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Abstract

Assembling fragments from known protein structures is a widely used
approach to construct structural models for new proteins. We de-
scribe an application of this idea to an important inverse kinematics
problem in structural biology: the loop closure problem. We have
developed an algorithm for generating the conformations of can-
didate loops that fit in a gap of given length in a protein structure
framework. Our method proceeds by concatenating small fragments
of protein chosen from small libraries of representative fragments.
Our approach has the advantages of ab initio methods since we are
able to enumerate all candidate loops in the discrete approximation
of the conformational space accessible to the loop, as well as the
advantages of database search approach since the use of fragments
of known protein structures guarantees that the backbone confor-
mations are physically reasonable. We test our approach on a set of
427 loops, varying in length from four residues to 14 residues. The
quality of the candidate loops is evaluated in terms of global coor-
dinate root mean square (cRMS). The top predictions vary between
0.3 and 4.2 Å for four-residue loops and between 1.5 and 3.1 Å for
14-residue loops, respectively.
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1. Introduction

Inverse kinematics is classically defined as the process of char-
acterizing the geometry of an open kinematic chain composed
of rigid links, given the position of its end points. This process
arises often in robotics, where it is reformulated as comput-
ing the geometry of a closed chain system corresponding to
a given end-effector configuration. Examples of closed sys-
tems include reconfigurable robots (Kotay et al. 1998), as well
as closed chains formed by multiple robots grasping an ob-
ject (Khatib et al. 1996). Many problem-specific solutions to
the inverse kinematics problems on closed chain systems have
been developed (see, for example, Zhao and Badler 1994; Deo
and Walker 1995; Nielsen and Roth 1999; Tolani, Goswami,
and Badler 2000; Park, Chang, andYang 2003;Wampler 2004;
Wang and Chirikjian 2004; and references therein). Interest-
ingly, computational chemists and structural biologists im-
plicitly solve the same problem in their attempts to model the
structure of a cyclic molecule, or to define the conformation of
a molecular segment whose end-points are geometrically con-
strained (Manocha and Zhu 1994; Manocha, Zhu, and Wright
1995). In this paper we consider the latter problem for protein
segments, often referred to as the loop closure problem.

Detailed knowledge of the tertiary structure of a protein is
required for an understanding of its biological function. Ex-
perimental data at atomic resolution can usually be obtained
by X-ray crystallography and/or nuclear magnetic resonance
techniques. It is not feasible however to determine experi-
mentally the structure of the millions of proteins whose cor-
responding genes have been sequenced as part of the multiple
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genome projects. This has resulted in the appearance of a
large number of protein structure modeling techniques. Al-
though considerable theoretical effort has led to progress in
recent years (Bonneau and Baker 2001; Moult et al. 2003),
successfulab initio protein structure prediction from the pro-
tein sequence alone does not appear imminent. As an alter-
native to these theoretical approaches, there is hope that bi-
ologically useful models can be derived by inference from
the databases of known protein structures. This hope is based
on the common knowledge that proteins with homologous se-
quences share similar structures. In such cases, models for the
unknown structure of a new protein (the target) can be derived
from the structure of a homologous protein (the template) us-
ing comparative modeling techniques (Browne et al. 1969).
Figure 1 provides a simple overview of comparative model-
ing. It starts from the alignment of the sequences of the target
and template proteins. Parts of the template structure corre-
sponding to conserved regions in this alignment are copied,
defining the three-dimensional framework for the structure of
the target protein. The variable regions in the alignment cor-
respond to the gaps in the framework. These are usually the
results of substitutions, insertions and deletions of residues be-
tween members of the same structural family, and frequently
correspond to exposed loop regions that connect elements of
secondary structure in the protein fold. Thus, the problem of
filling the gaps in the framework is often referred to as the loop
closure problem. It is worth noticing that as the framework is
not exact, we are only looking for approximate solutions to
this problem. In testing the fitness of a candidate loop in a gap
of the framework, a tolerance of 1 Å in the positions of its end
points is usually considered acceptable. This 1 Å should be
compared to the length of each link of the loop, i.e., 3.8 Å.

Many loop building procedures have been described.Anal-
ogously to the prediction of whole protein structures, these
methods can be divided intoab initio methods, and database
search techniques. Theab initio loop building is based on
a conformational search, often guided by a scoring or en-
ergy function. The search can be deterministic. Analytical
loop building dates back to the pioneering work of Go and
Scheraga (1970). It is possible to predict the conformation
of short constrained segments by solving a set of algebraic
equations that describe the geometry of the system (Go and
Scheraga 1970; Bruccoleri and Karplus 1985; Palmer and
Scheraga 1991; Manocha and Canny 1994; Manocha, Zhu,
and Wright 1995; Wedemeyer and Scheraga, 1999). Unfortu-
nately, this statement does not extend to loops with more than
six degrees of freedom (Go and Scheraga 1970; Palmer and
Scheraga 1991). Even under the assumption of rigid geome-
try, i.e., keeping idealized bond lengths and bonds angles, this
sets the limit of analytical methods to loops of two residues
or less. Building longer loops relies therefore on heuristics,
and sampling becomes a critical issue.Ab initio methods for
building long loops should provide many different closures
which sample a large conformational space (C-space) such as

to maximize the probability that the correct (or very close)
structure is included. Complete sampling of long loops re-
quires that the C-space be discrete. Usually, a restricted set of
(�,�) torsion angles is used to approximate all possible con-
formations. The search is then performed either using uniform
sampling, or biased sampling based on the known population
of the(�,�)maps (Bruccoleri and Karplus 1985; Moult and
James 1986; Dudek and Scheraga 1990; Deane and Blun-
dell 2000). Various methods have been developed to optimize
the initial loops obtained through these sampling procedures.
These include molecular dynamics simulations (Bruccoleri
and Karplus 1990), Monte Carlo searches with simulated an-
nealing (Collura, Higo, and Garnier 1993; Carlacci and Eng-
lander 1993), dynamic programming (Vajda and DeLisi 1990;
Finkelstein and Reva 1992), genetic algorithms (McGarrah
and Judson 1993; Ring and Cohen 1994), bond scaling with
relaxation (Zheng et al. 1993a, 1993b; Rosenbach and Rosen-
feld 1995; Zheng and Kyle 1996), and multicopy searches
(Zheng et al. 1994). Other optimization methods have been
directly derived from robotics (see, for example, Lavalle et al.
2000). Shenkin and colleagues described a “random tweak”
algorithm based on the Jacobian matrix of first derivatives
of distances between atoms of the terminal residues of the
loop, with respect to its degrees of freedom (Fine et al. 1996;
Shenkin et al. 1987). In their method, all the torsion angles of
the loop are modified together in each step of the iteration pro-
cess, until the distance constraints between the end residues
are satisfied. Canutescu and Dunbrack (2003) have recently
proposed an improved version of that method, in which the
degrees of freedom are varied one at a time, using the cycle
coordinate descent (CCD) algorithm (Wang and Chen 1991).

The wealth of information available on protein structures
makes the protein loop closure problem different from stan-
dard inverse kinematics problem. As of today the Protein
Databank (PDB; Bernstein et al. 1977; Berman et al. 2000)
contains more than 20,500 experimentally determined pro-
tein structures. This has led to an alternative approach toab
initio loop building that searches this database for loop can-
didates, based on geometric fitness criteria. This method was
originally introduced by Jones and Thirup (1986) to facilitate
model building for crystallographic refinement by selecting
protein fragments to fit in the electron density map. Methods
of this type have the advantage of guaranteeing rapid results
that have physically reasonable conformations. However, Fi-
delis et al. (1994) concluded that the use of segments from the
PDB was useful only for loops up to a length of four residues,
as the completeness of the database degrades rapidly with in-
creasing length. Recent studies have shown that this limit can
be extended to longer loops (nine residues based on the van-
Vlijmen and Karplus 1997 study, and 15 residues according
to Du, Andrec, and Levy 2003), due to the enormous increase
in the PDB in the last years.

In the present study, we develop a method for protein loop
building that combines the two basic approaches described
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RDS   CGSTCYWSSDVSAAKAKGYSLYESGDTIDD--YPHEYHDYEGFDFP
FUS   CGSTNYSASQVRAAANAACQYYQNDDTAGSSTYPHTYNNYEGFDFP

A)

B) C)

Fig. 1. Homology modeling of the Ribonuclease F1 from fusarium monoliforme (FUS). RF1 is a small protein of 106 residues
whose structure is known (PDB code 1FUS). A toy experiment designed to predict the structure of RF1 proceeds via a number
of steps. (A) The identification of an homologue of the known structure (the “template”). The sequence of FUS is found to
be similar to the sequence of Ribonuclease MS from molsin (RDS) (Fasta E-value: 1e-22; 57,8% sequence identity in 102
amino acid overlap). The sequence alignment between FUS and RDS is compared to the structural alignment between their
corresponding structures, 1FUS and 1RDS (shown as gray and black, respectively). The structural alignment was computed
using STRUCTAL (Subbiah, Laurents, and Levitt 1993). For the sake of clarity, only the region between residues 20 and 50
of FUS is shown. Conserved regions in the sequence alignment correspond to conserved regions in the structural alignment
(coordinate root mean square (cRMS) = 0.8 Å over 102 residues). The two structures differ in the loop region between two
secondary structures (highlighted in bold in the sequence alignment). The loop in FUS is longer by two residues. (B) Building
the framework. A framework for FUS is built by using the backbone regions of RDS corresponding to the conserved secondary
structures. The framework has a gap of nine residues. The position of the three residues preceding and following the gaps are
marked with balls centered at theirCα. These residues define the “stems” of the loop to be modeled. (C) The loop building
process. Fragments of nine residues with proper end-to-end geometry are either selected from a database of protein segments,
or built using small libraries of protein building blocks. The dashed loop is the correct, native loop, while the gray and white
loops are the best loops derived from the database (5.6 Å) and through construction (2.7 Å), respectively. Once a protein
segment is selected to fill the gap, the side chains are added to yield a full atom model for the target protein FUS. This figure
was generated using MOLSCRIPT (Kraulis 1991).
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above. Followingab initio procedures, we include an exhaus-
tive search of a discretized version of the C-space. We rep-
resent the candidate loops as a sequence of rigid building
blocks that are concatenated without any degrees of freedom.
Following the database approach, the building blocks are cho-
sen from libraries of short protein backbone fragments, which
represent protein chains accurately, and are economical, i.e.,
of low complexity (Kolodny et al. 2002). To mitigate combi-
natorial explosion, the procedure simultaneously builds two
parts of the loop by starting from both ends of the gaps in the
framework, and tests for closure where the two parts should
join. The coarseness of the sampling is defined by the size of
the library of fragments used to build the loop. In principle,
this method combines the advantage of exhaustive enumer-
ation, with the ability of the database approach to generate
segments that are locally physically reasonable.

The paper is organized as follows. In Section 2, the tech-
nique is described in detail, as well as the criteria used for test-
ing. Section 3 provides a comparison of the results of simple
database searches for candidate loops, with the exhaustive set
of loops generated with our fragment-based approach, based
on the modeling of 38–40 loops of known structure at each
length from four to 14 residues.A concluding discussion ends
the paper.

2. Methods

In this section, we describe two approaches for generating the
conformation of candidate loops that satisfy given end-to-end
constraints. The first approach searches through a database of
protein fragments of appropriate size for those that satisfy the
constraints, while the second approach builds systematically
an ensemble of loops obtained by concatenating short protein
fragments. Note that we are interested in the generation of
the loops, and not in the subsequent step of selecting hope-
fully native-like conformations. We only check for geometric
matching (i.e., satisfaction of the end-to-end criteria) and ig-
nore any possible collision of the loop with the rest of the
protein, or with itself.

2.1. Database Approach to the Protein Loop Closure
Problem

We follow a procedure similar to that of Jones and Thirup
(1986) and Summers and Karplus (1990). A conformational
filter is designed to screen a protein crystal structure database
for possible segments. The filter consists of the set ofCα–
Cα interatomic distances generated from the threeCα atom
positions immediately preceding and following ann-residue
gap in the protein of interest (note that this filter is sequence-
independent). It includes 15 target distances (TDn). The pro-
tein database consists of high-quality, non-homologous, X-ray
structures (R < 2 Å). This representative subset is a selec-
tion of ungapped protein domains with a BLAST (Altschul

et al. 1990) 0.0001 level of sequence similarity; that is, the
similarity between any two sequences in this subset has an ex-
pectation value (E value) greater than 0.0001. It includes 3307
protein domains from SCOP 1.63 (Murzin et al. 1995), and
can be retrieved from the ASTRAL compendium (Brenner,
Koehl, and Levitt 2000; Chandonia et al. 2002).

Possible segments that fit in the gap under study are
obtained by computing the root-mean-square deviation,
RMS(n, P, S), between the set of target distancesTDn and
the equivalent set of distancesRNn(P, S) for everyn + 6
residue segmentS in each proteinP in the database (Sum-
mers and Karplus 1990):

RMS(n, P, S) =
√∑15

i=1 (TDn(i)− RNn(P, S)(i))
2

15
. (1)

This subset is filtered by removing all segments with RMS
values exceeding 1 Å. The selected segments must also match
specific conformational restrictions related to the sequence
of the gap. Fragments in which the conformation of a non-
Gly residue in the gap is defined by (� > 0, � < 0)
are eliminated. Similarly, Pro residue conformations are re-
stricted to�Pro ∈ [−90◦,−30◦] and�Pro ∈ [−85◦,0◦] or
�Pro ∈ [115◦,175◦], and residuesX preceding a Pro must be
characterized by�X ∈ [−210◦,−30◦] or �X ∈ [30◦,90◦],
and�X ∈ [60◦,180◦] (Summers and Karplus 1990). If none
of the segments verifies all these criteria, the next segment
(in terms of root mean score) are considered until at least one
possible segment is found.

2.2. Generating Loops Using Libraries of Small Protein
Fragments

2.2.1. Protein Structure Building Blocks

The approximations we use for loop structures are based on
libraries of commonly observed, yet geometrically diverse,
fragments of protein backbone. The fragments we consider
are five amino acids long, and are represented by the three-
dimensional coordinates of theirCα atoms. We employ li-
braries ofL = 20, 40, 60, 80 and 100 fragments. The libraries
are compiled by clustering (non-overlapping) fragments from
200 high-resolution structures of protein domains, based on
their geometric similarity, and then selecting one represen-
tative per cluster. We use the cRMS as a geometric similar-
ity measure of two fragments. The cRMS is computed after
optimal superposition of the two fragments in three dimen-
sions (Kabsch 1976). This work has been described in detail
(Kolodny et al. 2002). Note that the fragment libraries do not
contain any information about the sequence of the proteins
from which they were built. These libraries were originally
designed to represent entire protein structures.
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2.2.2. Loop Generation

Protein loops of any length can be constructed by concatenat-
ing library fragments. Depending on loop length, we use two
different strategies, as follows.

Strategy A: unidirectional construction (for short loops).
Candidate loops are built by concatenating fragments from
the library. The position of each new fragment is determined
by best superimposing its first threeCα atoms onto the last
threeCα atoms of the chain already constructed. Even if the
twoCα triplets do not match perfectly, this defines the relative
orientation of the fragments uniquely, provided that the atoms
of the triplets do not lie along a line. Figure 2 illustrates this
procedure on a two-dimensional example. We emphasize that
the library fragments are used as mere templates; any fragment
can be used repeatedly along the constructed chain. Most of
the loops constructed using this scheme will not allow closure.
However, since the number of possible fragments is finite, we
can enumerate all loops of the appropriate length, and filter
the ones that reach loop closure. Notice that, due to the noisy
nature of experimentally determined structures, loops need
only to be approximately closed; we allow a 1 Å tolerance in
the atomic position. There are several (essentially equivalent)
ways for enumerating all loops of lengthl. We can construct
systematically all chains ofl+4 atoms and select the ones that
fit in the gap of the framework.Alternatively, we can construct
a chain ofl + 5 atoms, starting from the anchor points on the
N-terminal side of the gap in the framework, and test the
position of the last two atoms of the chain, with respect to
the position of the first two anchor points of the stem at the
C-terminal side of the loop. The fragments encode common
angles of protein structure; the rotational angles in chains built
from the library fragments are “protein-line” or common in
the PDB. Overlapping the last two atoms guarantees that the
angle at the attachment point is “protein-like” too. A two-
dimensional analog of this option is depicted in Figure 2. The
total numberN of chains of lengthl to consider is

N = L�l/(f−3)�+1, (2)

whereL is the number of fragments in the library andf is the
size of the fragment (five in this study; Kolodny et al. 2002).
Only a small fraction ofN corresponds to valid loops, i.e.,
chains that solve the loop closure problem. Note that the same
strategy can be used to construct a loop from the C-terminus
toward the N-terminus.

Strategy B: bidirectional construction (for long loops).
While strategy A is well adapted for short loops (l < 9),
it fails for longer loops because of the combinatorial explo-
sion in the numberN of chains to generate (see eq. (2)). One
solution to overcome this problem is to generate half-loops
starting from the two stems in the framework, and then as-
semble the half-loops that (approximately) overlap at their
end points. Using this procedure, we enumerate chains of
length half the length of the loop, resulting in a reduction

Library of 4 fragments, 4 residues each

(A) (B) (C) (D)

(1) A

(2) AC

(3) ACD

(4) ACDA

(1) A

(2) A . . D

(3) AC . . D

(4) AC . . BD

Strategy A

Strategy B

Nter

Nter

Cter

Cter

Fig. 2. Loop construction using a library of fragments. For
clarity, we consider a two-dimensional example in which
we build a seven-residue loop from a library containing four
fragments, each four residues long. The stems of the loop
in the framework are shown with dashed lines (two anchor
points on each side), and labels Nter and Cter, corresponding
to the N-terminal and C-terminal ends of the loop, respec-
tively. Strategy A: construction of the loop starts from the
left anchor points. In each extension, the first two residues of
the new fragment (picked from the four fragments A, B, C or
D in the library) are superimposed on the last two residues
of the loop. In the example shown, the loop ACDA ends
(approximately) on the first right-hand anchor point. Strategy
B: the loop is built from both side of the gap in the framework.
In the example shown, the last residue of extension AC and
the first residue of extension BD (approximately) overlaps.
Notice that library fragments can be reused, and that the
chain has a direction. In the two-dimensional case shown
here, positioning a a newfragment on an existing extension
requires two residues, and loop closure is checked over
one residue. In three dimensions, positioning requires three
residues, and loop closure is checked over two residues.
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of the running time by a factor of 2 in the exponent. Two
half-loops meet when the last twoCα atoms of the first half-
loop are approximately positioned on the first twoCα atoms
of the second half-loop. Overlapping two atoms, guarantees
that the positioning of the residues around the meeting point
has “protein-like” structure.A two-dimensional analog of this
type of construction is described in Figure 2. Clearly, storing
all half-loops is impractical. Instead, we generate loops using
three steps, as follows.

1. Mark all positions in space that are end points of the
last twoCα atoms of a half-loop generated from the
N-terminal stem. Since the data points are noisy, vox-
els with 1 Å resolution suffice to describe the three-
dimensional space. The amount of memory used to
store these end pairs can be further reduced if we take
into account the fact that the distance between two con-
secutiveCα atoms is fixed.

2. Enumerate all half-loops generated from the C-terminal
stem, and store those that are part of a valid loop. These
are the half-loops with end points that fall in the same
voxel as previously marked positions. These marked
points are flagged as “valid”.

3. Regenerate the first half-loops corresponding to the
“valid” marked points, and assemble the loops.

We implemented both methods and observed similar re-
sults for short loops.

2.3. Accuracy of Loop Predictions

There will generally be a range of accuracy in predicting loop
conformations for different loops. It is therefore necessary to
assess the quality of a method by testing it on a large selection
of loops. Our test set, which we refer to as the SALI set,
contained 427 loops selected from the list reported by Sali
and co-workers (Fiser, Do, and Sali 2000). The length of the
loops ranges from four to 14 residues. The initial SALI set
contained 40 proteins for each loop length; it was filtered to
remove proteins that are now considered obsolete in the PDB.
The residue numbers that define the target loops were taken
from Fiser, Do, and Sali (2000).

The accuracy of a single loop prediction is measured by
comparing it to its native conformation. A large variety of
criteria for comparing loop conformations exist. They range
from cRMS measures on different sets of atoms (Cα only, or
all main-chain atoms), to dihedral angle and dihedral angle
class comparison. In this study, we rely on cRMS, computed
over Cartesian coordinates. Our measure is equivalent to the
“global” RMS defined by Fiser, Do, and Sali (2000). It is com-
puted by finding the optimal superposition (Kabsch 1976) of
the stem residues of the test loop and native loop, respectively,
and summing the subsequent differences in the positions of

theCα of the two loops. The global RMS provides both a mea-
sure of the local fitness of the candidate loop with respect to
the native loop, and a measure of the quality of its positioning
in the framework.

3. Results

Here, we test two different methods for protein loop building
based on information extracted from known protein struc-
tures. The first approach searches a database of protein struc-
tures for loop candidates of the correct size, and evaluates
these candidates based on geometric fit of their flanking
residues (“stem residues”). In the second approach, we ex-
plore systematically a discrete approximation of the confor-
mational space accessible to the loop considered. In this ap-
proximation, protein loops are built from small libraries of
protein fragments of five residues. These libraries have been
shown to provide good approximations of protein structures
(Kolodny et al. 2002). Both approaches are tested on 427 tar-
get loops, varying in length from four residues to 14 residues.
We are concerned with the sampling properties of our loop
building procedures. Note that the tests described in this study
do not reproduce real homology modeling experiments as we
use the native conformation of the protein as the framework
to build the loop.

3.1. Selecting Loop Conformations from a Database of
Protein Structures

We use a non-redundant subset of SCOP1.63 domains as a
database for searching candidate template loops that fit in a
given target loop (see Section 2 for the definition of the non-
redundant subset). To test the completeness of this database,
we plot in Figure 3, for all target loops, the cRMS of the
five best-fitting template loops. Since most of the proteins of
our test set are present in our database, the search of can-
didates for each target loop was performed over segments
from proteins unrelated to the target protein (i.e., such that
the FASTA E-value for the alignment of the corresponding
sequences is greater than 0.01). There are large variations in
the quality of the best-fitting loops between target loops of
the same length. For example, the five best-matching loops
for the eight-residue loop at position 50-57 in 1BTL (a beta-
lactamase fromE. Coli) are better than 1.5 Å, whereas for the
eight-residue loop at position 606-613 in 1GOF (an oxydore-
ductase fromdactylium dendroides), none of the database-
derived loops is better than 4.6 Å (see Figure 4). The native
loop at position 50-57 of 1BTL resembles an antiparallelβ-
sheet, with a short end-to-end distance (7.48 Å between the
Cα of residues 49 and 58). Our database search selects pro-
tein segments that consistently share the same geometry as
the native loop. The native loop at position 606-516 of 1GOF,
on the other hand, has a coil conformation, with an end-to-
end distance of 14.2 Å. Many types of protein segments of



Kolodny et al. / Inverse Kinematics in Biology 157

 4  5  6  7  8  9 10 11 12 13 14
0

2

4

6

8

10

12

14

Loop length

cR
M

S
 (

A
)

o

Fig. 3. For all 427 target loop searches, the five best template loops extracted from unrelated proteins are shown. Results are
sorted according to loop length. Every column represents one target loop. The dashed line plots the average best cRMS values
as a function of the loop length, where the average is computed over all loops of a given length.

1BTL (50-57) 1GOF(606-613)

Fig. 4. Modeling of medium-sized loops (eight residues in length). For both proteins, the native conformation of the loop is
shown as a dashed line, and theCα trace of the five best template loops are shown as solid lines. The cRMS of the five best
template loops for 1BTL range from 0.56 to 1.41 Å, while the five best template loops for 1GOF are spread between 4.5 and
5.76 Å. This figure was generated with MOLSCRIPT (Kraulis 1991).
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length eight residues could fit in this gap. The diversity of the
selected template loops is larger, and these loops are of lower
quality than those found for 1BTL.

Figure 3 shows that we cannot expect to find reliably tem-
plate loops with cRMS better than 3 Å for loops of more
than nine residues. This result is consistent with the analy-
sis of PDB-based protein loop prediction by vanVlijmen and
Karplus (1997), and highlights the weaknesses of methods
that search for long loops in the PDB.

3.2. Generating Loop Conformations Using Short Protein
Building Blocks

We have shown in a recent study that it is possible to gen-
erate good approximations of protein structures using small
libraries of small protein fragments (Kolodny et al. 2002). For
example, we were able to construct models for a set of 145
structurally diverse proteins (Park and Levitt 1995) such that
the average cRMS distance (computed over theCα trace) be-
tween the test set structures and their approximations varies
from 1.85 Å for a library of 20 fragments of five residues to
0.99 Å for a library of 100 fragments of length five residues.
In this subsection, we assess the performance of a modified
version of this approach applied to the loop building problem
on the 427 target loops of our test sets. We used libraries of
fragments of length five residues, each containing between
20 and 100 such fragments. Loops were constructed using
strategy B, which generates all possible half-chains starting
simultaneously from each side of the target loops, retaining
those half-chains that meet at their end points (see Section 2).
Figure 5 shows the average cRMS of the best-fitting fragment-
based loop computed over all target loops of a given lengthl,
as a function ofl, for different libraries of fragments. Table 1
gives the range of cRMS for best-fitting loops over all target
loops of a given length. Finally, Table 2 shows the average
number of fragment-based loops generated within 3 and 4 Å
of their target loops, where the average is computed over all
target loops of the same length.

It was not possible to generate fitting loops for all combi-
nations of library size and loop length. For short loops and
small fragment libraries, most if not all candidate chains do
not achieve loop closure, within the 1 Å tolerance we have
set (see Section 2). For example, we can only build loops of
four residues with libraries of 60 or more fragments. Figure 5
shows that the quality of the fragment-based loops improves
as the sizeL of the fragment library increases. This improve-
ment, however, comes at a cost. For long loops, the use of
large libraries results in combinatorial explosion, as the total
number of candidate loops generated by this procedure is a
high-order function ofL (see eq. (2)).

For very short loops (l < 6), the database approach de-
scribed in Section 3.1 selects better loops than those built
from the fragments (see Figure 5). This result is not surpris-
ing, as the database search provides a better sampling for these

short loops than the fragment building procedure. Conversely,
the fragment-based approach to loop building performs much
better than the database approach for loops larger than six
residues, and this occurs even for small fragment libraries.
Table 1 shows also that systematic sampling provides more
consistent quality of the best-fitting loops between target loops
of the same length. For example, we have seen (Figure 4) that
a database search finds native-like loops for the target loop
1BTL(50-57), with a best cRMS of 0.56 Å, but fails on the
target loop 1GOF(606-613), in which case the cRMS of the
best loop is 4.74 Å. In comparison, the best loops found by
systematic sampling using the library of 80 fragments for the
same targets have cRMS values with respect to the corre-
sponding native loops of 1.2 and 1.44 Å, respectively.

Table 2 illustrates that even with libraries of small size,
the systematic search reliably builds candidate loops within
3 Å of their target, for loop length up to 14 residues. The
corresponding computing times are given in Table 3.

4. Discussion

Loop closure is an essential element of many protein struc-
ture prediction problems. For example, it is nearly always
needed in homology modeling, where the framework for the
structure of the target protein is derived from the highly ho-
mologous regions in a template protein, leaving gaps between
these regions that need to be filled in with protein segments
(see Figure 1). It is very reminiscent of the inverse kinemat-
ics problem, with many occurrences in the field of robotics.
Analytical solutions to the inverse kinematics problem exist
for kinematic chains with six degrees of freedom or less (Go
and Scheraga 1970; Bruccoleri and Karplus 1985; Palmer and
Scheraga 1991; Manocha and Canny 1994; Manocha, Zhu,
and Wright 1995; Wedemeyer and Scheraga 1999). Unfortu-
nately, these methods do not extend to longer chains. In this
paper, we have described a new method for solving the loop
closure problem for proteins, which combines a systematic
search with database derived information on proteins.

The wealth of information available in the PDB, the de-
pository of all protein structures experimentally determined,
makes the protein loop closure problem different from stan-
dard inverse kinematics problem. The first loop building pro-
cedures designed to use this information search the PDB for
loop candidates, based on geometric fitness criteria (Sum-
mers and Karplus 1990). This approach assumes that there
exists at least one segment from a known protein structure that
matches the target loop to be modeled. Fidelis et al. (1994)
had shown that unfortunately this assumption was not valid
for loops longer than four residues. The results described in
Section 3.1 are considerably more promising, in that we show
that a database approach performs well for loops up to nine
residues long. For example, from the data shown in Figure 3
we see that for 80% of the target loops of length 9, we can find
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Fig. 5. A fragment-based approach to the loop building problem. Candidate loops for each of the 427 target loops in our data
set were built using small libraries of protein fragments of five residues. The quality of each candidate loop is defined as its
cRMS distance to the target loop, computed over allCα atoms of the loops after superposition of the flanking regions of the
native and candidate loops. For each target loopT , the cRMS of the best-fitting loop is stored as best(T ). The average of
best(T ) computed over all target loops of lengthl provides a measure of the performance of the fragment-based approach for
generating loops of lengthl. We denote this average as〈cRMS〉. We plot〈cRMS〉 as a function of loop length, for different
library sizeL. For comparison, the solid line shows the performance of the database approach described in Section 3.1.

Table 1. Range of cRMS (Å) for the Best Fragment-Based Loops

Loop Number of Fragments in Library (L)

Length 20 40 60 80 100 DB

4 NA NA NA 0.31–4.75 0.32–4.21 0.21–2.47
5 NA NA 0.93–4.87 0.54–4.66 0.28–3.02 0.38–3.33
6 NA NA 0.46–4.60 0.34–3.90 0.38–3.42 0.28–3.51
7 0.43–4.84 0.56–4.49 0.45–2.85 0.34–2.54 0.41–2.69 0.40–4.79
8 1.15–4.97 0.53–3.89 0.47–2.75 0.37–2.45 NA 0.57–4.74
9 1.51–4.98 0.76–3.44 0.75–2.68 0.82–2.62 NA 0.40–6.58
10 1.92–4.95 1.01–3.55 0.82–2.68 NA NA 0.47–6.45
11 1.78–4.89 1.29–3.52 1.14–2.51 NA NA 0.65–6.90
12 1.41–4.18 1.05–2.83 NA NA NA 1.14–8.33
13 2.17–4.72 1.04–3.50 NA NA NA 0.65–7.37
14 2.15–4.28 1.46–3.10 NA NA NA 1.32–7.66
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Table 2. Average Number of Fragment-Based Loops Within 3 Å (4 Å) of Their Target Loop

Loop Number of Fragments in Library (L)

Length 20 40 60 80 100

4 NA NA NA 40 (57) 66 (91)
5 NA NA 4 (7) 12 (26) 36 (71)
6 NA NA 1.7 (3.9) 5.6 (14) 14 (32)
7 0.3 (0.3) 2.5 (6.7) 18 (46) 56 (162) 123 (368)
8 1.3 (3.8) 27 (108) 258 (1016) 1354 (5355) NA
9 0.8 (2.6) 14 (82) 163 (800) 845 (4358) NA
10 0.3 (1.3) 4.2 (34) 49 (339) NA NA
11 0.5 (4.1) 26 (220) 203 (1640) NA NA
12 6.8 (53) 420 (4448) NA NA NA
13 1.7 (20) 129 (2135) NA NA NA
14 0.8 (13) 63 (1257) NA NA NA

Table 3. Average CPU Time Needed to Reconstruct One Loop Using the Fragment-Based Approach

Loop Number of fragments in library (L)

Length 20 40 60 80 100

4 NA NA NA 0.0303 0.0435
5 NA NA 0.0202 0.0307 0.0448
6 NA NA 0.0210 0.0320 0.0462
7 0.0182 0.0818 0.0973 0.1525 0.1847
8 0.0359 0.0896 0.1639 0.3534 NA
9 0.0382 0.1074 0.1850 0.4415 NA
10 0.0376 0.1022 0.1753 NA NA
11 0.0778 0.3803 2.2904 NA NA
12 0.1387 2.6720 NA NA NA
13 0.1439 3.5776 NA NA NA
14 0.1579 4.9761 NA NA NA

Computing times are given in min, on a PC with Xeon processor at 2.8 GHz, running Linux.

at least one template loop with a cRMS better than 3 Å. This
number drops to 30% for loops of length 10, and to 12% for
loops of length 14. These results are consistent with the re-
sults of vanVlijmen and Karplus (1997). In a recent study, Du,
Andrec, and Levy (2003) have shown that for a protein chain
of 15 residues, there is a 91% probability of finding a non-
homologous protein segment in the PDB within 2 Å cRMS.
Based on these results, they concluded that the database ap-
proach to loop building should perform well up to 15 residues.
We argue that, in fact, their results are similar to our results
for loops of nine residues. The search in the PDB of candi-
date segments that fit in a gap of a protein is successful when
the segment found is structurally similar to the native confor-
mation of the target loop, and if the flanking regions of the
segment in the protein to which it belongs matches the stem

regions on both sides of the gap. The second condition defines
the orientation of the segment in the framework. It is the basis
of the geometric filter applied to candidate segments (see Sec-
tion 2). A successful segment for a loop of nine residues must
therefore match the target loop and its stem regions, giving a
total of 15 residues in our procedure.

Improvements of the PDB segment search approaches to
the protein loop prediction problem compared to the study
of Fidelis et al. (1994) can undoubtedly be assigned to the
much larger protein structure database currently available. It
is not clear however that further significant progress can be
expected in the future, even with the steady increase in size
of these databases. For example, our results based on the cur-
rent database are not better than those of vanVlijmen and
Karplus (1997), which were obtained based on the smaller
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databases available six years ago (we apply the geometric
filter for selecting loops used by vanVlijmen and Karplus).
The size of the conformational space available to a protein
loop grows exponentially with the number of degrees of free-
dom that define the loop. For long loops (i.e., longer than
nine residues), this length might be too large to be sampled
properly by the PDB, even if we were to multiply its size by
an order of magnitude. The results described in Section 3.2
concerning our fragment-based approach to the loop build-
ing problem indicate that there is in fact no need to wait for
much better statistics in the distribution of long protein seg-
ments. The results reported by Du, Andrec, and Levy (2003)
indicate that the current PDB provides a good sampling of
the conformations of protein fragments of five residues. In a
previous study, we have shown that these conformations can
be clustered into small libraries of fragment representatives,
and that these libraries can be used to model with adequate
accuracy most protein structures (Kolodny et al. 2002). In
this paper, we have used these libraries to build protein loops.
As these libraries contain only a small number of fragments,
it is possible to enumerate exhaustively all loop conforma-
tions obtained by concatenating these fragments. The ability
of these libraries to generate satisfactory models for complete
proteins (Kolodny et al. 2002). extends to the generation of
satisfactory models of protein loops (see Figure 5). The size
of the library is an important parameter of our approach. It
controls the trade-off between feasibility and accuracy. Loop
building based on libraries with a large number of fragments
generates accurate loops of length up to eight residues. For
longer loops, the procedure is very costly in computing time.
We have shown, however, that smaller libraries still provide
satisfactory loops, at a very reasonable computing cost (see
Tables 2 and 3).

The libraries of protein fragments can be replaced by li-
braries of set of dihedral angles. Our strategy involves the
superposition of the first threeCα atoms of the newly added
fragment onto the last threeCα atoms of the chain already
constructed. This is equivalent to adding two residues to the
chain each time a new fragment is added.As such, our method
bears similarity with the PDB-based loop prediction method
of Sudarsanam et al. (1995), which is based on aφi+1, ψi
dimer database. Sudarsanam et al. did not cluster their large
database of dimers, and consequently could not perform ex-
haustive construction of candidate loops. They report results
on the construction of short target loops of five residues, which
are comparable in quality to those reported here.

There are two technical aspects of the dimer method that
are worth discussing in relation to our work. First, the database
ofφi+1, ψi dimers was binned into 400 categories, correspond-
ing to all possible amino acid pairs. In contrast, we did not
generate sequence specific libraries for two reasons. There are
no indications that short protein sequences adopt the same
conformation in the different proteins in which they occur;
in fact, there is evidence of the converse for fragments up

to nine residues (Mezei 1998), and more specific attempts
to classify loop conformations have not yet been successful
in finding a method of predicting a loop conformation based
on its sequence (Ring et al. 1992). Secondly, the database of
φi+1, ψi dimers was built selectively from residues belonging
to loop regions in proteins, removing all residues that belong
to anα-helix or β-sheet. We have tried a similar approach
by designing loop-specific fragment libraries, which are used
in turn to generate candidate loops that can fit in a gap in a
protein framework. These structure-specific libraries however
did not perform better than the general libraries used above
(results not shown).

Overall, we have presented a new method for solving the
protein structure analogue of the inverse kinematics problem,
predicting protein loop conformation. We generate all pos-
sible loop conformations that satisfy the loop closure crite-
ria, using libraries of small protein fragments of length five
residues. Our approach has the advantages ofab initio meth-
ods since we are able to enumerate all candidate loops in the
discrete approximation of the conformational space accessi-
ble to the target loop. It also has the advantages of a database
search approach, as our use of fragments of known protein
structures guarantees that the backbone conformations are
physically reasonable. By varying the size of the library of
fragments used to build the loops, we control the trade-off
between accuracy and feasibility in terms of computing time.
Previous database approaches to the loop prediction problem
were limited to loops of up to nine residues. Results from this
study are more optimistic, and extend the application of the
database-based approach to loops of 14 residues.
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