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Abstract: A small set of protein fragments can represent adequately all known local protein
structure. This set of fragments, along with a construction scheme that assembles these fragments
into structures, defines a discrete (relatively small) conformation space, which approximates protein
structures accurately. We generate protein decoys by sampling geometrically valid structures from
this conformation space, biased by the secondary structure prediction for the protein. Unlike other
methods, secondary structure prediction is the only protein-specific information used for generating
the decoys. Nevertheless, these decoys are qualitatively similar to those found by others. The method
works well for all-� proteins, and shows promising results for � and � proteins. © 2003 Wiley
Periodicals, Inc. Biopolymers 68: 278–285, 2003
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INTRODUCTION

The structural biology community has long focused
on the very hard task of developing algorithms for
solving the ab initio protein folding problem—
namely, predicting protein structure from sequence. It
seems appropriate in a volume dedicated to the mem-
ory of Shneior Lifson to recollect Levitt’s first mem-
ories of discussing this problem with Lifson. This
occurred at the seventh Ciba Foundation Symposium
on Polymerization in Biological Systems, which was
organized by Ephraim Katzir and held in London in
the autumn of 1971. Levitt was in the third year of his
Ph.D. and was only there as Aaron Klug had asked

him to attend in his place. This meeting was attended
by all the big shots of the time and Levitt was com-
pletely out of his depth. His paper was on the folding
of nucleic acids1 and in the extensive discussion pe-
riod Lifson asked in his provocative way, “Who cares
about how a protein folds. It just happens like a leaf
falling from a tree.” At the time Levitt was lost for
words and had no real answer other than: “Because
the problem is there we must tackle it. . ..”

Reflecting back, we now understand more about
what Lifson meant. He realized earlier than many that
protein folding was a very complicated many-body
problem dependent on the details of the underlying
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energy function. He felt that one could probably ap-
proximate the energy function as he demonstrated so
elegantly with his pioneering work on the Consistent
Force Field.2,3 He also appreciated then that, even if
the underlying forces were simple, the dynamics
would be complicated, just like a leaf falling through
the air. Each time a sequence folded it would fold
differently, so why attempt the impossible task of
simulation? Well, although his argument showed
great insight, he may have been wrong. We need to
tackle these messy, many-body problems because that
is what biology is all about. Although Shneior Lifson
laid the foundation for modern computational biology
(see Levitt4) and applied computers to what were very
complicated organic molecules, in 1971 he may not
have fully appreciated that the key to dealing with the
messy details caused by the intrinsic complexity of
biology must be the same computer simulations and
computer models that he pioneered.

Ab initio prediction is commonly viewed as com-
posed of two subproblems (1) generating candidate
folds—called decoys; and (2) devising a scoring func-
tion, or energy potential, that discriminates between
near native folds and others non-native folds amongst
the decoys. Many studies5–7 consider the parallel
question of searching for conformations that have low
energy, and address it using minimization-based
methods that search the landscape of the scoring func-
tions. Huang et al.8 pointed out that a clean separation
of the two subproblems is advantageous as it allows
an easier comparison between different energy poten-
tials, without penalizing scoring functions with a rug-
ged landscape. This work is focused on the first sub-
problem—namely, sampling the conformation space
for many near native structures.

A common strategy for generating protein fold
decoy structures considers discretized versions of the
conformation space. Conformation space has been
discretized by means of lattice models9–11 and off-
lattice models.12,13 Typically, there is a trade-off be-
tween the complexity, i.e., the size of the conforma-
tion space, and the precision with which shapes from
the discretized space can approximate real protein
structure.13 Although the size of these discrete con-
formation spaces can be fairly large, they are finite
and thus offer the hope that they could be explored
sufficiently well to produce structures that will serve
as good decoys for a protein structure predictor. Here,
we explore structures in a novel discrete conformation
space.

The number of proteins with known structures in
the Protein Data Bank (PDB) increases steadily and is
currently greater than 15,000.14 Various studies have
extracted knowledge from this database of structures

to improve protein structure prediction. For instance,
Simons et al.15 exploited correlations between se-
quence and local protein structure for decoy genera-
tion; Fain and Levitt16 devised helical protein decoys
by constructing structures consistent with observed
interhelical characteristics.

Our study relies on the observation that a small
database-derived library of short fragments can ade-
quately represent all protein structures, and uses this
library to generate sets of protein decoys. We con-
struct self-avoiding and compact protein decoys by
repeatedly assembling pieces from a library of com-
mon protein fragments. The pieces used for the as-
sembly of the chains are chosen at random, biased by
the secondary structure sequence of the protein con-
sidered. The restrictions and the bias used in our
scheme are based solely on the geometric nature of
the protein and completely ignore all specific details
of its amino acid sequence. Despite the extreme sim-
plicity of this method, the sets of decoys generated
include many structures that have a coordinate root
mean square (cRMS) deviation smaller than 6 Å from
the native conformation. This method works well for
small all-� proteins, and reasonably well for an � and
� protein.

METHODS

The representation we use for protein structures is based on
a library of 20 fragments of protein backbone. Each frag-
ment is 5 residues long and consists of the three-dimen-
sional coordinates of its 5 C� atoms. To generate the library
we consider 200 protein domains whose three-dimensional
structure was accurately determined. Each of these domains
was broken into a series of nonoverlapping fragments, thus
obtaining a total of 7133 fragments. These fragments were
then grouped based on their cRMS deviations from one
another, into 20 clusters: each a collection of geometrically
similar fragments represented in the library by a single
element—the cluster’s centroid. Note that the fragments do
not include any sequence specifics of the proteins, only
structural information. This work has been described in
detail elsewhere (Kolodny et al.17).

The 20 elements in our library serve as building blocks
used in constructing protein fold decoys. To build a decoy,
copies of fragments from the library are repeatedly added to
extend a chain, until reaching the target length of n residues.
Each added fragment is positioned by superimposing18 the
first three residues of the fragment on the last three residues
of the growing chain, extending the chain by 5 � 3 � 2
residues. The positioning of the first three residues in space
determines the orientation of the fragment, so the two ex-
tending residues have a unique position. Figure 1 illustrates
this procedure in two dimensions. To summarize, a string of
m fragments encodes a unique structure of 5 � 2(m � 1)
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� 2m � 3 residues; equivalently, a structure of n residues
that is constructed from library fragments is encoded by a
string of (n � 3)/2 library elements.

The structures that can be constructed using the above
scheme are protein-like in that they consist of fragments
whose local chain conformations are like the ones common
in real proteins. Structures generated this way also approx-
imate real proteins well: combinations of overlapping frag-
ments fit the 145 proteins of the Park and Levitt set13 to
1.88 Å cRMS deviation on average.

Decoy generation procedures aim to build structures that
are similar to the structure of a target protein. By the above,
an obvious decoy generation scheme for a protein of length
n is to enumerate all possible strings of length (n � 3)/2
over a 20-letter alphabet, and construct the corresponding
structure for each one. The number of possible strings,
20(n�3)/2 � 4.47n, grows exponentially with the protein
length, making enumeration tractable only for short pro-
teins. This suggests an alternative scheme for generating
decoys: sample the space of strings and construct the cor-
responding structures.

Secondary structure offers a coarse description of the
backbone shape and can be predicted fairly well.19 For a
protein p of n residues, the first approximation secondary
structure sequence is a string of symbols H, E, and C that
indicates, for each residue, whether it is a part of a helix (H
for helix), a strand (E for extended), or neither (C for coil).
More formally: s(p) �{H,E,C}n. We refine our scheme to
include the predicted secondary structure of the target pro-
tein. For every possible characterization of a secondary
structure pair extending the chain, we consider the distribu-
tion of the different library elements that should be used for
this extension. Equivalently, we calculate the conditional
probability P(l��) for every library element l, and every
two-letter secondary structure sequence [string of two let-

ters or � � {H,E,C}2; see Appendix for details]. In the
refined scheme, denoted as biased sampling, the ith frag-
ment of the chain is chosen at random, according to a
distribution of the library elements conditioned by si(p), the
secondary structure sequence of the two residues added by
this fragment. The secondary structure sequence for a pro-
tein is derived from its native structure using STRIDE,20

reflecting our assumption of a perfect secondary structure
predictor. We emphasize that in this study our knowledge of
the protein sequence influences the decoy generation pro-
cess only via the use of the “predicted” secondary structure
sequence.

We generate decoy structures that satisfy just two simple
geometric properties of proteins: self-avoidance and com-
pactness. Specifically, we enforce self-avoidance by requir-
ing that any two C� atoms be separated by at least 2.5 Å.
Compactness is enforced by allowing only decoys in which
all C� atoms are separated by at most B Å, with B varying
from 20 to 60 Å. As could be expected, the majority of the
structures are either not compact or self-intersecting. Sam-
pling the space and discarding the structures that fail these
geometric tests is increasingly inefficient as the compact-
ness condition is enhanced (smaller B). Furthermore, the
construction of a decoy structure of n residues is an expen-
sive computation involving (n � 3)/2 superpositioning
steps. Consequently, a strategy that repeatedly constructs
decoy chain prefixes that are eventually discarded is waste-
ful. To solve this problem, we use the technique suggested
by Rosenbluth and Rosenbluth21 for sampling only allowed
chain paths. This technique assures us that whenever chain
extension is possible the chain is extended, while its statis-
tical weight is changed to account for the altered distribu-
tion. The details of this sampling method, as well as the
modifications implied by it to random variable estimation,
are discussed in the Appendix.

FIGURE 1 A two-dimensional example of constructing a chain from a library of 4 fragments with
4 residues in each. We construct the chain DCCA and illustrate the 4 construction steps. In each
extension, the first two residues of the new fragment are superimposed on the last two residues of
the chain (only 2 residues are used for positioning because the example is in 2D). Notice that library
fragments can be reused and that the chain has a direction.
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RESULTS

We generate decoys for four proteins with PDB codes
1enh, 4icb, 2cro, and 1ctf, all having relatively short
chains (54, 76, 65, and 69 residues, respectively). The
first three proteins are all �: 1enh has three helices,
4icb and 2cro each have four helices; 1ctf is an � and
� protein with three helices and three strands. We
verify that the discretized conformation space that we
use has structures that are close enough to the proteins
studied, by constructing approximations to these pro-
teins using the known native structures. The best
approximations we found have a cRMS deviation of
1.41, 1.60, 1.41, and 1.43 Å from the native structures
of 1enh, 4icb, 2cro, and 1ctf, respectively.

We investigate the different decoy structures gen-
erated for 1enh using uniform and biased sampling,
with biased sampling based on the secondary structure
sequence of the protein. We generate 400,000 decoys
with maximal distance constraints of 20, 30, 40, and
50 Å (the native state of 1enh satisfies a maximal
distance constraint of 26 Å). For every decoy we
construct, we measure its cRMS deviation from the
native state of the protein. Figure 2 plots the number
of decoys found for a range of cRMS deviations from
the native state in the various experiments. The plots
show that the histograms shift to the left as the max-
imal distance constraint is tightened, demonstrating

that decreasing the maximal distance generates more
native-like decoys. The biased sampling technique
offers better decoys than the uniform sampling when
the maximal distance is 20 and 30 Å, but gives worse
decoys when the maximal distance constraint is re-
laxed to 40 and 50 Å. This phenomenon can be
explained by the following observation: decoy struc-
tures generated when the maximal distance constraint
is greater than 40 Å tend to be relatively open. The
decoys generated by the biased sampling are open
chains with rigid helical parts embedded in the appro-
priate places. As all decoys are fairly far from the
native state, the more compact ones seem to be best
(even though they do not actually resemble the pro-
tein’s structure). The biased decoys, with rigid parts
along the chain, have fewer positions (the nonrigid
ones) in which there is a probability of turning back
and making a compact structure, and thus appear to be
worse. This explanation is supported by the fact that
the uniform sampling histogram is broader when the
maximal distance constraint is relaxed while the bi-
ased sampling histogram is only shifted to the right.
This phenomenon is even more pronounced when we
considered larger maximal distances (e.g., 80 Å, data
not shown). Similar behavior of (1) improved decoys
as the distance constraint is enforced more strictly and
(2) better decoys in the biased sampling when the
maximal distance is small, is observed for all the

FIGURE 2 Distribution of the cRMS deviations (in Å) of 400,000 decoys for protein 1enh when
enforcing maximum distance constraints of (A) 20 Å, (B) 30 Å, (C) 40 Å, and (D) 50 Å, using biased
and uniform sampling.
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proteins we studied; their specific histograms are not
shown for brevity.

Decoys generated using the biased sampling are
more protein-like as they have secondary structure,
while those generated by the uniform sampling have a
more “scrambled” look (compare Figures. 3A and
3B). With secondary structure, the best of the decoys
does look very-native-like (Figure 3C). We noticed
similar behavior for all proteins studied.

We follow Reva et al.22 and consider a decoy
“good” when its cRMS deviation is smaller than 6 Å
from the native structure of the protein it targets. For
the proteins 1enh, 4icb, 2cro, and 1ctf, we count the

number of good decoys found by our sampling pro-
cedures and plot the results comparing this measure
for uniform and biased sampling (Figure 4). The max-
imal distance of the native state of the proteins’ struc-
tures is 26 Å in 1enh, 30 Å in 4icb, 26 Å in 2cro, and
30 Å in 1ctf. In all cases, the biased sampling found
more good decoys than the uniform sampling—this
effect is very strong for 1enh and more subtle for 1ctf.
Good decoys are found only when a sufficiently tight
compactness restriction is enforced. The total number
of good decoys found is encouragingly high at 1507,
280, 269, and 30 structures out of 400,000 generated
for 1enh, 4icb, 2cro, and 1ctf, respectively using a

FIGURE 3 Decoy structures generated by our procedure for 1enh: (A) A typical structure
generated by uniform sampling (5.94 Å cRMS deviation from the native structure). (B). A typical
structure generated by biased sampling (5.72 Å cRMS deviation). (C) The native state superimposed
on the best decoy found by biased sampling (3.9 Å cRMS deviation, the decoy is in the darker tone).

FIGURE 4 The number of good decoys (cRMS deviation �6 Å) as a function of the compactness
constraint for 1enh, 4icb, 2cro, and 1ctf. Each of the graphs compares the number found when
generating decoys using biased (solid) and uniform sampling (dashed).
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compactness constraint of 30 Å. For 1enh, the results
are even better with a compactness constraint of 20 Å
with 4849 good decoy structures.

The cRMS deviation of the best decoys found was
less than 5.0 Å from the corresponding native states:
3.94 Å for 1enh, 4.23 Å for 4icb, 4.94 Å for 2cro and
4.95 Å for 1ctf. In all cases, the best decoy structure
is found with a 30 Å compactness constraint and
biased sampling. Figure 3(C) shows the best decoy of
1enh superimposed on the native structure.

We calculate the radius of gyration of the decoy
structures generated with biased sampling for 1enh
and plot the results in Figure 5. The histogram values
are normalized by dividing them by 400,000 so that
the integral of the histogram gives the fraction of
space occupied by geometrically valid decoys. As
expected, decoys generated with a smaller maximal
distance constraint have smaller radii of gyration. We
can also see that the fraction of space occupied by the
valid decoy structures decreases dramatically as the
maximal allowed distance is decreased.

DISCUSSION

We have aimed to generate decoys by sampling a
discrete and relatively small space of conformations
that approximates proteins well. As the space is far
larger than our sampling set, we hope to sample the
relevant regions, i.e., those compact, self-avoiding
folds with the secondary structure of the protein con-
sidered. The two prominent characteristics of our de-

coy generation scheme are as follows: (1) the amino
acid sequence of the target proteins is not consid-
ered—only its secondary structure is used; (2) the
construction is based on the local geometry of other
native proteins.

Almost all decoy generation techniques incorpo-
rate the amino acid sequence of the protein studied.
The information flow from the amino acid sequence
into the construction of the decoys varies: some im-
port it via the scoring function,5 while others search
the PDB for structures with similar amino acids and
generate decoys with resembling structural pieces. In
particular, Simons et al.15 seek structures with similar
consecutive triplets of amino acids while Huang et al.8

consider nonconsecutive pairs of residues with similar
amino acids. Our method explores the boundaries of
decoy generation schemes by addressing the question:
“How good are decoys when using only secondary
structure information?” Surprisingly, although we use
significantly less information about the proteins, the
decoys we generate are qualitatively very similar to
those found by others. For instance, the best decoy for
4icb found by Huang et al.8 has a cRMS deviation of
5.0 Å from the protein (compare with our value of 4.9
Å). Simons et al.15,23 found better decoys than ours:
the best 2cro decoy at 4.2 Å (compare with 4.9 Å), the
best 1ctf at 3.46 Å (compare with 4.9 Å) and the best
5icb decoy at 3.74 Å (compare with 4.2 Å).

Our decoy generation method uses only the local
geometric properties of protein backbones as implied
by the shape of the fragments in the library. We do not
employ any observations regarding common geomet-

FIGURE 5 The estimation of the distribution of radius of gyration of 1enh decoys with biased
sampling. The maximum distance constraint is (A) 20 Å, (B) 30 Å, (C) 40 Å, and (D) 50 Å.
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ric structures of nonconsecutive residues. The method
works best when generating decoys for all-� proteins,
and not as well for � and � proteins. Our study
suggests that conforming to correct local geometric
features along the chain may suffice to imply the
structure of an all-� protein. In a way, it is comple-
mentary to the work of Fain and Levitt,16 which
showed that conforming to correct nonlocal geometric
features suffices to imply the structure of an all-�
protein. Indeed, the stabilizing interactions in helices
are close along the chain, while those that involve �
strands are not, and hence are not captured correctly
by our scheme.

These observations suggest several directions for
future study: (1) incorporate nonlocal geometric fea-
tures; (2) incorporate a scoring function into the
scheme allowing searching rather than sampling; (3)
enrich the library with amino acid sequence informa-
tion, and use this information to bias the sampling.

APPENDIX

Estimation of the Probabilities of the
Library Elements, Conditioned by the
Secondary Structure Sequence

We associate with each fragment f a secondary struc-
ture sequence s(f) � {H,E,C}2 of its last two residues
(the first three residues are used only for positioning),
implied by the secondary structure sequence of its
originating protein. These sequences are calculated
with STRIDE.20 Our experiments show similar results
regardless of the exact positioning in the fragment of
the two residues, for which the secondary structure
sequence is considered. It is hard to associate a longer
sequence with each fragment (of three residues or
more) due to insufficient statistics. We calculate
P(l��) using Bayes law:

P�l��� �
P���l�P�l�

P���
(1)

where the probabilities P(��l) and P(l) are estimated
by their observed frequencies. Denote by cluster(l)
the cluster of fragments having l as is its centroid and
by � � � the cardinality of a set. P(��l) is estimated by
the frequency of the fragments in cluster(l) that have
the secondary structure �,

P���l� �
��f � cluster�l��s�f� � ���

�cluster�l�� (2)

As we are estimating probabilities by frequencies, the
probability of an event may be too small for our
sampling: when we do not observe any instances of a
secondary structure sequence � in the cluster of a
library fragment l, we assign a small probability
P(��l) � � (rather than 0, the observed frequency) to
compensate for our finite sampling. We estimate P(l)
by the frequency of the fragments represented by l in
the total population of clustered fragments:

P�l� �
�cluster�l��

�
l	�library

�cluster�l	��
(3)

The term P(�) is an easily calculated normalizing
factor.

The probability of sampling the sequence of library
fragments l1, l2,. . .,l(n � 3)/2, given the secondary
structure sequence s(p) is

P
l1,l2, . . . ,l�n�3�/2�s�p�� � �
i�1

�n�3�/2

P
li�si�p�� (4)

Chain Growth Monte Carlo Technique

We sample only decoy structures that satisfy the geo-
metric constraints of compactness and self-avoidance,
using the method of Rosenbluth and Rosenbluth.20

For l � 1,. . ., 20, define vi(l) to be 1 if l is valid as the
ith fragment in the chain and 0 otherwise. For every
extension of the chain, vi(l) is computed for all l
values, increasing the computational cost of every
chain extension by 20 superpositioning computations.
We sample the extending fragment, either uniformly
or with a bias, from the subset of valid fragments for
the ith position, namely from {l �vi(l) � 1}. If no
library fragment is valid at the ith position, we discard
the chain and restart the decoy generation process.
This procedure assures that unless a “dead end” is
encountered, the already constructed chain is main-
tained. In cases where some of the library frag-
ments are nonvalid, we renormalize the probabili-
ties to sum to 1 by dividing the probability by wi

��i�1
20 vi(l)P[l�si(p)], the total weight of all valid frag-

ments for that position. Notice that when sampling
uniformly, the secondary structure sequence does not
influence the probability value [P(l�si(p)] � 1/20 for
all si(p).

Enforcing the sampled structures to be valid im-
plies that sampling is done from a different distribu-
tion than the one intended. Consequently, when esti-
mating the value of a random variable, one needs to
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account for the restricted sampling (only from a sub-
set of all fragments) in different positions along the
chain. The random variable of a sampled chain should
be weighted by the portions of space we restricted
ourselves to during the construction process. The
weight of a decoy structure is w � 
i�1

(n�3)/2wi, the
product of all the constraints enforced along the way.
The estimate for a random variable r from N samples
should therefore be 1

N
�k�0

N�1 rkwk, where rk is the ran-
dom variable value for the kth constructed chain and
wk is its weight.
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