constant).
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globally consistent. In other words, while there are no inconsistencies due
to small loops of length 3, i.e. i � j � k � i, there are inconsistencies
along larger loops of lengths > 3, i.e. a � b � c � · · · � z � a. So these
are also cyclic rankings. Rank aggregation on ker(∆1) depends on the
edge paths traversed in the simplicial complex; along homotopy equiva-
lent paths one obtains consistent rankings. Figure 1 gives an example of
harmonic rankings.

5. im(δ∗1) = im(curl∗) denotes the subspace of locally cyclic pairwise rank-
ings that have non-zero curls along triangles. By the Closedness Lemma,
im(curl∗) ⊆ ker(div) and so this subspace is in general a proper subspace
of the divergence-free rankings; the orthogonal complement of im(curl∗)
in ker(div) is precisely the space of harmonic rankings ker(∆1) discussed
above.

5 Implications of Hodge Theory

We now state two immediate implications of the Helmholtz decomposition
theorem when applied to statistical ranking. The first implication is that
it gives an interpretation of the solution and residual of the optimization
problem (7); these are respectively the l2-projection on gradient flows and
divergence-free flows. In the context of statistical ranking and in the l2-sense,
the solution to (7) gives the nearest globally consistent pairwise ranking to
the data while the residual gives the sum total of all inconsistent components
(both local and harmonic) in the data. The second implication is the condi-
tion that local consistency guarantees global consistency whenever there is
no harmonic component in the data (which happens iff the clique complex
of the pairwise comparison graph is ‘loop-free’).

5.1 Structure Theorem for Global Ranking and the Residual of
Inconsistency

In order to cast our optimization problem (7) in the Hodge theoretic frame-
work, we need to specify relevant inner products on C0, C1, C2. As before,
the inner product on the space of edge flows (pairwise rankings) C1 will be
a weighted Euclidean inner product

〈X,Y 〉w =
∑
{i,j}∈E

wijXijYij

forX,Y ∈ C1. We will let the inner products on C0 and C2 be the unweighted
Euclidean inner product

〈r, s〉 =
∑n

i=1
risi, 〈Θ,Φ〉 =

∑
{i,j,k}∈T (E)

ΘijkΦijk

for r, s ∈ C0 and Θ,Φ ∈ C2. We note that other inner products can be
chosen (e.g. the inner products on C0 and C2 could have been weighted) with
corresponding straightforward modification of (7) but this would not change
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the essential nature of our methods. We made the above choices mainly to
keep our notations uncluttered.

The optimization problem (7) is then equivalent to an l2-projection of an
edge flow representing a pairwise ranking onto im(grad),

min
s∈C0

‖δ0s− Ȳ ‖2,w = min
s∈C0

‖ grad s− Ȳ ‖2,w,

The Helmholtz decomposition theorem then leads to the following result
about the structures of the solutions and residuals of (7). In Theorem 3
below, we assume that the pairwise ranking data Ȳ has been estimated from
one of the methods in Section 2.2.1. The least squares solution s will be a
score function that induces grad s, the l2-nearest global ranking to Ȳ . Since
s is only unique up to a constant (see Footnote 8), we determine a unique
minimum norm solution s∗ for the sake of well-posedness; but nevertheless
any s will yield the same global ordering of alternatives. The least squares
residual R∗ represents the inconsistent component of the ranking data Ȳ . The
magnitude of R∗ is a ‘certificate of reliability’ for s; since if this is small, then
the globally consistent component grad s accounts for most of the variation
in Ȳ and we may conclude that s gives a reasonably reliable ranking of the
alternatives. But even when the magnitude of R∗ is large, we will see that it
may be further resolved into a global and a local component that determine
when a comparison of alternatives with respect to s is still valid.

Theorem 3 (i) Solutions of (7) satisfy the following normal equation

∆0s = − div Ȳ , (22)

and thus the minimum norm solution is

s∗ = −∆†0 div Ȳ (23)

where † indicates a Moore-Penrose inverse. The divergence in (23) is
given by

(div Ȳ )(i) =
∑

j s.t. {i,j}∈E
wij Ȳij ,

and the matrix representing the graph Laplacian is given by

[∆0]ij =


∑
i wii if j = i,

−wij if j is such that {i, j} ∈ E,
0 otherwise.

(ii) The residual R∗ = Ȳ − δ0s∗ is divergence-free, i.e. divR∗ = 0. More-
over, it has a further orthogonal decomposition

R∗ = projim(curl∗) Ȳ + projker(∆1) Ȳ , (24)

where projim(curl∗) Ȳ is a local cyclic ranking accounting for local incon-
sistencies and projker(∆1) Ȳ is a harmonic ranking accounting for global
inconsistencies. In particular, the projections are given by

projim(curl∗) = curl† curl and projker(∆1) = I −∆+
1 ∆1 (25)
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Proof The normal equation for the least squares problem mins∈C0 ‖δ0s −
Ȳ ‖22,w is

δ∗0δ0s = δ∗0 Ȳ .

(22), (23), and divR∗ = 0 are obvious upon substituting ∆0 = δ∗0δ0 and div =
−δ∗0 . The expressions for divergence and graph Laplacian in (i) follow from
their respective definitions. The Helmholtz decomposition theorem implies

ker(∆1)⊕ im(curl∗) = im(grad)⊥.

Obviously projim(grad)⊥ grad s∗ = 0. Since R∗ = Ȳ −grad s∗ is a least squares
residual, we must have projim(grad)R

∗ = projim(grad) Ȳ − grad s∗ = 0. These
observations yield (24), as

R∗ = projim(grad)R
∗ + projim(grad)⊥ R

∗ = 0 + projker(∆1)⊕im(curl∗) Ȳ .

The expression for the projection in (25) is standard.

In the special case when the pairwise ranking matrix G is a complete
graph and we have an unweighted Euclidean inner product on C1, the mini-
mum norm solution s∗ in (23) satisfies

∑
i s
∗
i = 0 and is given by

s∗i = − 1
n

div(Ȳ )(i) = − 1
n

∑
j
Ȳij . (26)

In Section 7, we shall see that this is the well-known Borda count in social
choice theory, a measure that is also widely used in psychology and statistics
[26,29–31,13]. Since G is a complete graph only when the ranking data is
complete, i.e. every voter has rated every alternative, this is an unrealistic
scenario for the type of modern ranking data discussed in Section 1. Among
other things, the Hodge theoretic framework generalizes Borda count to sce-
narios where the ranking data is incomplete or even highly incomplete.

In (ii) the locally cyclic ranking component is obtained by solving

min
Φ∈C2

‖ curl∗ Φ−R∗‖2,w = min
Φ∈C2

‖ curl∗ Φ− Ȳ ‖2,w.

The above equality implies that there is no need to first solve for R∗ before
we may obtain Φ; one could get it directly from the pairwise ranking data
Ȳ . Note that the solution is only determined up to an additive term of the
form grad s since by virtue of (18),

curl(Φ+ grad s) = curlΦ. (27)

For the sake of well-posedness, we will seek the unique minimum norm solu-
tion given by

Φ∗ = (δ1 ◦ δ∗1)†δ1Ȳ = (curl ◦ curl∗)† curl Ȳ

and the required component is given by projim(curl∗) Ȳ = curl∗ Φ∗. The reader
may have noted a parallel between the two problems

min
s∈C0
‖grad s− Ȳ ‖2,w and min

Φ∈C2
‖curl∗ Φ− Ȳ ‖2,w.
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Indeed in many contexts, s is called the scalar potential while Φ is called
the vector potential. As seen earlier in Definition 1, an edge flow of the form
grad s for some s ∈ C0 is called a gradient flow; in analogy, we will call an
edge flow of the form curl∗ Φ for some Φ ∈ C2 a curl flow.

We note that the l2-residual R∗, being divergence-free, is a cyclic ranking.
Much like (27), the divergence-free condition is satisfied by a whole family
of edge flows that differs from R∗ only by a term of the form curl∗ Φ since

div(R∗ + curl∗ Φ) = divR∗

because of (18). The subset of C1 given by

{R∗ + curl∗ Φ | Φ ∈ C2}

is called the homology class of R∗. The harmonic ranking projker(∆1) Ȳ is just
one element in this class9. In general, it will be dense in the sense that it
will be nonzero on almost every edge in E. This is because in addition to the
divergence-free condition, the harmonic ranking must also satisfy the curl-
free condition by virtue of (21). So if parsimony or sparsity is the objective,
e.g. if one wants to identify a small number of conflicting comparisons that
give rise to the inconsistencies in the ranking data, then the harmonic ranking
does not offer much information in this regard. To better understand ranking
inconsistencies via the structure of R∗, it is often helpful to look for elements
in the same homology class with the sparsest support, i.e.

min
Φ∈C2

‖curl∗ Φ−R∗‖0 = min
Φ∈C2

‖curl∗ Φ− projker(∆1) Ȳ ‖0.

The widely used convex relaxation replacing the l0-‘norm’ by the l1-norm
may be employed [21], i.e.

min
Φ∈C2

‖curl∗ Φ−R∗‖1 := min
Φ∈C2

∑
i,j
|(curl∗ Φ)ij −R∗ij |.

A solution Φ̃ of such an l1-minimization problem is expected to give a sparse
element R∗ − curl∗ Φ̃, which we call an l1-approximate sparse generator of
R∗, or equivalently, of projker(∆1) Ȳ . We will discuss them in detail in Section
6.2. The bottom line here is that we want to find the shortest cycles that
represent the global inconsistencies and perhaps remove the corresponding
edges in the pairwise comparison graph, in view of what we will discuss next
in Section 5.2. One plausible strategy to get a globally consistent ranking is to
remove a number of problematic ‘conflicting’ comparisons from the pairwise
comparison graph. Since it is only reasonable to remove as few edges as
possible, this translates to finding a homology class with the sparsest support.
This is similar to the minimum feedback arc set approach discussed in Section
7.2.

We will end the discussion of this section with a note on computational
costs. Solving for a global ranking s∗ in (23) only requires the solution of an
n× n least squares problem, which comes with a modest cost of O(n3) flops
(n = |V |). As we note later in Section 8.3, for web ranking analysis such

9 Two elements of the same homology class are called homologous.
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a cost is no more than computing the PageRank. On the other hand, the
analysis of inconsistency is generally harder. For example, evaluating curls
requires |T | flops and this is

(
n
3

)
∼ O(n3) in the worst case. Since an actual

computation of Φ∗ involves solving a least squares problem of size |T | × |T |,
the computation cost incurred is of order O(n9). Nevertheless, any sparsity
in the data (when |T | � n3) may be exploited by choosing the right least
squares solver. For example, one may use the general sparse least squares
solver lsqr [33] or the new minres-qlp [8,9] that works specifically for
symmetric matrices. We will leave discussions of actual computations and
more extensive numerical experiments to a future article. It suffices to note
here that it is in general harder to isolate the harmonic component of the
ranking data than the globally consistent component.

5.2 Local Consistency versus Global Consistency

In this section, we discuss a useful result, that local consistency implies global
consistency whenever the harmonic component is absent from the ranking
data. Whether a harmonic component exists is dependent on the topology of
the clique complex K3

G. We will invoke the recent work of Kahle [22] on such
topological properties of random graphs to argue that harmonic components
are exceedingly unlikely to occur.

By Lemma 2, the dimension of ker(∆1) is equal to the first Betti number
β1(K) of the underlying simplicial complex K. In particular, we know that
ker(∆1) = 0 if β1(K) = 0, and so the harmonic component of any edge flow
on K is automatically absent when β1(K) = 0 (roughly speaking, β1(K) = 0
means that K does not have any 1-dimensional holes). This leads to the
following result.

Theorem 4 Let K3
G = (V,E, T (E)) be a 3-clique complex of a pairwise

comparison graph G = (V,E). If K3
G does not contain any 1-loops, i.e.

β1(K3
G) = 0, then every locally consistent pairwise ranking is also globally

consistent. In other words, if the edge flow X ∈ C1(K3
G,R) is curl-free, i.e.

curl(X)(i, j, k) = 0

for all {i, j, k} ∈ T (E), then it is a gradient flow, i.e. there exists s ∈
C0(KG,R) such that

X = grad s.

Proof This follows from the Helmholtz decomposition theorem since dim(ker∆1) =
β1(K3

G) = 0 and so any X that is curl-free is automatically in im(grad).

WhenG is a complete graph, then we always have that β1(KG) = β1(K3
G) =

0 and this justifies the discussion after Definition 3 about the equivalence of
local and global consistencies for complete pairwise comparison graphs. In
general, G will be incomplete due to missing ranking data (not all voters have
rated all alternatives) but as long as K3

G is loop-free, such a claim still holds.
In finance, this theorem translates into the well-known result that “triangular
arbitrage-free implies arbitrage-free.” The theorem enables us to infer global



28 X. Jiang, L.-H. Lim, Y. Yao, Y. Ye

consistency from a local condition — whether the ranking data is curl-free.
We note that being curl-free is a strong condition. If we instead have “tri-
angular transitivity” in the ordinal sense, i.e. a � b � c implies a � c, then
there is no result analogous to Theorem 4.

At least for Erdös-Rényi random graphs, the Betti number β1 could only
be non-zero when the edges are neither too sparse nor too dense. The fol-
lowing result by Kahle [22] quantifies this statement. He showed that β1

undergoes two phase transitions from zero to nonzero and back to zero as
the density of edges grows.

Theorem 5 (Kahle 2006) For an Erdös-Rényi random graph G(n, p) on
n vertices where the edges are independently generated with probability p, its
clique complex KG almost always has β1(KG) = 0, except when

1
n2
� p� 1

n
. (28)

Without getting into a discussion about whether Erdös-Rényi random
graphs are good models for pairwise ranking comparison graphs of real-world
ranking data, we note that the Netflix pairwise comparison graph has a high
probability of having β1(KG) = 0 if Kahle’s result applies. Although the
original customer-product rating matrix of the Netflix prize dataset is highly
incomplete (more than 99% missing values), its pairwise comparison graph
is very dense (less than 0.22% missing edges). In other words, p (probability
of an edge) and n (number of vertices) are both large and so (28) is not
satisfied.

6 l1-aspects of Hodge Theoretic Ranking

Hodge theory is by and large an l2-theory: inner products on cochains, ad-
joint of coboundary operators, orthogonality of Hodge decomposition, are all
naturally associated with (weighted or unweighted) l2-norms. In this section,
we will take an oblique approach and study the l1-aspects of combinatorial
Hodge theory in the context of statistical ranking, with robustness and par-
simony (or sparsity) being our two obvious motivations. We will study two
l1-norm minimization problems: (1) the l1-projection on gradient flows (glob-
ally consistent rankings), which we show to have a dual problem as correla-
tion maximization over bounded divergence-free flows (cyclic rankings); (2)
an l1-approximation to find sparse divergence-free flows (cyclic rankings) ho-
mologous to the residual of the l2-projection, which we show to have a dual
problem as correlation maximization over bounded curl-free flows (locally
consistent rankings). We observe that the primal versus dual relation is re-
vealed as an ‘im(grad) versus ker(div)’ relation in first case and an ‘im(curl∗)
versus ker(curl)’ relation in the second case.

6.1 Robust Ranking: l1-projection on gradient flows

We have briefly mentioned this problem in Section 2 as an l1-variation of the
least squares model (7) for statistical ranking. Here we will derive a duality
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result for (9). As before, we assume a pairwise comparison graph G = (V,E)
and an edge flow Ȳ ∈ C1(KG,R) that comes from our ranking data. Consider
the following minimization problem,

min ‖X − Ȳ ‖1,w
s.t. X = grad s,

X = −X>,
(29)

which may be regarded as the l1-projection10 of an edge flow Ȳ onto the
space of gradient flows,

min
s∈C0
‖grad s− Ȳ ‖1,w = min

s∈C0

∑
{i,j}∈E

wij |sj − si − Ȳij |. (30)

In other words, we attempt to find the nearest globally consistent ranking
grad s to the pairwise ranking Ȳ as measured by the l1-norm. Such a norm is
often employed in robust regression since its solutions will be relatively more
robust to outliers or large deviations in the ranking data Ȳ when compared
to the l2-norm in (7) [41,12]. The computational cost paid in going from
(7) to (29) is that of replacing a linear least squares problem with a linear
programming problem.

Recall that the minimum norm l2-minimizer is given by s∗ = −(∆0)† div Ȳ
and the l2-residual is given by R∗ = Ȳ − grad s∗. Hence

min
s∈C0
‖grad s− Ȳ ‖1,w = min

s′∈C0
‖grad s′ −R∗‖1,w

where s′ = s − s∗. It follows that the l1-minimizers in (30) may be charac-
terized by11

argmins∈C0 ‖ grad s− Ȳ ‖1,w = argmins∈C0 ‖ grad s− Ȳ ‖2,w
+ argmins′∈C0 ‖ grad s′ −R∗‖1,w.

The deviation from the minimum norm l2-minimizer s∗ is a ‘median gradient
flow’ extracted from the cyclic residual R∗, which moves the l1-residual Ȳ −
grad(s∗ + s̃) outside the space of divergence-free flows; here

s̃ ∈ argmins′∈C0‖grad s′ −R∗‖1,w.

On the other hand, in the dual problem to (29), we search for a solution
inside the space of divergence-free flows. More precisely, the dual form of the
l1-projection (29) searches within a space of bounded divergence-free flows
for a flow that is maximally correlated with Ȳ . Before we state this theorem,
we note that the inner product defined in (14) for skew-symmetric matrices
representing edge flows,

〈X,Y 〉w :=
∑
{i,j}∈E

wijXijYij ,

10 The projection of a point X onto a closed subset S in a finite-dimensional norm
space is simply the unique point XS ∈ S that is nearest to X in the norm.
11 Recall that argmin refers to the set of all minimizers. The addition of sets here
is just the usual Minkowski sum.
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also defines an inner product over Rn×n if the symmetric weight matrix
W = [wij ] has no zero entries, i.e. wij > 0 for all i, j. We will assume that
this is the case in the following proposition.

Proposition 1 The l1-projection problem (29) has the following dual prob-
lem,

max 〈X, Ȳ 〉w
s.t. |Xij | ≤ 1,

divX = 0,
X = −X>.

(31)

Proof This follows from standard duality theory for linear programming. See
[44] for example.

Proposition 1 shows that for l1-projections, the dual problem searches in
the orthogonal complement of the primal domain. The primal search space
is the space of gradient flows im(grad) while the dual search space is the
space of divergence-free flows ker(div). Recall that for l2-projections, gradient
flows correspond to the solutions while divergence-free flows correspond to
the residuals. So the solution-residual split in the l2-setting is in this sense
analogous to the primal-dual split in l1-setting.

An optimal l1-minimizer of (29) can only be decided up to a constant
from the complementary conditions,

0 < |Xij | < 1⇒ sj − si = Ȳij .

The constraint
∑
i si = 0 may be imposed to remove this extra degree of

freedom.

6.2 Conflict Identification: l1-minimization for approximate sparse cyclic
rankings

In the discussion at the end of Section 5.1, we mentioned that an l1-approximate
sparse cyclic ranking forR∗ may be formulated as the following l1-minimization
problem,

min ‖X −R∗‖1
s.t. X = curl∗ Φ,

X = −X>.
(32)

This is equivalent to

min
Φ∈C2

‖ curl∗ Φ−R∗‖1 :=
∑
{i,j}∈E

|(curl∗ Φ)ij −R∗ij |,

which is in turn equivalent to

min
Φ∈C2

‖ curl∗ Φ− projker(∆1) Ȳ ‖1,

where projker∆1
Ȳ is the harmonic component in R∗. The chief motivation for

this minimization problem has been explained at the end of Section 5.1 — we
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Fig. 3 Comparisons of the two l1-optimizations, (29) and (32), with the same
harmonic ranking. For simplicity we set weights wij = 1. The arrows in the
picture indicate the edge flow direction of pairwise rankings. A. a harmonic
ranking flow h; B. the l1-projection on the gradient flows by (29) (i.e. grad s0
where s0 = argmins ‖ grad s − h‖1); C. the l1-projection residual in (29) (i.e.
h − grad s0); D. the approximate sparse cycles by (32) (i.e. h − curl∗ Φ0 where
Φ0 = argminΦ ‖ curl∗ Φ − h‖1); E. the l1-projection on locally cyclic flows by (32)
(i.e. curl∗ Φ0).

would like to identify the edges of conflicting pairs in a pairwise comparison
graph so that we may have the option of removing them to get a globally
consistent ranking.

Both (29) and (32) are l1-norm minimizations over some pairwise rank-
ing flows. The main difference between them lies in that the former model
searches over im(grad), the space of gradient flows, i.e. where X = grad s,
while the latter model searches over im(curl∗), the space of curl flows, i.e.
where X = curl∗ Φ. The number of free parameters in grad s is just |V | = n
but the number of free parameters in curl∗ Φ is |T (E)|, which is typically of
the order O(n3). Therefore we expect to be able to get a residual for (32) that
is much sparser than the residual for (29) simply because we are searching
over a much larger space. As an illustration, Figure 3 shows the results of
these two optimization problems on the same data.

The next proposition shows that the dual problem of (32) also maximizes
correlation with the given pairwise ranking flow R∗ but over bounded curl-
free flows instead of bounded divergence-free flows as in (31).

Proposition 2 Let the inner product be as defined in (14), i.e.

〈X,Y 〉w :=
∑
{i,j}∈E

wijXijYij .
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The dual problem of the l1-minimization (32) is

max 〈X,R∗〉w
s.t. |Xij | ≤ w−1

ij ,
curlX = 0,
X = −X>.

Proof Similar to Proposition 1 with grad replaced by curl∗.

As we can see, curl in Proposition 2 plays the role of div in Proposition
1 in the dual problem and curl∗ in Proposition 2 plays the role of grad in
Proposition 1 in the primal problem. There is a slight difference on the upper
bounds for |Xij |, due to the fact that (29) uses a weighted l1-norm while (32)
uses an unweighted l1-norm. In both propositions, the primal and dual search
spaces are orthogonal complements of each other as given by the Helmholtz
decomposition theorem. These two problems thus exhibit a kind of structural
duality.

7 Connections to Social Choice Theory

Social choice theory is almost undoubtedly the discipline most closely as-
sociated with the study of ranking, having a long history dating back to
Condorcet’s famous treatise in 1785 [10] and a large body of work that led
to at least two Nobel prizes [3,39].

The famous impossibility theorems of Arrow [2] and Sen [38] in social
choice theory formalized the inherent difficulty of achieving a global ranking
of alternatives by aggregating over the voters. However it is still possible to
perform an approximate rank aggregation in reasonable, systematic manners.
Among the various proposed methods, the best known ones are those by
Condorcet [10], Borda [14], and Kemeny [23]. In particular, the Kemeny
approach is often regarded as the best approximate rank aggregation method
under some assumptions [46,45]. It is however NP-hard to compute and its
sole reliance on ordinal information may be unnatural in the context of score-
based cardinal data.

We have described earlier how the minimization of (7) over the gradient
flow model class

MG = {X ∈ C1 | Xij = sj − si, s : V → R}

leads to a Hodge theoretic generalization of Borda count but the minimization
of (7) over the Kemeny model class

MK = {X ∈ C1 | Xij = sign(sj − si), s : V → R}

leads to Kemeny optimization. In this section, we will discuss this connection
in greater detail.

The following are some desirable properties of ranking data that have been
widely studied, used, and assumed in social choice theory. A ranking problem
is called complete if each voter in Λ gives a total ordering or permutation
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of all alternatives in V ; this implies that wαij > 0 for all α ∈ Λ and all
distinct i, j ∈ V , in the terminology of Section 2. It is balanced if the pairwise
comparison graph G = (V,E) is k-regular with equal weights wij = c for all
{i, j} ∈ E. A complete and balanced ranking induces a complete graph with
equal weights on all edges. Moreover, it is binary if every pairwise comparison
is allowed only two values, say, ±1 without loss of generality. So Y αij = 1 if
voter α prefers alternative j to alternative i, and Y αij = −1 otherwise. Ties
are disallowed to keep the discussion simple.

Classical social choice theory often assumes complete, balanced, and bi-
nary rankings. However, these are all unrealistic assumptions for modern data
coming from internet and e-commerce applications. Take the Netflix dataset
for illustration, a typical user α of Netflix would have rated at most a very
small fraction of the entire Netflix inventory. Indeed, as we have mentioned
in Section 2.2.1, the viewer-movie rating matrix has 99% missing values.
Moreover, while blockbuster movies would receive a disproportionately large
number of ratings, since just about every viewer has watched them, the more
obscure or special interest movies would receive very few ratings. In other
words, the Netflix dataset is highly incomplete and highly imbalanced. There-
fore its pairwise comparison graph is expected to have a sparse edge structure
if we ignore pairs of movies where few comparisons have been made12.

Lastly, as we have discussed in Section 2.2, most modern ranking datasets
including the Netflix one are given in terms of ratings or scores on the alterna-
tives by the voters (e.g. one through five stars). While it is possible to ignore
the cardinal nature of the dataset and just use its ordinal information to con-
struct a binary pairwise ranking, we would be losing valuable information —
for example, a 5-star versus 1-star comparison is indistinguishable from a
3-star versus 2-star comparison when one only takes the ordinal information
into account.

Therefore, one is ill-advised to apply methods from classical social choice
theory to modern ranking data directly. We will see in the next section that
our Hodge theoretic extension of Borda count adapts to these new features in
modern datasets, i.e. incomplete, imbalanced, cardinal data, but still restricts
to the usual Borda count in social choice theory for data that is complete,
balanced, and ordinal/binary.

The reader may wonder why the impossibility theorems of social choice
theory do not invalidate our Hodge theoretic approach. One reason is given
in the previous paragraph, namely, we work under different assumptions: our
ranking data is incomplete, imbalanced, cardinal, and so these impossibility
results do not apply. In particular, these impossibility theorems are about
intransitivity, i.e. whether one might have i � j � k � i, which is an ordinal
condition; but our approach deals with inconsistency, i.e. whether one might
have Xij + Xjk + Xki 6= 0, which is a cardinal condition. The second and
more important reason is that we do not merely seek a global ranking but
also a locally cyclic ranking and a harmonic ranking, with the latter two
components accounting for the cyclic inconsistencies in the ranking data. We

12 This will not be true if we do not perform such thresholding. As we noted
earlier, the Netflix pairwise comparison graph is almost a complete graph missing
only 0.22% of its edges although the Netflix dataset has 99% of its values missing.
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acknowledge at the outset that not all datasets can be reasonably assigned a
global ranking but can sometimes be cyclic in nature. So we instead seek to
analyze ranking data by examining its three constituting components: global,
local, harmonic. The magnitude of the cyclic (local + harmonic) component
then quantifies the inconsistencies that impede a global ranking. We do not
always regard the cyclic component, which measures the cardinal equivalent
of the impossibilities in social choice theory, as noise. In our framework, the
data may be ‘explained’ by a global ranking only when the cyclic component
is small; if that is not the case, then the cyclic component is an integral part
of the ranking data and one has no reason to think that the global component
would be any more informative than the cyclic component.

7.1 Kemeny Optimization and Borda Count

The basic idea of Kemeny’s rule [23,24] is to minimize the number of pairwise
mismatches from a given ordering of the alternatives to a voting profile, i.e.
the collection of total orders on the alternatives by each voter. The minimizers
are called the Kemeny optima and are often regarded as the most reasonable
candidates for a global ranking of the alternatives. To be precise, we define
the binary pairwise ranking associated with a permutation σ ∈ Sn (the
permutation group on n elements) to be Y σij = sign(σ(i)− σ(j)). Given two
total orders or permutations on the n alternatives, σ, τ ∈ Sn, the Kemeny
distance (also known as Kemeny-Snell or Kendall τ distance) is defined to
be

dK(σ, τ) :=
1
2

∑
i<j
|Y σij − Y τij | =

1
4

∑
i,j
|Y σij − Y τij |,

i.e. the number of pairwise mismatches between σ and τ . Given a voting
profile as a set of permutations on V = {1, . . . , n} by m voters, {τi ∈ Sn |
i = 1, . . . ,m}, the following combinatorial minimization problem

min
σ∈Sn

∑m

i=1
dK(σ, τi) (33)

is called Kemeny optimization and is known to be NP-hard [16] with re-
spect to n when m ≥ 4. For binary-valued rankings with Y αij ∈ {±1}, the
optimization problem

min
X∈MK

∑
α,i,j

wαij(Xij − Y αij )2, (34)

counts up to a constant the number of pairwise mismatches from a total
order. Hence for a complete, balanced, and binary-valued ranking problem,
our minimization problem (7) becomes Kemeny optimization if we replace
the subspace MG by the discrete subset MK .

Another well-known method for rank aggregation is the Borda count [14],
which assigns a voter’s top ith alternative a position-based score of n− i; the
global ranking on V is then derived from the sum of its scores over all voters.
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This is equivalent to saying that the global ranking of the ith alternative is
derived from the score

sB(i) = −
∑m,n

α,k=1
Y αik , (35)

i.e. the alternative that has the most pairwise comparisons in favor of it
from all voters will be ranked first, and so on. As we have found in (26), the
minimum norm solution of the l2-projection onto gradient flows is given by

s∗(i) = − 1
n

∑
k
Ȳik = −c

∑m,n

α,k=1
Y αik ,

where c is a positive constant. Hence for a complete, balanced, and binary
ranking problem, the Hodge theoretic approach yields the Borda count up
(to a positive multiplicative constant that has no effect on the ordering of
alternatives by scores).

7.2 Comparative Studies

The following theorem gives three equivalent characterizations of (34) when
Y αij ∈ {±1}. Note that here we do not assume that the data is complete and
balanced.

Theorem 6 Suppose that Y αij ∈ {±1}. The following optimization problems
are all equivalent:

(i) The weighted least squares problem,

min
X∈MK

∑
α,i,j

wαij(Xij − Y αij )2,

where

MK = {X ∈ A | Xij = sign(sj − si), s : V → R}.

(ii) The linear programming problem,

max
X∈K1

〈X, Ȳ 〉 = max
X∈K1

∑
{i,j}∈E

wijXij Ȳij , (36)

where K1 is the set{∑
σ∈SnµσP

σ
∣∣∣ ∑σµσ = 1, µσ ≥ 0, Pσij = sign(σ(j)− σ(i))

}
.

(iii) The weighted l1-minimization problem,

min
X∈K2

‖X − Ȳ ‖1,w = min
X∈K2

∑
{i,j}∈E

wij |Xij − Ȳij |, (37)

where K2 is the set

{X ∈ A | (sj − si)Xij ≥ 0 for some s : V → R and {i, j} ∈ E}.



36 X. Jiang, L.-H. Lim, Y. Yao, Y. Ye

(iv) The minimum feedback arc set of the weighted directed graph GW◦Ȳ =
(V,E,W ◦ Ȳ ), whose vertex set is V , directed edge (i, j) ∈ E ⊆ V × V
iff Ȳij > 0 with weight wij Ȳij.

Proof Assuming (i). Since Xij ∈ {±1}, we obtain∑
α,i,j

wαij(Xij − Y αij )2 =
∑

α,i,j
wαij

[
X2
ij − 2XijY

α
ij + (Y αij )2

]
= c− 2

∑
i,j
Xij

∑
α
wαijY

α
ij

= c− 2
∑

i,j
wijXij Ȳij

where c is a constant that does not depend on X. So the problem becomes

max
X∈MK

∑
{i,j}∈E

wijXij Ȳij . (38)

SinceMK is a discrete set containing n! points, a linear programming prob-
lem over MK is equivalent to searching over its convex hull, i.e. K1, which
gives (ii).

(iv) can also be derived from (38). Consider a weighted directed graph
GW◦Ȳ where an edge (i, j) ∈ E iff Ȳij > 0, and in which case has weight
|wij Ȳij |. (38) is equivalent to finding a directed acyclic graph by reverting
a set of edge directions whose weight sum is minimized. This is exactly the
minimum feedback arc set problem.

Finally, we show that (iii) is also equivalent to the minimum feedback arc
set problem. For any X ∈ K2, the transitive region, there is an associated
weighted directed acyclic graph GW◦X where an edge (i, j) ∈ E iff Xij > 0,
and in which case has weight |wijXij |. Note that an optimizer of (37) has
either X∗ij = −X∗ji = Ȳij or X∗ij = −X∗ji = 0 on an edge {i, j} ∈ E, which
is equivalent to the problem of finding a directed acyclic graph by deleting
a set of edges from GW◦Ȳ such that the sum of their weights is minimized.
Again, this is exactly the minimum feedback arc set problem.

The set K1 is the convex hull of the skew-symmetric permutation matrices
Pσ as defined in [46]. The set K2 is called the transitive pairwise region by
Saari [34], which comprises n! cones corresponding to each of the n! permu-
tations on V .

It is known that the minimum feedback arc set problem in (iv) is NP-hard,
and therefore, so are the other three. Moreover, (iii) provides us with some
geometric insights when we view it alongside with (7), the l2-projection onto
gradient flowsMG = {X ∈ A | Xij = sj−si, s : V → R} which we have seen
to be a Hodge theoretic extension of Borda count. We will illustrate their
differences and similarities pictorially via the following example borrowed
from Saari [34].

Consider the simplest case of three-item comparison with V = {i, j, k}.
For simplicity, we will assume that wij = wjk = wki = 1 and Ȳij , Ȳjk, Ȳki ∈
[−1, 1]. Figure 4 shows the unit cube in R3. We will label the coordinates
in R3 as [Xij , Xjk, Xki] (instead of the usual [x, y, z]). The shaded plane
corresponds to the set where Xij +Xjk+Xki = 0 in the unit cube. Note that
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this set is equal to the model class MG because of (12). On the other hand,
the transitive pairwise region K2 consists of the six orthants within the cube
with vertices {±1,±, 1,±1} − {[1, 1, 1], [−1,−1,−1]}. We will write

I(X) :=
∑

α,i,j
wαij(Xij − Y αij )2.

The Hodge theoretic optimization (7) is the l2-projection onto the plane
Xij +Xjk +Xki = 0, while by (iii), the Kemeny optimization (34) is the l1-
projection onto the aforementioned six orthants representing the transitive
pairwise region K2.

In the general setting of social choice theory, the following theorem from
[34] characterizes the order relations between the Kemeny optimization and
the Borda count.

Theorem 7 (Saari-Merlin 2000) The Kemeny winner (the most preferred)
is always strictly above the Kemeny loser (the least preferred) under the Borda
count; similarly the Borda winner is always strictly above the Borda loser un-
der the Kemeny rule. There is no other constraint in the sense that the two
methods may generate arbitrary different total orders except for those con-
straints.

The Kemeny rule has several desirable properties in social choice theory
which the Borda count lacks [46]. The Kemeny rule satisfies the Condorcet
rule, in the sense that if an alternative in V wins all pairwise comparisons
against other alternatives in V , then it must be the overall winner. A Con-
dorcet winner is any alternative i such that

∑
j sign(

∑
α Y

α
ij ) = n. Note that

the Condorcet winner may not exist in general but Kemeny or Borda win-
ners always exist. However, if a Condorcet winner exists, then it must be
the Kemeny winner. On the other hand, Borda count can only ensure that
the Condorcet winner is ranked strictly above the Condorcet loser (least-
preferred). Another major advantage of the Kemeny rule is its consistency in
global rankings under the elimination of alternatives in V . The Borda count
and many other position-based rules fail to meet this condition. In fact, the
Kemeny rule is the unique rule that meets all three of following: (1) satis-
fies the Condorcet rule, (2) consistency under elimination, and (3) a natural
property called neutral (that we will not discuss here). See [46] for further
details.

Despite the many important features that the Kemeny rule has, its high
computational cost (NP-hard) makes simpler rules like Borda count attrac-
tive in practice, especially when there is large number of alternatives to be
ranked. Moreover, in cardinal rankings where it is desirable to preserve the
magnitude of score differences [12] and not just the order relation, using the
Hodge theoretic variant of Borda count with model classMG becomes more
relevant than Kemeny optimization with model class MK .

8 Experimental Studies

We present three examples of Hodge theoretic ranking analysis of real data
with the hope that these preliminary results would illustrate some basic ideas
of our approach.
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Fig. 4 The shaded region is the subspace Xij+Xjk+Xki = 0. The transitive region
consists of six orthants whose corresponding vertices belong to {±1,±, 1,±1} −
{[1, 1, 1], [−1,−1,−1]}. The Borda count or minX∈MG I(X) is the l2-projection
onto the shaded plane while the Kemeny optimization or minX∈MK I(X) is the
l1-projection onto the transitive region.

The first example is about movie ranking on a subset of Netflix data. We
show that (i) the use of pairwise ranking together with Hodge decomposition
reduces temporal drift bias, and (ii) the triangular curls provide a metric
for characterizing inconsistencies in the ranking data. The second example
illustrates the use of Hodge decomposition for finding a universal equivalent
or price function (i.e. global ranking) in a currency exchange market where
triangular arbitrage-free implies arbitrage-free (i.e. harmonic component is
0). The third example describes how the global ranking component in Hodge
decomposition may be used to approximate PageRank via reversible Markov
chains.

8.1 Movie Ranking on a Subset of Netflix Data

The Netflix prize dataset13 contains about 17, 000 movies rated by 480, 000
customers over 74 months from November 1998 to December 2005. Each
customer rated 209 movies on average and around 99% of the ratings are
absent from the customer-product matrix. We do not seek to address the
Netflix prize problem of ratings prediction here. Instead we take advantage
of this rare publicly available dataset and use it to test the rank aggregation
capabilities of our method. We would like to aggregate viewers’ ratings into
a global ranking on movies, and to measure the reliability of such a global
ranking. Note that such rank aggregation could be personalized if one first
collects the ratings from viewers who share similar tastes with an individual.
This could then be used for rating prediction if desired which is not pursued
here.

For reasons that we will soon explain, we restrict our selections to movies
that received ratings on all of the 74 months. There are not many such
movies — only 25 in all. Several of these have monthly average scores that
show substantial upward or downward drifts. In Figure 5, we show the

13 http://www.netflixprize.com
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temporal variations in scores of six of these (numerical indices in the Net-
flix dataset are given in parentheses): Dune (17064), Interview with the
Vampire (8079), October Sky (12473), Shakespeare in Love (17764), The
Waterboy (14660), and Witness (15057). Such temporal variations make it
dubious to rank movies by simply taking average score over all users, as
ratings over different time periods may not be comparable under the same
scale. It is perhaps worth noting that understanding the temporal dynamics
in the Netflix dataset has been a key factor in the approach of Bell and Koren
[5]. We will see below that the use of pairwise ranking and Hodge decompo-
sition provides an effective method to globally rank the movies and detect
any inherent inconsistency and that is furthermore robust under temporal
variations.

Formation of pairwise ranking. Since pairwise rankings are relative mea-
sures, we expect that they will reduce the effect of temporal drift. We em-
ploy three of the statistics described in Section 2.2.1 to form our pairwise
rankings, using only ratings by the same customer in the same month.
We compute the arithmetic mean of score differences,

Ȳij =
∑
α(aαj − aαi)

#{α | aαi, aαj exist in the same month}
;

the geometric mean of score ratios,

Ȳij =
∑
α(log aαj − log aαi)

#{α | aαi, aαj exist in the same month}
;

and binary comparisons,

Ȳij = Pr{α | aαj > aαi} − Pr{α | aαj < aαi},
where α is such that aαi, aαj exist in the same month.

Since there is nothing to suggest that a logarithmic scale is relevant,
the logarithmic odds ratio gives rather poor result as expected and we
omitted it. For comparison, we compute the mean score of each movie
over all customers, ignoring the temporal information. A reference score
is collected independently from MRQE (Movie Review Query Engine)14,
the largest online directory of movie reviews on the internet.

Global ranking by Hodge decomposition. We then solve the regression
problem in (7) to obtain a projection of pairwise ranking flows onto gradi-
ent flows, given by Theorem 3(i). Note that in this example, the pairwise
ranking graph is complete with n = 6 nodes. Table 1 collects the com-
parisons between different global rankings. The reference order of movies
is again via the MRQE scores.

Inconsistencies and curls. Since the pairwise ranking graph is complete,
its clique complex is a simplex with n = 6 vertices and so the harmonic
term in the Hodge decomposition is always zero. Hence the residual in
Theorem 3 is just the curl projection, i.e. R∗ = projim(curl∗) Ȳ . We will

14 http://www.mrqe.com
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define two indices of inconsistency to evaluate the results. The first, called
cyclicity ratio, is a measure of global inconsistency given by

Cp =
‖R∗‖22,w
‖Ȳ ‖22,w

;

while the second, called relative curl, quantifies the local inconsistency,
and is given by the following function of edges and triangles,

cr(eij , tijk) =
(curl Ȳ )(i, j, k)
3(grad s∗)(i, j)

=
Ȳij + Ȳjk + Ȳki

3(s∗j − s∗i )
.

Note that on every triangle tijk the curl Ȳij+ Ȳjk+ Ȳki measures the total
sum of cyclic flow, therefore cr measures the magnitude of its induced edge
flow relative to the gradient edge flow of the global ranking s∗. If cr has
absolute value larger than 1, then the average cyclic flow has an effect
larger than the global ranking s∗, which indicates that the global ranking
s∗ might be inconsistent on the pair of items.

Table 1 shows that in terms of cyclicity ratio, the best global ranking is
obtained from Hodge decomposition of pairwise rankings from binary com-
parisons, which has the smallest cyclicity ratio, 0.30. This global ranking
is quite different from merely taking mean scores and a better predictor of
MRQE.

A closer analysis of relative curls allows us to identify the dubious scores.
We will see that the placement of Witness and October Sky according to the
global ranking contains significant inconsistency and should not be trusted.
This inconsistency is largely due to the curls in the triangles

t1 = (Witness, October Sky, The Waterboy),
t2 = (Witness, October Sky, Interview with the Vampire).

In fact, there are only two relative curls whose magnitudes exceed 1; both
occurred on triangles that contain the edge e = (Witness, October Sky):
The relative curl of t1 with respect to e is 3.6039 while that of t2 with
respect to e is 4.1338. As we can see from Table 1, the inconsistency (large
curl) manifests itself as instability in the placement of Witness and October
Sky — the results vary across different rank aggregation methods with no
possibility of consensus. This illustrates the use of curl as a certificate of
validity for global ranking.

8.2 Currency Exchange Market

This example illustrates a globally consistent pairwise ranking on a complete
graph using currency exchange data taken from Yahoo! Finance15. Consider
a currency exchange market with V representing a collection of seven curren-
cies, USD, JPY, EUR, CAD, GBP, AUD, and CHF. In this case, G = (V,E)

15 http://finance.yahoo.com/currency-converter
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Fig. 5 Average scores of 6 selected movies over 74 months. The three movies in
the top row has a decreasing trend in monthly average scores, while in a contrast
the other three movies in the bottom row exhibits an increasing trend.

Global ranking (Score)

Movie MRQE Mean Hodge-Difference Hodge-Ratio Hodge-Binary

Shakespeare in Love 1 (85) 2 (3.87) 1 (0.247) 2 (0.0781) 1 (0.138)
Witness 2 (77) 3 (3.86) 2 (0.217) 1 (0.0883) 3 (0.107)

October Sky 3 (76) 1 (3.93) 3 (0.213) 3 (0.0775) 2 (0.111)
The Waterboy 4 (66) 6 (3.38) 6 (−0.464) 6 (−0.1624) 6 (−0.252)

Interview with the Vampire 5 (65) 4 (3.71) 4 (−0.031) 4 (−0.0121) 4 (−.012)
Dune 6 (44) 5 (3.49) 5 (−0.183) 5 (−0.0693) 5 (−0.092)

Cyclicity ratio – – 0.77 1.15 0.30

Table 1 Global ranking of selected six movies via different methods: MRQE, mean
score over customers, Hodge decomposition with algorithmic mean score difference,
Hodge decomposition with geometric mean score ratio, and Hodge decomposition
with binary comparisons. It can be seen that the Hodge decomposition with binary
comparisons has the smallest inconsistency in terms of the cyclicity ratio.

is a complete graph since every two currencies in V are exchangeable. Table 2
shows the exchange rates. By logarithmic transform the exchange rates can
be converted into pairwise rankings as in Example 2.2.2. The global ranking
is the solution in (23) (where δ∗0 = δ>0 ) defines an universal equivalent which
measures the ‘value’ of each currency. As the reader can easily check, the
logarithmic transform of the data in Table 2 is curl-free (up to machine pre-
cision), which in this context means triangular arbitrage-free. In other words,
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Currency exchange rate table

USD JPY EUR CAD GBP AUD CHF

1 USD = 1.0000 114.6700 0.6869 0.9187 0.4790 1.0768 1.1439
1 JPY = 0.0087 1.0000 0.0060 0.0080 0.0042 0.0094 0.0100
1 EUR = 1.4558 166.9365 1.0000 1.3374 0.6974 1.5676 1.6653
1 CAD = 1.0885 124.8177 0.7477 1.0000 0.5214 1.1721 1.2451
1 GBP = 2.0875 239.3791 1.4340 1.9178 1.0000 2.2478 2.3879
1 AUD = 0.9287 106.4940 0.6379 0.8532 0.4449 1.0000 1.0623
1 CHF = 0.8742 100.2448 0.6005 0.8031 0.4188 0.9413 1.0000

Universal equivalent 1.7097 0.0149 2.4890 1.8610 3.5691 1.5878 1.4946

Table 2 The last line is given by exp(−x∗) where x∗ is the solution to (23). The
data was taken from the Currency Converter Yahoo! Finance on November 6, 2007.

there is no way one could profit from a cyclic exchange of any three currencies
in V . Since G is a complete graph, the data has no harmonic components; so
Hodge decomposition tells us that local consistency must imply global con-
sistency, which in this context means arbitrage-free. In other words, there is
no way one could profit from a cyclic exchange of any number of currencies
in V either.

8.3 Comparisons with PageRank and HITS

We apply Hodge theoretic ranking to the problem of web ranking, which we
assumed here to mean any static linked objects, not necessarily the World
Wide Web. As we shall see Hodge decomposition provides an alternative to
PageRank [7] and HITS [27]. In particular, it gives a new way to approximate
PageRank and enables us to study the inconsistency or cyclicity in PageRank
models.

Consider a link matrix L where Lij is the number of links from site i to j.
There are two well-known spectral approach to computing the global rankings
of websites from L, HITS and PageRank. HITS computes the singular value
decomposition L = UΣV >, where the primary left-singular vector u1 gives
the hub ranking and the primary right-singular vector v1 gives the authority
ranking (both u1 and v1 are nonnegative real-valued by the Perron-Frobenius
theorem). PageRank constructs from L a Markov chain on the sites given by

Pij = α
Lij∑
j Lij

+ (1− α)
1
n
,

where n is the number of sites and α = 0.85 trades-off between Markovian
link jumps and random surfing.

It is clear that we may define an edge flow via

Yij = log
Pij
Pij

. (39)
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However what property does such a flow capture in PageRank? To answer
this question we will need to recall the notion of a reversible Markov chain:
An irreducible Markov chain with transition matrix P and stationary distri-
bution π is reversible if

πiPij = πjPji.

Therefore a reversible Markov chain P has a pairwise ranking flow induced
from a global ranking,

Yij = log
Pij
Pij

= log πj − log πi,

where log π gives the global ranking. As we mentioned in Section 2.1, log π
may be viewed as defining a negative potential on webpages if we regard
ranking as being directed from a higher potential site to a lower potential
site. This leads to the following interpretation.

Let P ∗ be the best reversible approximate of the PageRank Markov chain
P , in the sense that

P ∗ = argminP̃ reversible

∥∥∥∥∥log
P̃ij

P̃ji
− log

Pij
Pji

∥∥∥∥∥
2

.

Then the stationary distribution of P ∗, denoted by π∗, is a Gibbs-Boltzmann
distribution on webpages with potential −s∗, i.e.

π∗i =
es
∗
i∑

k e
s∗k
.

where s∗ is given by the Hodge projection of Y onto the space of gradient
flows. Hence the Hodge decomposition of edge flow in (39) gives the stationary
distribution of a best reversible approximate of the PageRank Markov chain.

We may further compute the Hodge decomposition of iterated flows,

Y kij = log
P kij
P kij

.

Clearly when k → ∞, the global ranking given by Hodge decomposition
converges to that given by PageRank. The benefit of the Hodge theoretic
approach lies in that (i) it provides a way to approximate the PageRank
stationary distribution; and (ii) it enables us to study the inconsistency or
cyclicity in PageRank Markov model. The cost of computing the global rank-
ing by Hodge decomposition in Theorem 3(i) only involves a least squares
problem of the graph Laplacian, which is less expensive than eigenvector
computations in PageRank. For the benefit of readers unfamiliar with nu-
merical linear algebra, it might be worth pointing out that even the most
basic algorithms for linear least squares problems guarantee global conver-
gence in a finite number of steps whereas there are (a) no algorithms for
eigenvalue problems that would terminate in a finite number of steps as soon
as the matrix dimension exceeds 4; and (b) no algorithms with guaranteed
global convergence for arbitrary input matrices.
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Kendall τ -distance

RAE’01 in-degree out-degree HITS authority HITS hub PageRank Hodge (k = 1) Hodge (k = 2) Hodge (k = 4)

RAE’01 0 0.0994 0.1166 0.0961 0.1115 0.0969 0.1358 0.0975 0.0971
in-degree 0.0994 0 0.0652 0.0142 0.0627 0.0068 0.0711 0.0074 0.0065

out-degree 0.1166 0.0652 0 0.0672 0.0148 0.0647 0.1183 0.0639 0.0647
HITS authority 0.0961 0.0142 0.0672 0 0.0627 0.0119 0.0736 0.0133 0.0120

HITS hub 0.1115 0.0627 0.0148 0.0627 0 0.0615 0.1121 0.0607 0.0615
PageRank 0.0969 0.0068 0.0647 0.0119 0.0615 0 0.0710 0.0029 0.0005

Hodge (k = 1) 0.1358 0.0711 0.1183 0.0736 0.1121 0.0710 0 0.0692 0.0709
Hodge (k = 2) 0.0975 0.0074 0.0639 0.0133 0.0607 0.0029 0.0692 0 0.0025
Hodge (k = 3) 0.0971 0.0065 0.0647 0.0120 0.0615 0.0005 0.0709 0.0025 0

Table 3 Kendall τ -distance between different global rankings. Note that HITS
authority gives the nearest global ranking to the research score RAE’01, while
Hodge decompositions for k ≥ 2 give closer results to PageRank which is the
second closest to the RAE’01.

To illustrate this discussion, we use the UK Universities Web Link Struc-
ture dataset16. The dataset contains the number of web links between 111
UK universities in 2002. Independent of this link structure is a research score
for each university, RAE 2001, performed during the 5-yearly Research As-
sessment Exercise17. The RAE scores are widely used in UK for measuring
the quality of research in universities. We used 107 universities by eliminat-
ing four that are missing either RAE score, in-link, or out-link. The data
has also been used by [43] recently but for a different purpose. Table 3 sum-
marizes the comparisons among nine global rankings: RAE 2001, in-degree,
out-degree, HITS authority, HITS hub, PageRank, Hodge rank with k = 1, 2,
and 4, respectively. We then use Kendall τ -distance [25] to count the num-
ber of pairwise mismatches between global rankings, normalized by the total
number of pairwise comparisons.

9 Summary and Conclusion

We introduced combinatorial Hodge theory to statistical ranking methods
based on minimizing pairwise ranking errors over a model space. In particu-
lar, we proposed a Hodge theoretic approach towards determining the global,
local, and harmonic ranking components of a dataset of voters’ scores on al-
ternatives. The global ranking is learned via an l2-projection of a pairwise
ranking edge flow onto the space of gradient flows. We saw that among other
connections to classical social choice theory, the score recovered from this
global ranking is a generalization of the well-known Borda count to rank-
ing data that is cardinal, imbalanced, and incomplete. The residual left is
the l2-projection onto the space of divergence-free flows. A subsequent l2-
projection of this divergence-free residual onto the space of curl-free flows
then yields a harmonic flow. This decomposition of pairwise ranking data
into a global ranking component, a locally cyclic ranking component, and a
harmonic ranking component, is called the Helmholtz decomposition.

Consistency of the ranking data is governed to a large extent by the
structure of its pairwise comparison graph; this is in turn revealed in the

16 This is available from http://cybermetrics.wlv.ac.uk/database/stats/
data. We used counts at the directory level.
17 http://www.rae.ac.uk
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Helmholtz decomposition associated with the graph Helmholtzian, the com-
binatorial Laplacian of the 3-clique complex. The sparsity structure of a
pairwise comparison graph imposes certain constraints on the topology and
geometry of its clique complex, which in turn decides the properties of our
statistical ranking algorithms.

In addition one may use an l1-approximate sparse cyclic rankings to iden-
tify conflicts among voters. The l1-minimization problem for this has a dual
given by correlation maximization over bounded curl-free flows. On the other
hand, the l1-projection on the gradient flows, which we view as a robust
variant of the l2-version, has a dual given by correlation maximization over
bounded cyclic flows.

Our results suggest that combinatorial Hodge theory could be a promis-
ing tool for the statistical analysis of ranking, especially for datasets with
cardinal, incomplete, and imbalanced information.
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