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Efficient Collision Detection among Moving Spheres
with Unknown Trajectories'

Ho Kyung Kim,? Leonidas J. Guibas,? and Sung Yong Shin*

Abstract.  Collision detection is critical for applications that demand a great deal of spatial interaction among
objects. In such applications the trajectory of an object is often not known in advance either since a user is
allowed to move an object at his/her will, or since an object moves under the rules that are hard to describe by
exact mathematical formulas. In this paper we present a new algorithm that efficiently detects the collisions
among moving spheres with unknown trajectories. We assume that the current position and velocity of every
sphere can be probed at any time although its trajectory is unknown. We also assume that the magnitude of
the acceleration of each sphere is bounded. Under these assumptions, we represent the bounding volume of
the sphere as a moving sphere of variable radius, called a time-varying bound. Whenever the time-varying
bounds of two spheres collide with each other, they are checked for actual collision. Exploiting these bounds,
the previous event-driven approach for detecting the collisions among multiple moving spheres with ballistic
trajectories is generalized for those with unknown trajectories. The proposed algorithm shows an interactive
performance for thousands of moving spheres with unknown trajectories without any hardware help.

Key Words. Collision detection, Event-driven approach, Interactive applications, Computer animation,
Computational geometry.

1. Introduction

1.1. Motivation. Collision detection is critical for applications that involve spatial in-
teractions among objects, and various collision detection algorithms have been proposed.
Many of these [1]-[8] assume that the motion of an object is expressed as a closed-form
function of time. In such a case a collision can be found using the equations of motion.

Applications, such as computer games, crowd simulations [9], and particle sys-
tems [10]-[13], have received extensive attention in recent years. In these applications
either a user is allowed to move an object at his/her will, or an object moves under
the rules that are hard to describe by exact mathematical formulas. In either case the
trajectory of the object is hard to obtain in advance. Moreover, these applications may
handle a large number of objects to generate a dynamic, complex scene. To simulate
interactions among multiple objects efficiently, the objects are often approximated by
their bounding spheres [14]-[17] to produce a visually pleasing animation in a feasible
amount of time.
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This paper presents an efficient algorithm that detects collisions among multiple
moving spheres with unknown trajectories. We assume that the maximum magnitude of
the acceleration of each sphere is known in advance. This is reasonable in practice since
an object in the real world cannot move arbitrarily fast. We also assume that the current
position and velocity of the sphere can be probed at any time although its trajectory is
unknown. The actual motion of the sphere is handled by the motion integrator, whose
inner workings are not our concern.

1.2. Related Work. For environments consisting of multiple moving objects, a brute-
force method checks for the collision between each pair of objects at every time step.
Thus, the number of collision tests increases quadratically in that of objects. There has
been an abundance of work aimed at reducing the number of collision tests, that is,
to check collisions only between objects which are close to each other or to invoke a
collision test when a pair of objects is highly likely to collide [18].

In practice, space subdivisions and bounding volumes have been widely used to
accelerate collision detection. In space subdivisions the space is divided into cells, and
collisions are checked only between pairs of objects that are in the same or nearby
cells [1], [19]-[21]. Bounding volumes, such as spheres [15], [16] and axis-aligned
boxes [7], [8], [22], are used due to the simplicity in their shape and motion description.
Hierarchical bounding volumes, such as OBB-trees [23], sphere-trees [15], [24], [25],
and BV-trees [26], are employed to enclose objects tightly. Recently, James and Pai
suggested BD-trees [27] based on sphere-trees to detect collisions among multiple objects
of restricted deformation.

Collisions are usually checked at a sequence of fixed time steps [19], [22], [23], [27]-
[29]. In order not to miss any collisions, either the number of time steps is increased,
or objects are assumed to move slowly. There have been attempts to fix this problem
by adaptively changing the frequency of collision checks: a collision is more frequently
checked between a pair of objects which are highly likely to collide.

Mirtich [7], [8] presented an algorithm that handles polyhedral objects with ballistic
trajectories. At each time step the algorithm calculates the three-dimensional axis-aligned
bounding box for each object, which is guaranteed to contain the object during a time
interval. With a hierarchical hash table [30], the algorithm chooses, as the candidates
for collision tests, the pairs of objects whose bounding boxes intersect each other. The
collision between a candidate pair is checked by the algorithm of Lin and Canny [31]
that tracks the closest features between two convex polyhedra. Mirtich also proposed a
scheduling scheme to check adaptively for collisions between candidate pairs.

Kim et al. [1] suggested an event-driven approach that efficiently detects collisions
among ballistic spheres. To localize collision detection, a space subdivision scheme is
adopted. This approach traces the spatial distribution of spheres and their trajectories so
as to focus only on the sphere pairs that are highly likely to collide.

If the trajectories of the objects are explicitly known between collisions, the frame-
work of the Kinetic Data Structures of Basch et al. [32] and Guibas [33] facilitates a
number of collision detection algorithms based on the idea of updating the system state
only at moments when certain critical conditions fail. The set of the conditions, called
certificates, is maintained incrementally as the system evolves. They showed that no
intersection occurs unless any of the certificates fail. For example, Guibas and Zhang
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presented an event-driven approach for ballistic spheres [34], exploiting the power di-
agram [35] of the balls. For disjoint balls, the closest pair are adjacent in the power
diagram, which enables collision detection. In practice, the authors found that the power
diagram changes only linearly many times for ballistic spheres. Guibas et al. [36] also
described a kinetic data structure for maintaining a compact Voronoi-like diagram of
convex polygons moving around in the plane, and this diagram can be used for collision
detection among the moving convex polygons.

With an assumption that the maximum norm of the acceleration of each object is
provided, Hayward et al. [ 14] and Hubbard [15], [16] independently proposed algorithms
to detect collisions among objects with unknown trajectories.

Hayward et al. [14] proposed a collision predictor for moving spheres, which flags
a collision if two spheres are close enough to collide. For each pair of spheres, they
calculated the amount of time within which those spheres are guaranteed not to collide
with each other. Then the algorithm adaptively pays more attention to highly urgent
pairs. The algorithm needs O (log n loglogn) time at each step and O (n?) space to flag
collisions among n spheres.

Hubbard [15], [16] suggested a two-phase collision detection algorithm for interac-
tive applications. The first phase, called the broad phase, detects collisions among the
bounding spheres of the objects. The broad phase builds a four-dimensional space—time
bound that contains a bounding sphere during a given time interval and detects the inter-
sections among space—time bounds by the Bentley—Ottmann algorithm [37]. The results
are used to identify the colliding pairs of bounding spheres. In the narrow phase the pairs
of objects of which the bounding spheres collide are checked for collisions using the
sphere trees that represent the objects.

1.3. Overview. For a moving sphere with an unknown trajectory, we can compute the
bounding volume of the sphere using our knowledge of the maximum magnitude of its
acceleration together with its initial position and velocity. This volume, called the time-
varying bound, is represented as a moving sphere of variable radius, that is guaranteed
to contain the sphere at any time instance in the future. Initially, the bounding volume
has the same center position and radius as its corresponding sphere. As time passes, the
uncertainty of the position of the sphere increases because of its unknown trajectory, and
thus the radius of the volume monotonically grows in time.

Suppose that a pair of spheres collide with each other at some time instance in the
future. Then their bounding volumes will certainly intersect beforehand. Thus, whenever
the bounding volumes collide with each other, we check for the actual collision between
the corresponding spheres. If the spheres collide with each other, we compute their new
positions and velocities with a proper collision response. Otherwise, we probe the new
positions and velocities of the sphere. Regardless of the actual collision between the
spheres, we reset the colliding volumes to be the same as their corresponding spheres
to resume the collision check with those new volumes. Hence, the collision detection
problem between two spheres is transformed into a sequence of collision detection
problems between their time-varying bounds.

The collisions among multiple spheres may be detected by repeating the collision
checks between two time-varying bounds for every pair of spheres. However, as the
number of spheres increases, the collision checks for all pairs of time-varying bounds
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would be extremely time-consuming. We wish to reduce the number of collision checks
as much as possible by focusing only on the pairs of time-varying bounds that are highly
likely to collide. To achieve this goal, the event-driven approach to collision detection
among multiple moving spheres of fixed radii [1] is generalized for time-varying bounds,
that is, moving spheres of variable radii, exploiting their compact representation. We
identify a set of events for time-varying bounds and properly manipulate those events to
detect collisions among time-varying bounds.

The remainder of this paper is organized as follows. Section 2 describes a notion of a
time-varying bound, that is, a moving sphere of variable radius. In Section 3 we present an
event-driven approach for detecting the collisions among multiple time-varying bounds.
We shows experimental results in Section 4, and finally conclude the paper in Section 5.

2. Time-Varying Bound. For efficient collision detection, a bounding volume should
not only be simple but also fit an object tightly. Hubbard defined a four-dimensional
bounding volume, called the parabolic horn, that contains a sphere with an unknown
trajectory for a time interval [15], [16]. Since the computational cost for finding the
intersections among these horns is expensive, the author built a simpler four-dimensional
bounding volume, called a hypertrapezoid, which encloses a horn for the time interval.
This volume grows rapidly as its time interval increases and thus is cumbersome to
handle. To detect collisions among multiple spheres at an interactive rate, we need a
more compact bounding volume.

For a sphere with an unknown trajectory, we represent its bounding volume with
another sphere that satisfies our general criteria for a bounding volume. Let x(¢), v(¢),
and a(¢) denote the position, velocity, and acceleration of a sphere at time ¢, respectively.
By assumption, we can probe the position x(z°) and velocity v(z°) of the sphere at the
current time ¢°. Suppose that an upper bound of ||a(¢)|| is given for all # > ¢°, that is,

(1) la@®ll < A,

for some positive constant A. Then

A
2) Ix(t) — x(t°) + vt — )| < St 192

A detailed derivation is available in the Appendix. According to Taylor’s theorem, in-
equality (2) holds true when the trajectory x(¢) is C>-continuous. The trajectory x(t) is
C?-continuous except at the singular points where the sphere interacts with other spheres
or the environment. By carefully identifying those singular points, we can use this in-
equality to bound the sphere. Equation (2) states that the center x(¢) of the sphere for
t > t%is within a distance of (A /2)(t —t°)? from the known position x(°) +v(t°) ( —1°).
Let the radius of the sphere be r. Then the sphere at time ¢ is contained in a bounding
sphere of radius 7(¢) centered at X(7), where

A3) F(t) = %(t—t°)2+r,
4) (1) = x(t°) + v — 9.
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the direction of v(t°)

Fig. 1. A time-varying bound.

Equations (3) and (4) represent a parabolic horn, whose cross section at time ¢ is the
sphere of radius 7(¢) centered at X(r) [15], [16]. This horn can be interpreted as the
volume swept by a time-varying sphere of variable radius 7(¢) moving from x(z°) to
x(t%) + v(t°) (¢t — 1°). This sphere is said to be a time-varying bound. Initially at time
t°, the bound has the same center x(¢°) and radius r as its corresponding sphere. After
(t — t°) time, the bound grows to a sphere of radius 7 (¢) centered at X(¢). As ¢ increases,
its radius quadratically increases and its center moves linearly in the direction of v(z%)
from x(¢°) (see Figure 1). Note that a ballistic sphere is a special case of a time-varying
bound in which ||a(z)|| = A for all £.

The collision between two time-varying bounds is easily calculated because of their
simplicity in shape and motion. If a pair of spheres collide with each other, then their time-
varying bounds also collide beforehand. Hence, we perform a collision check between
two spheres whenever their time-varying bounds collide with each other.

3. Collision Detection among Time-Varying Bounds. To detect the collisions among
multiple time-varying bounds, we generalize the event-driven approach [1] that effi-
ciently handles ballistic spheres. The efficiency of the approach is retained in its gener-
alization for time-varying bounds, due to their compact representation.

3.1. Event-Driven Approach. Kim et al. [1] presented an event-driven approach that
efficiently detects collisions among ballistic spheres. This approach subdivides the whole
space containing the spheres into a set of uniform cubical subspaces to localize the
collision checks. The edge length of a subspace is greater than or equal to twice, but
less than some fixed times, as large as the diameter of the largest sphere. Due to the
assumption that the diameter of the largest sphere is bounded by a constant multiple
of that of the smallest, each non-empty subspace has a constant number of intersecting
spheres. These subspaces are maintained in a subspace tree, which is a binary search
tree of bounded balance [38]. A leaf node of the tree represents a non-empty subspace,
and every non-empty subspace has a list of spheres intersecting it.



200 H. K. Kim, L. J. Guibas, and S. Y. Shin

There are at most eight subspaces intersecting a sphere, and thus the number of non-
empty subspaces intersecting one or more spheres is O(n), where n is the number of
the spheres. Search, insert, and delete operations on the subspace tree can be done in
O(logn) time. Hence, it takes O (nlogn) time initially to construct the subspace tree.

The event-driven approach keeps track of the trajectories of spheres and their spatial
distribution by identifying three types of events: entering, leaving, and colliding. The first
two types are caused by a sphere crossing subspaces. The third type is due to a collision
between a pair of spheres intersecting the same subspace. The algorithm computes the
candidate collision events of each sphere with the others intersecting the same subspace as
well as its candidate entering and leaving events while allowing each sphere to penetrate
the other spheres. Those candidate events of every sphere are maintained in another
search tree, called an event tree. Among the candidates, the earliest event actually occurs
since no penetrations between spheres have ever happened. Whenever an event occurs,
the event tree is properly modified by adding and removing candidate events according
to the event type to enable the next event. Accordingly, new non-empty subspaces are
added to and previous non-empty subspaces that become empty are removed from the
subspace tree. Repeating this process, all events can be detected in their time sequence.

Each sphere causes O(1) candidate events, and thus the total number of candidate
events is O (n), which are maintained in the event tree. Since it takes O (logn) time to
add a candidate to the tree, the event tree can be constructed in O (nlogn) time with
O(n) space. Whenever an event occurs, a constant number of search, insert, or delete
operations are performed on the subspace and event trees, and thus it takes O (logn)
time to handle an event.

The event-driven approach also subdivided the space with a hierarchy of regular grids
to accelerate collision detection. Starting from the finest grid of the hierarchy, the size
of the subspace is doubled at each subsequent coarser grid. Each sphere is assigned to
a proper grid according to its radius. Since every grid partitions the same space, two
spheres in different grids may collide with each other. For a sphere s intersecting a
subspace C, the algorithm identifies all subspaces intersecting C, regardless of their
grids, to generate the candidate colliding events for s with the spheres intersecting those
subspaces. Note that only one subspace tree and one event tree are maintained, and all
non-empty subspaces belong to the same subspace tree, regardless of their grids, and the
same is true for the event tree.

After O(nlogn) time preprocessing to construct the subspace and event trees, it
takes O (n.logn + n. logn) time and O (n) space to detect collisions among » ballistic
spheres, where 7. and 7. are the number of actual collisions and that of entering and
leaving events during the simulation, respectively. As 7. depends on the subspace sizes,
the performance of the event-driven approach also depends on the subspace sizes. The
subspace sizes are obtained by optimizing the cost model that estimates the running time.

3.2. Events for Time-Varying Bounds. Given a set of spheres with unknown trajecto-
ries, we find collisions among the spheres using their time-varying bounds. We identify
four types of events, entering, leaving, resetting, and colliding, each of which occurs
when the trajectories of time-varying bounds or their spatial distribution change. By
tracing the events in the order of their occurring times, we can detect collisions among
time-varying bounds.
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Fig. 2. An entering (a) and a leaving (b) event for a time-varying bound.

We first subdivide the whole space containing the spheres with a hierarchy of regular
grids and assign every sphere to a proper grid. A collision between two spheres in different
grids is detected by generating the candidate colliding events for their time-varying
boundsin a similar way as givenin [1]. Hence, in what follows we concentrate on collision
detection of the time-varying bounds within one grid. Every non-empty subspace has
a list of time-varying bounds intersecting it, and these subspaces are maintained in
the subspace tree. The event tree maintains the candidate events for entering, leaving,
resetting, and colliding of every time-varying bound.

Given a time-varying bound B(s;) of a sphere s; lying in a subspace, an entering event
occurs when B(s;) touches a face of the subspace to enter its adjacent subspace sharing
the face (see Figure 2(a)). A leaving event occurs when B(s;) moves apart from the face
being touched (see Figure 2(b)). These types of events change the list of time-varying
bounds for each subspace. Whenever B(s;) enters a subspace, we add B(s;) to the list
for the subspace. Accordingly, we compute the new candidate collision events of B(s;)
with the other bounds intersecting the subspace to add them in the event tree. We also
compute the candidate events of B(s;) for entering and leaving the subspace. We handle
a leaving event in a symmetrical way.

Initially, B(s;) is identical to s;. As time passes, B(s;) grows and may intersect many
subspaces. Accordingly, the candidate events for B(s;) would increase excessively to
degrade the efficiency. We circumvent this problem by restricting the diameter of B(s;)
from being larger than the side length of a subspace. This restriction forces a time-varying
bound to intersect at most eight subspaces, and thus the total number of non-empty
subspaces is O(n), where n is the number of time-varying bounds. Since a subspace
intersects a constant number of original spheres, we can easily show that the number of
time-varying bounds intersecting a subspace is also constant.

Whenever the diameter of B(s;) reaches the side length of a subspace, a resetting event
occurs (see Figure 3(a)). Then we probe both the current position x; (#) and velocity v; ()
of s; to reset B(s;) to be the same as s;. B(s;) may intersect different subspaces by
resetting B(s;) (see Figure 3(b)). Hence, we remove B(s;) from the list of time-varying
bounds of each subspace that does not intersect B(s;) anymore because of resetting.
The position x; (tio) and velocity v; (tio) are also renewed (see Figure 3(b)). Hence, we
recompute the candidate collision events of B(s;) with the other bounds intersecting the
same subspaces as well as its candidate entering and leaving events. We also calculate
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Fig. 3. (a) A resetting event for a time-varying bound and (b) after resetting the time-varying bound.

its next resetting event. These events are inserted into the event tree after the removal of
old candidate events of B(s;).

A colliding event takes place when B(s;) collides with another time-varying bound
B(s;) intersecting the same subspace (see Figure 4). Whenever a colliding event between
B(s;) and B(s;) occurs, we check for the actual collision between spheres s; and s;.
Regardless of the collision, we reset both B(s;) and B(s;) in the same way as on a
resetting event to resume the collision check.

Now, we analyze the time needed to detect all collisions among the spheres. Since
every time-varying bound intersects at most eight subspaces, the number of candidate
entering and leaving events of each B(s;) is O (1), which are maintained in the event tree.
The number of its candidate colliding events is also O (1) since each subspace intersects
a constant number of time-varying bounds. In addition, each bound has one resetting
event. Hence, B(s;) has a constant number of candidate events, and thus the total number
of candidate events for the time-varying bounds in the event tree is O (n).

It takes O (logn) time to add (delete) a candidate event to (from) the event tree. It
also takes O (logn) time to update a non-empty subspace in the subspace tree. Since
every actual event causes a constant number of candidate events to update, it takes
O (logn) time to handle an event regardless of its type. Let 1, be the total number of
actual entering, leaving, and resetting events of the time-varying bounds for a given time
interval, and let n1. be that of actual colliding events among the bounds in the same time
interval. Then we can detect the collisions among the spheres during the time interval in
O(n¢logn + nclogn) time.

Fig. 4. A colliding event for two time-varying bounds.
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3.3. Efficiency Improvement. The candidate events of a time-varying bound B(s;) are
removed from the event tree upon its leaving, resetting, or colliding events. We can
improve the efficiency of collision detection by reducing the number of such removal
operations. For this purpose, we do not insert into the event tree the candidate events of
B(s;) whose event times are later than that of its resetting event. Otherwise, we would
remove those events anyway to recalculate them upon the resetting event. Hence, we
maintain in the event tree only the candidate events of a time-varying bound, whose event
times are earlier than its resetting event time. This also reduces the memory requirements
for the event tree.

4. Experimental Results. To demonstrate the efficiency of our algorithm, we per-
formed experiments on IRIS Indigo 2 (CPU: MIPS R10000, 195 MHz) to detect col-
lisions among spheres with unknown trajectories moving in a given box. For collision
response, we adopted an elastic collision model [39]. We first simulated a situation in
which a user moves the spheres by randomly generating forces over the simulation. The
magnitude of the force exerted on a sphere was chosen so that the maximum norm of
the acceleration of the sphere is kept within a given bound. The algorithm does not use
those forces for collision detection. In the second experiment we applied our algorithm
to a particle system, where spheres move driven by velocity fields.

4.1. Event Time Calculation. In this section we describe how to predict an event.
Suppose that we reset a time-varying bound B(s;) at time #;, and the position and velocity
of 5; at t? are x; () and v; (), respectively. Then the position %; (t) and radius 7; (¢) of
B(s;) attime ¢, t > tiO, are as follows:

. A 012
) i) = -t =6)" i,
©) () = xi(t)) + Vi)t — 1),
where A; and r; are the maximum magnitude of the acceleration and radius of s;,
respectively.
Entering and leaving events occur when B(s;) touches a face of a subspace. Let n; be

the unit normal vector of a plane containing the face and let ps be a point on that plane.
Then we predict the touching time by solving

) |Xi (1) — pp) - m¢| =7 (2).

Let L; denote the side length of the subspace in which B(s;) is assigned. Then the
resetting event of B(s;) occurs when its diameter grows to L;. We solve 27;(t) = L; to
predict the resetting time ¢ = 7 + At, where

(8) Af — Li — 27‘,‘
= Ai .

A collision time between two time-varying bounds, B(s;) and B(s;), is the solution
of

9 I%; (1) = X; (D] = Fi (1) + 7 (0).
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For simplicity, we represent the collision time ¢ as t° + §,, that is, t = t° + §,, where t°
is the current time and 8, > 0 is the time elapsed after ¢°. To predict the collision time
t, we need to compute §,. Squaring and rearranging (9) yields

2
(10) —%aj‘—ab33+(||v,||2—ar—b2)5,2+2(ﬁ, SV, —br)8,+ %> =1 = 0,

wherea = A[+Aj,b = A,’(l‘o—lio)—i-Aj(lO—l}Q),r = },’\i(l‘o)-f-fj(lo),ﬁr = &,‘(l‘o)—)}j(lo),
and v, = v; (tio) —V; (tjp). In theory the closed-form formula for the roots of a quartic
equation can be used to compute §; in a constant time.

To keep a sphere within the box, we have to bounce it back into the box when it
collides with a face of the box. We check this collision when its time-varying bound
collides with the face. We regard such a collision as another type of colliding event and
compute the collision time in a similar way to that of an entering or a leaving event.

4.2. Performance. We measured the actual processing times for collision detection
among spheres moving in a box of 200 x 200 x 200. Radii of the spheres were cho-
sen between 0.1 and 10.0. Their initial speeds were uniformly distributed between
2.54/3 and 25+/3, and the maximum norms of acceleration were between 10.0 and
20.0. We performed 15-second simulations, varying the number of spheres from 500
to 3500. In Figure 5 we plot average processing times to simulate 1-second evolutions
of moving spheres in a real world clock. It took 1.372 seconds for 1000 spheres in
our computer clock, which shows that our algorithm performs the simulation of 1000
moving spheres at a speed almost comparable with the actual speed in the real world.
Figure 6 shows the number of actual events that occur during the simulations. The num-
bers of entering, leaving, and resetting events are bounded by the number of colliding
events.

30 T T T T T

25 - 1

20 |- -

seconds
-
[6)]
T
1

O 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500
number of spheres

Fig. 5. Average processing time.
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Fig. 6. The number of actual events.

We also compared our algorithm with the broad phase of Hubbard’s algorithm [15],
[16]. As explained in Section 1.2, the broad phase detects collisions among objects with
unknown trajectories using their space—time bounds, which are four-dimensional hyper-
trapezoids. We modified the broad phase so that it can also detect collisions between
spheres and box faces. We chose the radius, initial speed, and maximum norm of accel-
eration of each sphere as in the previous experiment. The volume of the box is also 200°.
We ran 50 simulations for each of 30, 100, 300, and 1000 spheres.

Table 1 shows that our algorithm outperforms Hubbard’s. This is mainly due to the
following reasons. First, a time-varying bound is more compact than a space—time bound.
Hence, space—time bounds collide with each other more frequently than time-varying
bounds. Second, the broad phase rebuilds all space—time bounds upon each collision to
reinitiate the next collision check. For each « axis, & € {Xx,y, z}, a space—time bound
has a pair of faces that are normal to the o« axis. The broad phase projects the pair of
faces of each space—time bound onto the two-dimensional af-plane, where ¢ represents
the time dimension. This results in three sets of line segments, each of which is in the
at-plane. To obtain the collision time, the broad phase finds intersections for each set

Table 1. The processing time of our algorithm and Hubbard’s broad phase.

Average processing times (in seconds)

Number of spheres The proposed algorithm Hubbard’s broad phase Ratio
30 0.00576 0.94064 1: 163.3056
100 0.02776 13.36050 1: 481.2860
300 0.15844 150.28884 1: 948.5537
1

1000 1.37200 2767.82990 :2017.3687
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of line segments using the Bentley—Ottmann algorithm [40], [41]. This algorithm takes
O((n + k) logn) time, where n is the number of line segments and & is the number of
intersections among the segments. For accuracy, our algorithm computes each collision
time by numerically solving the quartic equation in (10), although there is a closed-form
formula.

We effectively detected collisions among the spheres, using their time-varying bounds.
For efficiency, we localized collision detection by keeping track of the spatial distribution
of the time-varying bounds over the subspaces. It takes O (log n) time to handle an event
regardless of its type. As stated in Section 3.2, the performance of our algorithm depends
on the number of events which is a function of the subspace sizes. We adapted the cost
model in [1] to determine the subspace sizes.

4.3. Example. We applied our algorithm to detect collisions among particles circu-
lating in a box due to velocity fields [42]. The particles moved upward along the line
connecting two center points on each of the top and bottom faces of the box, and they
moved downward along the side faces. Figure 7 exhibits some snapshots taken during

(b) Moving particles

Q

o )
3 y 0°

i
& 5o

@) 3

&

{¢]

(c) Time-varying bounds of the particles in (b)

Fig. 7. Circulating particles in a box.



Efficient Collision Detection 207

a simulation of 1000 particles. The radius of a particle was chosen between 1.0 and
10.0, and the maximum norm of acceleration was 30.0. The volume of the box was
2003. Figure 7(a) is the initial state of the particles in the box. Figure 7(b) shows the
moving particles, and their time-varying bounds at the same time instance are shown in
Figure 7(c). As expected, the time-varying bounds in Figure 7(c) are larger than their
corresponding spheres in Figure 7(b). Figure 8 shows a 7-second simulation of particles.

Gt =6.3 ®t=170 Ot =17

Fig. 8. Simulation for 7 seconds.
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Initially, the particles were randomly placed in a box. As time passed, they gathered
around the center line of the box and spread out on the top face due to velocity fields.
Then they circulated in the box. It took 2.846 seconds on average to perform 1-second
simulation of 1000 circulating particles. That is, our algorithm showed a near real-time
performance to detect collisions among 1000 particles.

5. Conclusions. In this paper we have presented a new algorithm that efficiently de-
tects collisions among multiple moving spheres with unknown trajectories. To trace
the movement of a sphere, we represent its time-varying bound as a moving sphere of
variable radius, which is guaranteed to contain the sphere. Due to the compact repre-
sentation of our time-varying bounds, we can generalize the event-driven approach [1]
for collision detection among multiple such bounds. Since a ballistic sphere is a special
case of a time-varying bound, our algorithm can handle not only spheres with unknown
trajectories but also ballistic spheres. Our experimental results show that the proposed
algorithm simulates several thousands of moving spheres with unknown trajectories at an
interactive rate. For future work, we intend to apply the algorithm to various applications
such as crowd simulations and interactive applications.

Acknowledgement. We thank Prof. Hong Oh Kim at the Applied Mathematics De-
partment of KAIST (Korea Advanced Institute of Science and Technology) for his help
in deriving (2) as given in the Appendix.

Appendix. Set F(s) = u - X(s), where X (s) is the position of an object at time s. By
Taylor’s theorem,

P (4 FO

F(s) = Flio) + — )

for some #y < m(s) < s. Note that
F'(s)=u-X(s) and F"(s)=u-X(s).
Evaluating F(s) ats =t > ty,

X (to) u-X(m())

F(0) = X(1) = - X (1) + =t = 1o) + —— = (t = 10)".
or
Take

w= X - X~ X )
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Then
Wul? < fluell - II;(m(t))H ¢ — 1),
or
HX(r) ~xta) = N0 g < OO 2
Since | X (m(1))| < A forall ¢,
X A
me—X(m)— W = L0 -0
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