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Abstract
In this paper, we develop a theoretical framework for characterizing shapes by building blocks. We address two
questions: First, how do shape correspondences induce building blocks? For this, we introduce a new representa-
tion for structuring partial symmetries (partial self-correspondences), which we call “microtiles”. Starting from
input correspondences that form point-wise equivalence relations, microtiles are obtained by grouping connected
components of points that share the same set of symmetry transformations. The decomposition is unique, requires
no parameters beyond the input correspondences, and encodes the partial symmetries of all subsets of the input.
The second question is: What is the class of shapes that can be assembled from these building blocks? Here, we
specifically consider r-similarity as correspondence model, i.e., matching of local r-neighborhoods. Our main re-
sult is that the microtiles of the partial r-symmetries of an object S can build all objects that are (r+ε)-similar to
S for any ε> 0. Again, the construction is unique. Furthermore, we give necessary conditions for a set of assembly
rules for the pairwise connection of tiles. We describe a practical algorithm for computing microtile decomposi-
tions under rigid motions, a corresponding prototype implementation, and conduct a number of experiments to
visualize the structural properties in practice.

1. Introduction

In contemporary computer graphics, the creation of high-
fidelity 3D models still remains a difficult and time con-
suming task. Correspondingly, approaches that facilitate the
reuse of existing 3D models have recently gained quite some
attention. One promising approach is inverse procedural
modeling [HF97, ARB07, S̆BM∗10, BWS10]: The goal is to
decompose a model into building blocks and associated rules
(i.e., a shape grammar) describing how these pieces can be
put together to create variations of the original. At the heart
of this problem, there are two questions: First, given a notion
of similarity, what is the right choice of building blocks and
rules? And second, what is the class of objects that can be
constructed in this way?

Representing partial symmetries with “microtiles”:
We consider a shape S and set of mappings F that maps
subsets of S back to itself, in a way that it defines an equiv-
alence relation among the points of S. In other words, we
consider pairwise correspondences within S, a structure also
often referred to as partial symmetries [MGP06] (a stricter
notion is to use the term “symmetry” only when algebraic
regularity is involved [MPWC12]; we stick to the common
convention of using the terms interchangeably). Usually, the

regions matched by the pairwise relations overlap arbitrar-
ily. Hence, this provides a notion of redundancy, but not yet
a decomposition into disjoint building blocks.

To form building blocks, we split the original surface into
maximal fragments for which all points are mapped by the
same set of transformations (see Fig. 1a-d). Equivalently, we
can cut the surface at all boundaries of all partial matches
(Fig. 1c). Because the resulting tiles are obtained by cutting
as much as possible, we call them “microtiles”. Yet another
characterization is to form a graph with all points of S as
nodes, and transformations from F annotating edges that
connect equivalent points (shown schematically in Fig. 1e).
Microtiles are maximal connected subsets of S that have
cliques with the same edge annotations. This means, all mi-
crotiles in the same clique are always exchanged with each
other as a whole (c.f. Fig. 3).

Microtiles have some interesting further properties: First,
the construction is unique and canonical: it does not require
any choices or parameters in addition to the input corre-
spondences. Furthermore, microtiles are disjoint and differ-
ent types of tiles do not have partial correspondences among
each other or themselves, only global symmetries are pos-
sible. Finally, unions of microtiles have the intersection of
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(a) input (b) partial correspondences F (c) cutting at the (d) resulting microtiles (e) pointwise
geometry S (subset shown) boundaries of F (color = tile class) cliques

Figure 1: Construction of microtiles: (a) Input geometry S. (b) We consider partial correspondences F within S. (c) The
geometry is cut at the boundaries of the partial matches. (d) This yields the microtile decomposition. (e) Each microtile is
characterized by cliques of equivalent points; cliques with the same set of transformations form the same class of microtiles.

their associated cliques of transformations as permissible op-
erations. Thus, we can derive all partial symmetry properties
of a shape from our decomposition by simple set operations.

The space of r-similar shapes: We now use microtiles
to study inverse procedural modeling problems. We look
specifically at r-similarity as a notion of correspondence:
two points on a shape are matched if their r-neighborhoods
match under a rigid mapping. This yields a point-wise equiv-
alence relation, r-symmetry, for which we can build r-
microtiles. Furthermore, a shape S2 is considered r-similar
to S1 if all points y ∈ S2 are r-similar to some point x ∈ S1.
We can now characterize the space of r-similar shapes: We
prove that all shapes S2 that are (r+ ε)-similar to S1 can be
constructed by rigidly assembling r-microtiles of S1 for any
ε > 0 and that the assembly is disjoint and unique. We fur-
ther make a first step towards a microtile-based shape gram-
mar, i.e., giving explicit rules for building all (r+ ε)-similar
shapes: We show, as a necessary condition, that a valid as-
sembly is restricted to pairwise adjacencies that have been
observed in the exemplar.

While our paper focuses on the theory, we also perform a
brief practical study to examine and illustrate the decompo-
sition in practice. We describe an algorithm for computing
microtiles and propose a prototype implementation based on
a simple volumetric discretization [BWS10]. We compute
the decomposition for a number of example scenes and vi-
sualize building blocks and redundancy.

In summary, we make two main contributions: First, we
introduce a canonical decomposition of partial symmetry,
converting pairwise correspondences to microtiles as build-
ing blocks. Second, we look at local rigid matching as notion
of correspondence and show that the space of shapes locally
similar to an exemplar S can be build from microtiles of S.

2. Related Work

Symmetry detection has become an indispensable tool for
shape analysis [GCO06, MGP06, PSG∗06, SKS06, Mar07,

OSG08, PMW∗08, BBW∗09, LCDF10, RBBK10], leading
to numerous applications such as symmetry preserving
editing [GSMCO09, BWKS11, WXL∗11], non-local re-
construction [GSH∗07, BBW∗09], and shape understand-
ing [MYY∗10].

The classic mathematical notion of symmetry is global in
nature [MPWC12]: Let T be a group of bijections of R3 act-
ing on S ⊂R3. The functions f ∈T that map S back to itself
form a group, the symmetry group of S under T . While this
structure is well understood, structuring the space of partial
symmetries is more complicated because they usually do not
form closed groups in the transformation domain.

Early approaches to structuring partial symmetries by
building blocks used simple region growing [MGP06,
BBW∗09], which does not lead to canonical results because
they depend on the initialization. It is also not clear how to
reassemble such tilings to form new shapes. Another way of
structuring pairwise correspondences is to look for algebraic
regularity in the domain of the transformations, for example
by detecting commutative grids [PMW∗08, MBB10]. This
describes the structure of the correspondences only partially,
as the input contains only excerpts of the symmetry groups
(which are usually infinite), and irregularly placed instances
are not captured.

An alternative is to just enumerate the overlapping re-
gions of pairwise matches [BWS10]. This implicitly en-
codes all symmetry information, but does not expose its
structure. Based on this, Bokeloh et al. [BWS10] use the
boundaries of partial r-symmetry in order to cut out dock-
ers that form a context-free shape grammar. It encodes a set
of objects that are r-similar to the input exemplar. Due to
the restriction to context-free grammars, their method must
avoid intersections of cuts. Our approach is the opposite,
performing all cuts, even for continuous symmetries (which
their method explicitly excludes). Thereby, we can span the
complete space of r-similar objects with assemblies of mi-
crotiles, while context-free tiles only cover a restricted sub-
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Figure 2: A castle wing decomposed into microtiles w.r.t. r-
symmetry. The colors indicate the class of the tiles.

set. Lifting this restriction and understanding the set of r-
similar models was the main motivation of our work.

We should also note that local similarity is frequently used
in texture synthesis [EL99, WL00] and their analogs in ge-
ometry synthesis [BIT04,ZHW∗06,Mer07]. However, these
methods use variational formulations that do not provide in-
sight into the structure of the shape space.

In terms of representing partial symmetry, our method is
strongly related to, and has been motivated by, the work
of Lipman et al. [LCDF10]: Their method also starts from
point-wise equivalence relations and computes cliques in
correspondence graphs. Unlike our approach, they use a
spectral clustering technique that is robust even under noisy
and ambiguous data. The result is a symmetry factored em-
bedding that maps points with a similar symmetry structure
to nearby points in a Euclidean space. A subsequent clus-
tering in this space produces a partitioning that resembles
our microtiles. However, our model for dealing with par-
tiality is different. Rather than weighting the percentage of
mapped points, we model the functions and domains of par-
tial matches explicitly. This allows us to formally study the
resulting tile decompositions and gives us a formal frame-
work for how general mapping functions should be treated.
Overall, our paper provides complementary insights: We fo-
cus on the study of the resulting tiles and their properties,
and study how the class of shapes that can be assembled out
of those tiles.

3. Correspondences and Microtiles

Input: In the following, we use S ⊂ R3 to denote the ex-
emplar piece of geometry for which we want to compute a
microtile decomposition. Let

F ⊆ {(P, f )|P ⊆ S, f : P → S, f is a homeomorphism}
(1)

be a set of functions f that map subsets P ⊂ S of the exem-
plar back to the itself, in a topology preserving way. In other
words, F is a set of partial correspondences on S. The sets
P identify the part of S the functions f act upon.

𝑥1 
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Figure 3: A graph representation of an example set of par-
tial mappings. The nodes are (colored) points on the surface
and the edges are mappings. As illustrated, all connected
components of the graph have to be cliques by definition.

Equivalence of points: Given a set of mappings F , we can
now say that two points x,y ∈ S are equivalent or similar, if
there is a mapping f ∈ F , which maps x to y:

x≡ f y :⇔ ∃(P, f ) ∈ F : x ∈ P and f (x) = y (2)

We require that this relation be an equivalence relation. This
means, we must choose F in a way this induced point-wise
relation is:

• Reflexive: (S, id) ∈ F
• Symmetric: x≡ f y⇒ y≡g x for some g ∈ F
• Transitive: x≡ f y and y≡g z⇒ x≡h z for some h ∈ F

This is illustrated in Figure 3 where points on a surface
are mapped based on partial symmetries. Having an equiv-
alence relation of such mapping means that if we construct
a graph with the surface points as nodes and the mappings
between them as edges, then each connected component of
this graphs will be a clique. The vertices in each clique form
an equivalence class with respect to F .

The equivalence classes given by the set of mappings
already provide a decomposition of the input into sets of
points. However, there are usually infinitely many such
classes (or cliques), which makes this kind of decomposition
impractical. In the following, we therefore cluster cliques
with the same set of mappings.

Pointwise correspondence sets: For any x ∈ S, let Fo(x)
denote the set of all outgoing pointwise correspondences:

Fo(x) = { f |(P, f ) ∈ F ,x ∈ P} (3)

Instances of microtiles: Comparing Fo introduces a new
equivalence relation on S: A maximal connected component
of points x that have the same set Fo(x) forms the same in-
stance of a microtile. We require connected components at
this point because, as we show later, these form the building
blocks required for constructing new shapes.
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Classes of Microtiles: Two instances of microtiles τ1,τ2
are from the same class if and only if they are matched
by a correspondences f ∈ F . This is because if two in-
stances share a single pointwise correspondence, the whole
instances must already be mapped by a correspondence from
F , by the following arguments: First, by definition, the same
set of transformation applies to all points in a tile, implying
that all points are mapped simultaneously. Second, any trans-
formation is required to be a homeomorphism. Thus, con-
nected components are preserved. In the following, we will
denote the microtile decomposition of a shape S by µ(S).
Examples of microtiles are visualized in Figures 2 and 3.
Microtiles are colored by their classes.

Properties of Microtiles

Elementary properties: There are several important prop-
erties of microtiles: First of all, for any S there exists a
unique decomposition µ(S). This follows directly from the
definition. In addition, if a point x is not equivalent to any
other points, it belongs to a microtile characterized by the
set Fo(x) containing only the identity mapping.

For any point x ∈ S there is exactly one microtile τ ∈
µ(S) that covers x in S. This is also straight-forward: for
each point x ∈ S there is exactly one set of mappings to
equivalent points. Thus there is exactly one microtile that
contains x. Thus, microtiles form a disjoint partition of S.

Finally, a microtile can be globally mapped to itself, but
not partially. If a point on the tile can be mapped to another
one by f , then f maps all other points on the same tile as
well, because otherwise, we would have introduced varying
cliques of mappings within the same tile, contradicting the
definition.

Cutting: We can define instances of microtiles in an alter-
native way: An instance τ of a microtile is a maximal, con-
nected set such that:

∀x1,x2 ∈ τ : ∀(P, f ) ∈ F : (x1 ∈ P ⇔ x2 ∈ P)

The equivalence to the definition above is straightforward.
This formulation shows that we can characterize the tile in-
stances by the intersection of the domains of all partial map-
pings. Intuitively, we can think of cutting at the boundaries
of all partial matches.

Combinations of tiles: Let Q ⊆ µ(S) be a set of tile in-
stances. We then consider a union of tiles

⋃
τ∈Q τ. We now

want to find the set of symmetry transformations of Q, i.e.,
the set of f ∈ F that map all tile instances in Q simulta-
neously back to S. From the definition, this is obviously⋂

τ∈Q Fo(τ), i.e., the intersection of all mapping functions
associated with the individual tiles. This also holds for if Q
contains arbitrary fragments of tiles: Otherwise, we would

have partial symmetries of tiles. Hence, the microtile decom-
position encodes all partial symmetries of S and they can be
computed easily and efficiently by set operations.

Permutation groups: Microtiles also unveil an algebraic
regularity model: If we restrict any pair of mappings
{ f , f−1} ∈ F that acts on a tile τ to the domain of this tile
instance, we obtain an operation that swaps two tiles τ, f (τ),
not affecting the shape of S. The set of all such permuta-
tions for all microtiles generates a group of permutations
that characterize the symmetries of the shape. Please note
that neither the transformations involved nor the input set F
has a group structure in general. By definition, the permuta-
tion group of each tile class is maximal with respect to sets
of possible permutations, and the union of tiles of the same
class are the maximal subset of S with that property.

4. Microtiles for r-Symmetry

The above definition of microtiles is still abstract; whether
the concept of microtiles is useful or not depends on the in-
put set of mappings that determine the building blocks. In
order to demonstrate a concrete application, we derive some
of properties for a microtile decomposition based on partial
r-symmetry as defined by Bokeloh et al. [BWS10].

r-Similarity and r-Symmetry

From now on, let T = E(3) be the group of rigid transfor-
mations of R3. Let Nr(x) be the spherical r-neighborhood of
x in S with respect to Euclidean distance. We first define a
local notion of equivalence by matching neighborhoods of
points: The points x and y are r-similar under a transforma-
tion T ∈ T if and only if their local neighborhoods match
under a rigid motion. We denote this by:

x r,T↔ y :⇔ T(Nr(x)) = Nr(y)

r-symmetry: This relation, which we call r-symmetry, is an
equivalence relation because E(3) forms a group and its ac-
tions are isometries with respect to Euclidean distance, i.e.,
they do not change r. In the following, let F denote the par-
tial mappings induced by the set of all pairwise r-symmetry
relations.

r-similarity: We can also use the same matching model
to compare shapes: Let S1,S2 ⊆ S be two shapes in S, with
distance larger than r, and x ∈ S1,y ∈ S2. We call S2 r-
similar to S1 if every point in S2 is equivalent to at least
one (arbitrary) point in S1. Formally:

S2 is r-similar to S1 :⇔∀y ∈ S2 : ∃x ∈ S1 : x r,T↔ y.

Obviously, r-similarity is reflexive and transitive but in gen-
eral not symmetric.

c© 2012 The Author(s)
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In the following, we will consider decomposition of sur-
faces (e.g. triangle meshes) into microtiles with respect to
r-symmetry, and we will show a number of interesting prop-
erties that these particular microtiles have. The main result
of this paper is the proof that these microtiles are a canoni-
cal description of the space of r-similar shapes to the input
shape. Before we continue, we will make further restrictions
to the input to make the further model well defined:

• S is bounded.
• S is a 2-manifold (with or without boundary).
• S is piecewise smooth; we assume a union of a finite

number of facets, each of which is a an algebraic surface
bounded by a finite set of algebraic curves.

The last point allows representations like meshes of trimmed
NURBS, which can represent (exact) rotational symmetries.
Our current practical implementation is actually based on
triangle meshes, where exact matching rules these out.

Types of Microtiles

When constructing the microtiles according to r-symmetry,
one can distinguish between two types of microtiles – those
with finitely and those with infinitely many equivalent coun-
terparts. The restrictions on the input surface to a finite
mesh of polygons or patches allow us to simplify the cases
where infinitely many transformations map a point to an r-
symmetric one. If a tile is characterized by infinitely many
transformations, then these can be represented by a contin-
uous function parameterizable in one or two dimensions.
This kind of symmetries (here r-symmetries) are analyzed
by Gelfand and Guibas [GG04] and the symmetric points
are called slippable. Thus we have two types of tiles with
respect to the size of their defining transformation sets:

• Discrete pieces: A single piece of geometry that is instan-
tiated once or more by a (finite) discrete set of symmetry
transformations.

• Slippable pieces: These pieces (and their r-neighborhood
in their instantiation) are slippable. They can be planar,
spherical, cylindrical, helical, surfaces of revolution, or
extrusions, e.g. edges (see Gelfand and Guibas [GG04]).

– Planar, spherical, cylindrical microtiles: These form
area elements, represented by a single point and its
slippage properties. They can be expanded to arbitrary
area covering the underlying primitive, but need to be
bounded by other tiles (or self-closed, for spheres)

– Helical tiles, extrusions, surfaces of revolution: These
can be expanded in one dimension, forming curve
primitives. They are either self-closed (surfaces of rev-
olution) or bounded by other tiles (helical tiles, edges).

In Figure 2 the gray-colored points are all instances of
a single class of microtiles because their r-neighborhoods

Figure 4: (r + ε)-similar surfaces must be constructed out
of r-microtiles. If not, a contradiction would arise at the
boundary, between matching (x,x′) and non-matching (y,y′)
points.

are planar. We call them 2-slippable because their set of r-
symmetry transformations can be parametrized in 2 dimen-
sions. Analogously the yellow-colored points correspond
to multiple 1-slippable classes of microtiles. For triangle
meshes, only planar 2-slippable elements and 1-slippable ex-
trusions are possible.

Complexity: The set of microtiles can be encoded with
a finite number of real parameters. For a triangle mesh, this
is easy to see. A single triangle is always described by a
finite set of different microtile classes. Inductively, adding
a triangle to a set of finite classes of tiles can only create a
finite number of new such classes, bounded by a finite graph
of straight edges. We conjecture that a similar property holds
for a mesh of general algebraic surfaces as well, but a formal
proof is beyond the scope of this paper.

5. The Space of r-Similar Shapes

In this section, we discuss how the microtiles of an exem-
plar S characterize the space of all shapes that are r-similar
to S. We discuss two different aspects: First, we show that all
such shapes can be assembled from a disjoint union of mi-
crotiles, and that this decomposition is unique (up to global
symmetries of the tiles, which has no effect). Second, we
give some necessary conditions for a shape grammar that
constrains how the tiles can possibly be fit together.

Theorem: The main result that we want to show is the fol-
lowing: Let S1,S2 be valid input surfaces in the sense of our
definition. Furthermore, let S2 be (r + ε)-similar to S1 for
ε > 0. Then S2 can be constructed (completely covered) by
a disjoint union of r-microtiles from µ(S1), using only trans-
formations from T to arrange the pieces.

Proof: Any point in S2 must correspond to a point in S1,
because of (r+ ε)-similarity. This implies we must take the
whole tile at a time (Fig. 4). Assume that this was not the
case. Let x′ ∈ S2 be a point within such a tile fragment. It

c© 2012 The Author(s)
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must be (r+ε)-similar to a point x∈ S1 under a transforma-
tion T ∈ T , i.e., T(x) = x′ . Assume x ∈ τ, where τ is the
microtile x is contained in. It always exists because the tiles
completely and disjointly partition S1. We have assumed that
T(τ) 6⊆ S2. Thus, there is a boundary within τ that separates
the part that maps to S2 from the part that does not. Let y be
a point that is not r-similar to y′ = T(y) /∈ S2. Because τ is a
connected component and T preserves connectivity within τ,
we can choose x′ (and thereby x) and y such that the distance
is smaller than ε/2. This yields a contradiction: Because of
(r + ε)-similarity of x and x′, both points x,y match under
T along with their r-neighborhood. Therefore, y and y′ must
be r-similar, contradicting the assumptions of the contrary.

Unique, disjoint construction: Let us assume that we
have two different decompositions of S2 into mircotiles from
µ(S1). This means that the tiles overlap. Let x′ ∈ S2 be a
point from such an overlap region, with tiles T1(τ1),T2(τ2).
Because of (r + ε)-similarity, T−1

1 (x) and T−1
2 (x) must be

r-similar points in S1. According to Section 3, this implies
that they are from the same tile. Thus, the overlapping tiles
T1(τ1),T2(τ2) either match up completely, under a global
symmetry of τ1 = τ2, which is possible, or we have found
a partial symmetry within a tile, which is impossible. The
same arguments also show that the tiles must be disjoint. �

Discussion: The theorem shows that (r + ε)-similar
shapes can be build out of r-microtiles, so there is a small
gap, which is required to guarantee continuity across bound-
aries. Can we close this gap? While we so far cannot show a
similar result for ε = 0, we can at least give an informal ar-
gument that the gap almost always does not matter: First, let
us assume that for the chosen value of r, the shapes of mi-
crotiles changes continuously with r. In particular, no tiles
are newly introduced or disappear for infinitesimal changes.
Then, the construction out of r- and (r + ε)-microtiles dif-
fers only by a set of points with zero measure because we
can choose ε > 0 as small as we like. The continuity as-
sumption holds for all r except from a finite set of numbers,
i.e., the likelihood of choosing a bad value of r at random
from a given, non-trivial interval is zero. The reason is that
for discontinuous changes, the regions around the discrete
boundaries of our (triangle) mesh need to connect or dis-
connect, and there is only a finite number of such events. In
practice, precision limits of a floating point implementation
will probably override these considerations anyway.

6. Towards a Microtile Shape Grammar

In addition to having a unique decomposition into microtiles,
we can constrain the construction of r-similar shapes further.
We will now show that we cannot only learn the tiles from
the exemplar, but also some rules of how these can possibly
be assembled. We first have to define boundaries of a tile:

Let τ1,τ2 be two instances of microtiles of different type.

Figure 5: Microtiles can only be assembled with pairwise
adjacency relations as in the exemplar (left).

The boundary b between τ1,τ2 is the set of points that have
distance zero to both τ1,τ2, i.e., b = τ1 ∩ τ2, where the bar
denotes set closure. Because we assume manifold input, and
tiles are disjoint, the boundaries are (multi-)curves (possibly
consisting of multiple fragments). Only two tiles can share
a common curve except from isolated points that can be a
boundary to more than two tiles.

We now show that tiles can only be assembled along
boundaries that have been observed in the exemplar. We have
the following theorem:

Theorem: Let S2 be (r + ε)-similar to S1. Let τ1,τ2
be two different instances of r-microtiles of S1. Let τ

′
1 =

T1(τ1),τ
′
2 =T2(τ2),T1,T2 ∈T be instances of tiles of these

two types in S2, i.e., τ
′
1,τ
′
2 ⊂ S2. Let τ

′
1,τ
′
2 share a com-

mon boundary b′. Then, there must exist instances of τ1,τ2
in S1 that share a boundary b. Furthermore, we can always
find a pair of instances τ1,τ2 ∈ S1 such that T1 = T2 and
b′ = T1(b).

Proof: We show that b ⊂ S1 must exist (Fig. 5) with ar-
guments similar to the proof of the previous theorem. We
know that τ

′
1⊂S2 corresponds to one or more tiles in S1. Let

x′ ∈ τ
′
1 and y′ ∈ τ

′
2 be two points, both with distance less than

ε/2 to the boundary b′. Because S2 is (r+ ε)-similar to S1,
x′ and its (r+ε)-neighborhood map to a point x ∈ S1 which
is contained in one of these tiles. Let τ1 denote this tile,
and T−1

1 ∈ T denote the mapping. Because of the (r + ε)-
similarity, Nr(x′) and Nr(y′) are both mapped back to S1 un-
der T−1

1 . As before, this implies that T−1
1 (τ′2)⊂S1 is also an

instance of the microtile τ2 (otherwise, we would have found
a partial symmetry of τ2). Therefore, we have constructed a
pair of corresponding tiles with T1 = T2, which implies that
the boundary b = T−1

1 (b′) exists in S1. �

This shows that we can learn restrictions how to con-
nect microtiles from the exemplar: We can collect all bound-
aries along which microtiles are neighboring in the exem-
plar S1 and allow only these combinations for building new
shapes. For discrete microtiles, this is straightforward (we

c© 2012 The Author(s)
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just need to enumerate the observed combinations). For con-
tinuous microtiles, the situation is more complicated: con-
tinuous tiles can be neighboring to themselves. For exam-
ple, the tile of a plane consists of a single point only; fi-
nite pieces are formed by collections of points. This implies
that continuous microtiles that have themselves as neigh-
bors (which actually can be expected to be almost always
the case) can be extended to form arbitrary kinematic sur-
faces of the type the tile corresponds to (planes, spheres,
helical surfaces, etc). The only constraint is the boundary:
The continuous tile must be bounded by observed bound-
aries to tiles of other types, which again can be continuous
or discrete (the sphere type is an exception, because we can
form a closed sphere, which is a bounded set that respects
the neighborhood rule). Any combinations of these bound-
aries are possible, as long as the adjacency of the boundary
elements themselves is compatible as well. As an example,
consider a flat wall with a single window in it that forms
a single tile. This means, that in a newly constructed shape,
we can insert an arbitrary number of windows into the plane,
rotated and translated arbitrarily, as long as their distance is
larger than r.

Discussion: The rules are necessary for assembling (r+
ε)-similar objects, but not sufficient. Following the (infor-
mal) arguments of Bokeloh et al. [BWS10], we conjecture
that our rules of assembling microtiles according to previ-
ously observed “docking sites” are sufficient for creating r-
similar objects, leaving only a gap of ε in the class of shapes
described. However, a formal proof is subject to future work,
as well as a constructive characterization of a shape grammar
that can directly create new objects.

7. Computation of the Decomposition

We now describe an algorithm that computes the microtile
decomposition of a manifold triangle mesh in polynomial
time. We start with the abstract algorithm; its correctness and
a concrete prototype implementation are discussed in Ap-
pendix A and B. Following Mitra et al. [MPWC12], we pro-
ceed in three stages: feature extraction, aggregation and
extraction.

Feature Selection: We cannot test infinitely many trans-
formations as they appear in slippable regions. Therefore,
we first perform slippage analysis for all r-neighborhoods
[GG04]. Afterwards, we ignore slippable regions in the
remaining computation. Then, we compute line fea-
tures [BBW∗09]. For a triangle mesh, this is the subset of
the edges with adjacent non-coplanar faces. We then gen-
erate candidate transformations by matching line features.
We discuss how the transformations should be computed in
Appendix A.

Aggregation: For each candidate transformation T and its
inverse we match the whole scene S against T(S). An exact
algorithm would compute an intersection of the two meshes
(in practice, we will resort to an approximation, as discussed
in Section B, using voxels rather than triangle fragments as
representation [BWS10]). For each matching fragment, we
record the matching element and the transformation indices
in a table. After all transformations are processed the table
encodes all detected partial r-symmetries for the shape.

Extraction: We extract a segmentation of the input scene
into microtiles by region growing starting at an arbitrary
(non-processed) element and expanding the current tile with
elements that have the same set of symmetry transforma-
tions. We use the table we computed in the previous step
to look up the transformations that map the geometry to
r-symmetric parts of the surface. After the initial segmen-
tation, we compute the equivalence classes of points (the
cliques discussed in Section 3 and Figure 3). We transform
the voxels that belong to a given microtile, and search in the
overlapping voxels for the equivalent microtile instance.

8. Practical Experiments

We have implemented a simple prototype of the algorithm
outlined above. We follow the method of [BWS10] and use
a volumetric grid to discretize the symmetry information:
cubes of side length h are annotated with transformations.

We have applied our prototype implementation to a few
scenes to visualize the structure of the decomposition. For
the tests we set the radius of symmetry to 0.008 (Figure 6)
or 0.016 (all other tests) of the diagonal of the bounding
box of the scene. The voxel size was set to 1/512 of the
diagonal (1/256 for Fig. 8). To prevent errors due to coarse
discretization, classes of microtiles were computed only for
microtiles larger than 32 voxels. Very small tiles usually in-
dicate places where a finer discretization is required and we
could not reliably compute the equivalence classes of such
microtiles. Computing of the candidate transformations and
the table that stores the set of transformations for each voxel
are implemented in parallel. All test were performed on a
single Intel Core 2 Quad Q9400 CPU with 4 cores running
at 2.66GHz.

Fig. 6 shows a very simple test scene composed out of
boxes. The left hand side shows a scene of three different
shapes, decomposed simultaneously. On the right, a simpler
scene of independent boxes is decomposed. For these sim-
ple scenes, we obtain accurate results up to the resolution
of the discretization. In Fig. 7, we apply the algorithm to
more complex meshes of architectural objects. We depict 2-
slippable tiles in gray, 1-slippable in yellow (irrespective of
the class), and only show the large tiles, as explained above.
The corresponding unassigned area is shown in dark gray.
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The computed decompositions are in most regions qualita-
tively correct, however, the grid-discretization leads to cer-
tain variations at the boundary. We observe some unassigned
area, but its diameter is below r in all of the examples. Be-
cause the voxel-discretization does not permit a 1 : 1 map-
ping, boundaries show some variability within voxel reso-
lution (particularly visible at the sides of the courthouse).
Furthermore, rotational patterns are numerically problem-
atic (e.g., oversegmentation of the steps of the staircase).
Similar results are obtained for the models in Figure 8. We
compare our results to the previous method by Bokeloh et
al. [BBW∗09], which is computationally mostly similar but
uses (as most others) simple region growing for segmen-
tation. The method is similarly susceptible to discretiza-
tion and boundary artifacts. It does not capture all sym-
metries, but samples prominent representatives due to the
area/instance ratio heuristic employed. Global symmetries
of the steps are detected, which do not affect the microtiles
but are obtained implicitly with our new approach.

Our implementation is only intended as a proof of con-
cept, but there are some direct applications: We can deter-
mine whether two shapes are r-similar, by matching their
respective microtiles. The three box-sculptures in Fig. 6 are
made of the same tiles, except from the leftmost, which con-
tains one extra, unique tile, colored violet. Similarly, the iso-
lated tower at the left of the castle in Fig. 7 is r-similar to
the castle, which contains additional tiles. A further exam-
ple is demonstrated in Fig. 8 (right). A sequence of models
with increasing complexity is decomposed into microtiles,
revealing the redundancy in the model collection.

The runtime of the decomposition is still rather large, as
the algorithm performs all pairwise comparisons explicitly.
Small test scenes compute in a few minutes, medium com-
plexity scenes such as the castle require 1 hour (see Fig. 2,7).
Both the number of features and the required resolution for
representing the symmetries are limiting factors, and both
act quadratically on the run-time.

9. Conclusions and Future Work

We have presented a formal model for decomposing a model
into building blocks when we have correspondences that
identify equivalent surface points. The basic idea is very sim-
ple: we group all connected points that are mapped by the
same set of mapping functions. Nevertheless, the decompo-
sition has a number of remarkable properties. As an abstract
decomposition, it is a unique, disjoint partition that encodes
all consistent matches of subsets of the input surface. Apply-
ing it to the concrete correspondence model of rigid matches
of local neighborhoods, we get the even stronger result that
the tiles of the decomposition are sufficient to uniquely con-
struct any model that is similar to the decomposed one in this
sense.

Discussion: We see two main application areas where our
approach is of utility. First, it provides a canonical represen-
tation of redundancy in shapes. With respect to given cor-
respondences, we can consider the microtiles as elementary
units. This has obvious applications in shape compression
and could be used to analyze collections of shapes for sim-
ilarity. In addition to relating the tiles themselves, the rela-
tive arrangement of the tiles could probably, in future work,
be used to characterize geometry independent of the actual
geometry. The second application area is inverse procedu-
ral modeling, where we can characterize the space of shapes
that is locally similar to an exemplar.

Limitations and future work: Our current practical im-
plementation is limited to exact input. Even for synthetic tri-
angle meshes, the method is not very robust; in particular
a rotational matching of local features can lead to artifacts.
Unlike the approach of Bokeloh [BWS10], which uses a sim-
ilar computational framework, we are very dependent on not
missing any pairwise matches, as this directly impacts the
results. We think that an approximate formulation of fitting
a consistent decomposition to presumably noisy or ambigu-
ous data would be the appropriate approach to overcome
these problems (the obvious alternative, exact mesh inter-
sections, would be complex and costly, and almost any real-
world 3D model would still break the assumptions). Incor-
porating some of the ideas of Lipman et al. [LCDF10] might
be one avenue towards a more robust computation. Finally,
unlike Bokeloh et al.’s representation [BWS10], our assem-
bly rules do not yet lend themselves to automatic modeling.
So far, we have necessary but not yet sufficient conditions
for (r + ε)-similarity. Furthermore, the resulting rules form
a pairwise jigsaw-puzzle so that the automated assembly is a
hard combinatorial problem. In future work, we would like
to improve the characterization of the grammar and study
algorithms for solving the resulting assembly problems. In
particular, there might different choices of rich enough sub-
sets of all r-similar shapes that permit an efficient assembly.
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Appendix A: Correctness of the Tile Extraction Algorithm

The algorithm outlined in Section 7 computes a correct microtile
decomposition if there is no rigid transformation T ∈ T such that
points on different microtiles of the output are r-symmetric under
T. In other words we need to compute all transformations that can
map two r-regions on S symmetrically.

There are three cases of r-neighborhoods, that we need to con-
sider. They can be 2-slippable, 1-slippable or non-slippable. The
2-slippable surfaces on a triangle mesh can only be planes. They
are characterized by a single microtile, and we check for its exis-
tence in the input model during slippage analysis. If a point on a
triangle mesh is 1-slippable, then its r neighborhood contains one
or more edges, that are parallel to the line features of S. Even
though 1-slippable microtiles are mapped by infinitely many trans-
formations to symmetric tiles, it is possible to consider segments
of non-zero lengths instead of the infinitely small microtiles. De-
tecting discrete symmetries between such segments allows to de-
compose the 1-slippable microtiles. To this end, we need to com-
pute all transformations that map pairs of line features to each other
(s. [BBW∗09]). It remains to find all transformations that map non-
slippable r-neighborhoods symmetrically. Observe that any such re-
gion has to contain at least two non-parallel edges (line features).

Transformations that map pairs of non-parallel line features have to
align the center of the shortest line segment between the two lines
and the line directions. These transformations can be computed by
exhaustively checking all possible pairs of features at distance no
more than r from each other.

Appendix B: Implementation Details

A straightforward implementation of the abstract algorithm is quite
slow because of the large amount of initial candidate transforma-
tions that need to be processed. Therefore, we try to discard can-
didate transformations as early as possible. We ignore transforma-
tions between corner features that fail to align all edges meeting at
the corner. We discard duplicate transformations, and those that map
corner points that are not r-symmetric. If a transformation matches
two line features, we only consider it as a valid candidate if all 1-
slippable voxels along the shorter feature a mapped to symmetric
(1-slippable) voxels along the longer feature.

The voxel- and feature-based approach has some drawbacks we
need to address: The precision of the decomposition is limited by
the discretization of the scene. Because of that, equivalent microtiles
will be decomposed in different ways, and will have a slightly differ-
ent voxel representations. We are therefore unable to directly com-
pute the equivalence classes or cliques on per-voxel basis. After
an initial segmentation based on pairwise matching, we compute
the classes of equivalent microtiles. We transform the microtiles
with each of the r-symmetry transformations to find their equivalent
counterparts. Because a single tile will overlap multiple other parts,
we gather votes from the overlapping voxels and select the tile that
is most similar in terms of size and set of symmetry transformations.
This approach relies on a fine discretization. Another practical issue
is related to the precision with which we can compute the matri-
ces for the actual transformations. Because we align each of them
at a single corner feature, the mapping becomes imprecise with the
distance to the feature. In combination with the voxel quantization,
the result is that near tile borders, r-symmetry detection becomes
inconsistent and the set of transformations for many of the voxels
is incomplete. This shows up as a large amount of small microtiles,
that make further extraction of the equivalence classes virtually im-
possible. We address this problem by a filter: near tile boundaries,
we merge small tiles to neighboring larger one, whenever the voxel
distribution and set of transformations of the smaller one suggest
that it can be a part of the larger tile. We never discard a tile that has
at least one voxel completely surrounded by voxels on the same tile.
This ensures that the area we filter will converge to zero if the voxel
size does so.
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