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Abstract— This paper presents a cooperative relay strategy
with a game-theoretic perspective. In multi-hop networks, each
node needs to send traffic via relay nodes, which behave
independently while staying aware of energy constraints. To
encourage a relay to forward the packets, the proposed scheme
formulates a Stackelberg game where two nodes sequentially bid
their willingness weights to cooperate for their own benefits.
Accordingly, all the nodes are encouraged to be cooperative only
if a sender is cooperative and alternatively to be non-cooperative
only if a sender is non-cooperative. This selective strategy changes
the reputations of nodes depending on the amount of their
bidding at each game and motivates them to maintain a good
reputation so that all their respective packets can be treated well
by other relays. This paper analyzes a Nash equilibrium from
the proposed scheme and validates a sequential-move game by
Stackelberg competition as opposed to a simultaneous-move game
by Cournot competition. Simulation results demonstrate that the
proposed scheme turns non-cooperative nodes into cooperative
nodes and increases the cooperative relaying stimulus all over
the nodes. Thus, every node forwards other packets with higher
probability, thereby achieving a higher overall payoff.

I. INTRODUCTION

Recently, multi-hop networks where each node operates
independently without any centralized base stations have been
widely investigated. This network can use cooperation among
nodes so as to increase the total throughput further than a
single-hop network [1]. However, each node is autonomous
and selfish in nature, and thus, spontaneous cooperation among
nodes is challenged. To accommodate this nature of multi-
hop networks, many approaches to stimulate cooperation have
been proposed. These approaches are roughly classified into
incentive-based schemes and pricing-based schemes.

In incentive-based schemes, nodes are rewarded for ap-
propriate behaviors such as being cooperative, or punished
for inappropriate behaviors such as being selfish. Depending
on the types of incentive, these schemes are divided into
reputation-based models and market-based (or payment-based)
models. In reputation-based models, every node observes
nearby neighbors to detect whether they forward data packets
or not, for example, by using a watchdog mechanism [2].
When a node has been deliberately dropping others’ packets,
the nearby nodes evaluate the node as a non-cooperative node,
and isolate it from their route selection [3]. To increase the
credibility for a node, [4] evaluates a node with a weighted
combination of three different reputations: subjective, indirect,
and functional reputations. These reputation-based models are
analytically studied based on Bayesian games in [5] and

on the tit-for-tat strategy in [6]. However, these approaches
assume that none of the nodes exhibit any misbehavior. For
example, if a malicious node accuses well-behaved relays of
non-cooperative nodes, they would be isolated and the whole
system would operate in error.

The market-based models use payments as incentives for
sending or relaying traffic. When a node sends a packet, it
pays credits to relay nodes for forwarding its packet. If a relay
node actively forwards packets, it would earn many credits
and send its own packets later by spending credits [7]. Since
credits are used as virtual money, each node requires tamper-
proof hardware or a centralized authority to ensure every
payment among nodes. This condition prevents market-based
schemes from becoming a fully distributed algorithm. Instead,
[8] proposes a secure protocol to manage credits confidentially
without any extra authorization. However, these schemes do
not provide all the nodes with equal opportunities to earn
their own credits. Nodes at the edge of network are penalized
because the demand for relaying traffic is relatively low.

Another approach to stimulate cooperation is a pricing-
based scheme where nodes compete for being selected on
a routing path. The pricing scheme was initially introduced
into networks as a rate-control problem in [9], and has been
developed to design network resource allocation problems with
dynamic link costs. In this scheme, relay nodes competitively
bid their resources to accommodate as much incoming traffic
as possible, and then the next-hop is decided depending on
the link costs. Since every node only cares to maximize its
own profit, this approach is usually modeled with a game-
theoretic framework. In [10], the interaction among nodes
is considered as a Stackelberg competition to solve revenue-
maximization problems. Recently, [11] analyzes the multi-hop
pricing game with a game-theoretic perspective where a relay
competes for traffic from multiple nodes and allocates received
traffic to multiple nodes. However, the selected routing path
is not guaranteed to be the shortest path to a destination even
though it could be optimal for each node to achieve its own
profit. This result can cause a delay when packets arrive at a
destination and consume more energy than expected.

To mitigate the delay effects, this work assumes that a rout-
ing path is decided with the help of a shortest-path algorithm.
Given a path, both a sender and a relay cooperate to forward
traffic by using the relative reputation of each node. The
main differences from the previous approaches are as follows.
Instead of isolating non-cooperative nodes on the path, this



paper provides non-cooperative nodes with more chances to
contribute to the overall network throughput. To encourage
them to be cooperative, this work allows mutual bidding of
cooperative willingness of a sender and a relay to decide
the forwarding probability of packets. Rather than competing
for traffic, a relay decides its bidding amount considering the
available energy status and the sender’s reputation. This inter-
relation procedure not only makes a relay conditionally coop-
erate, but also allows a cooperative sender to be treated well,
and a non-cooperative sender to turn into being cooperative.

This paper proposes a cooperative relay scheme under an
energy-limited condition in multi-hop networks. The main
focuses are 1) to motivate each node to be cooperative, 2) to
optimally decide the amount of cooperation, 3) to analyze an
equilibrium for the proposed scheme, and thus 4) to maximize
the overall throughput. First, each node is treated according to
its relative reputation. Unlike the previous mechanisms, this
relative reputation increases only when cooperative behavior
is in accordance with the proposed rule so that helping a
cooperative node is encouraged while helping a selfish node is
discouraged. Second, this work formulates a mutual-bidding
problem of the Stackelberg competition. By embedding a
sequential-move game, the inter-relation between two nodes is
modeled as an optimization problem. Third, an equilibrium of
the optimal solution is analyzed compared to a simultaneous-
move game of Cournot competition [12]. Simulation results
show that each node is encouraged to be a cooperative node
and the total network throughput is effectively improved as
opposed to a conventional scheme where selfish nodes are
isolated, and thus, are not allowed to contribute to relay
packets any longer. The key contributions of this work are

• The cooperative rule is a novel approach where only
conditional cooperation is encouraged.

• The proposed scheme does not isolate selfish nodes.
Instead, the mutual-bidding scheme provides them with
more chances to participate in the network.

• The cooperation between nodes is modeled under energy-
limited constraint in a game-theoretic framework.

• A two-stage Stackelberg equilibrium is analyzed com-
pared to a one-stage Cournot equilibrium.

II. SYSTEM MODEL

This paper considers stationary multi-hop networks where
a source sends traffic to a destination through multiple relays
with fixed power. It is assumed that a routing path is dis-
covered by Dijkstra’s shortest-path algorithm and consists of
loop-free links in multi-hop networks.

This work assumes that a sender can precisely estimate its
own channel gain to a specific relay [13]. Since a block fading
channel is considered, the channel gain on a link is invariant
over the block period so that a sender can be reasonably
aware of it. The corresponding signal-to-noise ratio (SNR)
can be calculated, and accordingly, the network throughput of
each link can be obtained. In the network, it is also assumed
that each node overhears control packets from neighboring
nodes. By overhearing the packets, each node can monitor its

neighbors and record their cooperative activities in its look-up
table. In the proposed scheme, this look-up table is utilized for
itself in order to avoid any security concerns among nodes.

III. COOPERATIVE RELAY SCHEME

The proposed cooperative scheme is based on the Stack-
elberg competition between a sender and a relay. In multi-
hop networks, a sender needs to ask a relay to forward its
packets toward the destination. The relay responds to the
sender about whether or not to relay the packet. This sequential
procedure can be modeled by the Stackelberg competition and
the optimal strategy is solved by backward-induction.

To encourage a relay to forward a packet, the proposed
scheme provides an incentive if it transmits the packet suc-
cessfully. However, it is possible that a malicious node takes
advantage of the scheme such that it transmits only its own
packets as a selfish sender and does not participate in for-
warding any other packets as a relay. Therefore, a new rule
of the game is designed in such a way that an incentive is
provided only when a relay helps a cooperative sender or
denies to help a non-cooperative sender. To determine how
cooperative a sender is, this paper re-defines the term, credit,
not as virtual money, but as a history of how well a node
follows the proposed scheme’s rule. This credit is in the range
of [−1, +1]. The most cooperative node has a credit of +1
and the most selfish node has a credit of −1. The credit is
updated after each game is over as follows:

ci,n+1 = ci,n + ∆ci (1)

where ci,n is the credit of node i at time n and ∆ci is the
amount of the incentive credit, which is achieved by the chosen
action. Note that the updated credit ci,n+1 is bounded at ±1.

Table 1 shows how the credit of a relay changes depending
on its action. The credit is given only when it helps to forward
a packet from a cooperative node and denies to help a selfish
node. This scheme encourages nodes to be cooperative in order
to avoid being treated as a selfish sender later.

Table 1. The Credit Table of Relay
sender action ∆cr

cooperative forward rewarded (+)
cooperative drop punished (-)
selfish forward punished (-)
selfish drop rewarded (+)

The credit of a sender represents the reputation it has
achieved from other nodes. The reputation declines from
neighbors when a request to forward its packet is refused by
a relay. Since a sender cares about only whether its packet is
successfully delivered or not, the incentive credit to a sender
depends only on the action of the relay, as in Table 2.

Table 2. The Credit Table of Sender
relay action ∆cs

- forward gain reputation (+)
- drop lose reputation (-)



Based on the incentive strategy, this paper addresses the
problem of how cooperative a node is each time. The game
introduces a new variable wi to represent the willingness to
participate in the game. Both a sender and a relay should
be able to decide their own willingness, and correspondingly,
the forwarding probability at time n is expressed in terms of
credits and willingness as

pn = pbase + pconst

∑
i=r,s

wic−i,n (2)

where pbase and pconst are tuning parameters, and the subscript
−i represents the opposite player. Each node looks at the credit
of the opposite player and decides how much it weighs. If a
node meets a cooperative player, then it would weigh more to
increase the forwarding probability, and vice versa.

With these parameters, the game between a sender and a
relay is established. Each node has two utilities consisting of
three components: Shannon’s capacity as the measure of the
throughput, the cost of consuming transmission power, and the
credit accumulation as its reputation. Given the transmission
cost β, and the SNRs in the game, both throughput utility and
credit utility are expressed as

ut,i(wi, w−i) = pn (log (1 + SNRi) − β) , (3)
uc,i(wi, w−i) = fi(pn, c−i,n)wi (4)

where SNRs is the SNR between a sender and a relay, and
SNRr is the SNR between a relay and the next hop of the
relay. The amount of credit is calculated based on Table 2
and 3. When a relay weights its willingness wr, it gains or
loses additional credit depending on a sender’s current credit
and whether the packet is actually forwarded after the game
is over. Therefore, ∆cr = ±cswr and fr(x, y) = (2x − 1)y
where ± signs follow Table 1, and [0, 1] is mapped to [−1, 1]
by (2x−1), allowing the credit utility uc,i to be positive, i.e.,
giving an incentive, or negative, i.e., giving a penalty. From
the perspective of a sender, the additional credit relies only on
its willingness ws, and the result of the actual packet delivery
regardless of the current credit of a relay. Thus, ∆cs = ±ws

and fs(x, y) = (2x − 1) where ± signs follow Table 2.
Furthermore, the game has one constraint such that a node

should be operating under the available battery condition. Each
time, a node could be requested or request to join in the game.
According to the result of each game, the remaining energy
of node i at time n, notated as βrem,i,n, varies as

βrem,i,n = βtot −
n−1∑
k=1

I(pk)β > 0 for i = r, s (5)

where βtot is the total energy resource of each node and I(·)
is the function to indicate the result of packet delivery.

I(pn) =
{

1 if packet is successfully delivered under pn

0 otherwise

The objective function of each node is then the sum of the
physical utility ut,i and the virtual utility uc,i above under
the condition that each node is alive. The cooperation factor

α controls the weight of the virtual utility. Accordingly, the
game between a sender and a relay leads to two sequential
optimization problems so as to maximize the objective func-
tion. For a relay, the best response w∗

r is a function of given
ws, i.e., w∗

r = w∗
r(ws). This optimization problem is

max
wr∈W

πr(wr, ws) = ut,r(wr, ws) + αuc,r(wr, ws)

subject to βrem,r,n − pnβ > 0 (6)

where W is the feasible set bounded by the maximum and
minimum limit of the willingness variable. Notice that W =
[wmin, wmax] where 0 ≤ wmin, wmax ≤ 1. On the other
hand, a sender is able to anticipate how a relay would behave
given ws, i.e., w∗

r = w∗
r(ws) by backward-induction as shown

before. The sender’s optimization is expressed as

max
ws∈W

πs(ws, w
∗
r) = ut,s(ws, w

∗
r) + αuc,s(ws, w

∗
r)

subject to βrem,s,n − pnβ > 0. (7)

By solving two sequential optimization problems, both
sender and relay can decide their best strategies to maximize
their own payoffs.

IV. EQUILIBRIUM ANALYSIS

This section shows that the proposed strategy motivated
by a sequential-move game through Stackelberg competition
achieves a Nash equilibrium, and it is unique for each player.
Additionally, strategies by a simultaneous-move game through
Cournot competition cannot be achieved in practice.

At the first stage of the Stackelberg game, a sender antici-
pates that a relay rationally decides its best strategy based on
the proposed rule. Given all the available information, a sender
estimates the relay’s response by solving its optimization
problem in Eq. (6). This problem can be rewritten as a
quadratic form of wr by

max
wr∈W

πr(wr, ws) = aw2
r + bwr + c

subject to wr ≤ d if cs,n > 0
wr ≥ d if cs,n < 0
βrem,r,n − (pbase + pconstwscr,n)β ≥ 0 if cs,n = 0

where the variables, a, b, c, and d, are defined respectively as

a = 2αpconstc
2
s,n,

b = (2αpconstcr,ncs,n) ws + pconstcs,nAr + αcs,n(2pbase − 1),

c = (pbase + pconstwscr,n)Ar,

d = −cr,nws/cs,n + (βrem,r,n − pbaseβ) / (cs,nβpconst) ,

Ar = (log (1 + SNRr) − β) .

Then, the optimal strategy of a relay w∗
r(ws) is expected to

be one of three solutions below as a function of ws depending
on certain conditions (which are omitted because of space
constraints).

w∗
r(ws) =


wmax
wmin

− cr,n

cs,n
ws + βrem,r−pbaseβ

cs,nβpconst



At the next stage, a sender applies the solution of w∗
r(ws)

to its own objective function maxws∈W πs (ws, w
∗
r(ws)) and

decides the best strategy w∗
s by solving a similar quadratic

optimization problem. Sequentially, a relay decides its strategy
w∗

r(w∗
s) after receiving a sender’s response w∗

s .

A. Stackelberg Equilibrium

Proposition 1 In the proposed two-stage game, the backward-
induction solution w = (w∗

s , w∗
r(w∗

s)) is a Nash equilibrium.

Proof: The solution set w̃ = (w∗
s , w∗

r(ws)) of two nodes
is a Nash equilibrium because both strategies of the nodes are
the best responses to each other. At the first stage, w∗

s is the
best response to w∗

r(ws) so that it maximizes the objective
function πs(ws, w

∗
r(ws)). At the second stage, w∗

r(ws) is also
the best response to ws so that it maximizes the objective
function πr(ws, wr). The backward-induction solution w =
(w∗

s , w∗
r(w∗

s)) is achieved when the best response w∗
s of a

sender to a relay is given. Since a set w is a subset of the set w̃,
the backward-induction solution achieves a Nash equilibrium.

Theorem 1 The proposed two-stage game guarantees the
existence of a solution if

βrem,i,n ≥ β for i = r, s

and the solution is unique unless the following two conditions
occur: cs,n = 0 or a = −b, d /∈ W .

Proof: The optimization problem for a relay is a
quadratic problem of wr with an affine constraint of energy. As
long as the available transmission energy remains, the solution
of a quadratic objective function πr(wr, ws) is on a valid finite
set W . This condition verifies the existence of the solution w∗

r .
Since the sender’s optimization problem consists of a linear
function w∗

r of ws for an expected response from a relay,
the objective function πs(ws, w

∗
r) is still quadratic. Therefore,

provided the valid energy constraint, the finite set W also
guarantees the existence of the solution w∗

s .
The backward-induction solution w = (w∗

s , w∗
r(w∗

s)) is
unique except under two conditions: The first is that a sender
is exactly neutral. According to Table 1, a relay’s action is
decided depending on the credit of a sender. Thus, a node
with a neutral credit can be both cooperative and selfish so
that a relay is confused about whether to help or not. The
second is that d is outside a region W so that a whole
region W is valid in an energy constraint, i.e., d /∈ W , and
simultaneously the quadratic objective function is symmetric
in a feasible set W , i.e., a = −b. This condition gives a
symmetric quadratic form within a feasible set W . Similarly,
the same condition is applied when a sender solves its own
optimization problem. Except for these cases, the convexity
or concavity of a quadratic problem is maintained so that a
unique solution is obtained from an asymmetric region of a
feasible set.

B. Cournot Equilibrium

The proposed scheme is based on a sequential-move game
to decide the best strategies for a sender and a relay. From
a game-theoretic perspective, two nodes can simultaneously
exchange their biddings. This simultaneous-move game is
explained by the Cournot competition where each player
decides his own strategy without seeing other players’ actions.
However, this subsection shows that the proposed scheme
cannot achieve a solution from the Cournot competition.

Theorem 2 The simultaneous one-stage game for the pro-
posed model does not guarantee that the best response
(w∗

s , w∗
r) for both nodes exists or is unique even if it exists.

Proof: Provided that the proposed scheme is operated in
a one-stage game, a sender seeks its solution w∗

s directly from
the optimization problem in Eq. (7) as a function of wr. Using
its own quadratic problem, the optimal strategy for a sender
w∗

s(wr) is developed in one of four options as follows:

w∗
s(wr) =


wmax
wmin

− cs,n

cr,n
wr + βrem,s−pbaseβ

cr,nβpconst

− cs,n

2cr,n
wr + cs,nAs

4αcr,n
− 2pbase−1

4pconstcr,n

where As = log (1 + SNRs) − β. Since two functions of
w∗

r(ws) and w∗
s(wr) are the best responses to each other, any

crossing points become optimal for both. However, the slopes
of the linear regions of w∗

r(ws) and w∗
s(wr) are the same, or

have the same sign depending on their parameters. Under this
condition, two linear regions of w∗

r(ws) and w∗
s(wr) could be

parallel, overlapped, or unmatched.
Thus, the simultaneous one-stage game may not have a

solution or may have multiple solutions. When the strategy
of each node is not unique, another node cannot decide its
own strategy, and thus, should decide at random. This simul-
taneous setting prevents the proposed model from obtaining
the optimal solution.

V. RELAY PROTOCOL AND SUCCESSIVE GAMES

This section explains the underlying relay protocol where
the proposed cooperative scheme operates. The proposed
scheme is based on a two-stage game between a sender and
a relay, and this game is repeated along a given routing path
toward a destination.

A game between a sender and a relay is established with
two phases. When a sender is ready to send its messages,
it sends a control signal to its next-hop in the first phase.
If the designated relay is under the powerless state, it would
reject the game and remain selfish because it is more important
to save energy for its own transmission later. Otherwise, the
relay responds with an ACK signal with the associate game
parameters such as the SNR of the next link. In the second
phase, a sender searches the relay’s credit and cooperative
activities in its look-up table, which has been accumulated by
overhearing its neighbors. Then, it decides the best response



to maximize its own profit and sends the best response to the
relay. Using this procedure, the proposed cooperative scheme
continues until the packet reaches the destination.

If the destination directly receives a packet from the prior
game, no additional procedure is necessary. On the other hand,
if a relay’s next relay turns out to be the final destination,
the relay just forwards the packet to the destination without a
subsequent game and accumulates the maximum credit. This
is because the packet was originally headed to the destination,
so a game does not need to be established.

In this series of successive games, the next hop of a relay
plays the role of a sender according to Table 2. For example,
when a routing path, 1 → 2 → 3 → 4 · · · , is decided, node 1
initiates the first game with node 2 and the packet is relayed
to node 3 according to the forwarding probability of the game.
If node 3 successfully receives the packet from node 2, node 3
would begin a successive game as a sender with node 4. This
work assumes that once a node receives a packet, it broadcasts
an ACK signal to its neighbors so that the neighboring nodes
can monitor whether the relay node intentionally drops the
packet at the next supposed transmission. If the node does not
begin the successive game, i.e., drops the packet intentionally,
it will lose credits because it is monitored by its neighbors.
Through this framework, all the nodes on the routing path are
encouraged to participate in the proposed games.

VI. SIMULATION RESULTS

This section presents the simulation results for evaluating
the performance of the proposed relay scheme. The proposed
scheme is implemented in MATLAB for the purpose of
algorithmic validation. A network with 100 nodes is simulated
at the network level where the nodes are uniformly distributed
over the area of 1000 m × 1000 m. Although the simulations
do not take into account networking issues such as packet
losses due to the volatility of wireless links or congestions, the
simulations empirically verify the correctness of the algorithm
and feasibility of the protocol. A simple unit-disk graph model
is used for network connectivity, and the maximum radio range
for successful transmission is set to 200 m. The transmission
power level of each node is set to 0 dBm, and the environment
noise is assumed to be an additive white Gaussian with mean
zero and variation −90 dBm. The propagation model assumes
to obey a path-loss model with a constant path-loss factor
K = −31.54 dB, a reference distance d0 = 1 m, and a
path-loss exponent γ = 3.71 from the set of the empirical
measurements for an indoor system at 900 MHz [14], and a
log-normal model with mean zero and standard deviation 3.65
dB. For each transport path, a pair of a source and a destination
are selected each time, and this end-to-end transmission is
repeated for 1000 runs. The total run time is normalized
to 1.00. Regarding the game parameters, pbase = wmax/2,
pconst = 0.25 are used where wmin = 0.1 and wmax = 0.9.
The route between a source and a destination is searched by
Dijkstra’s shortest-path algorithm.

Fig. 1 shows how the distribution of the nodes’ credit
changes over time. Initially, the credits are uniformly dis-
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Fig. 1. Illustration showing how the distribution of nodes’ credit changes
under the proposed scheme as the normalized time goes from 0.00 to 1.00.

tributed in Fig. 1(a) from the most selfish, −1 to the most
cooperative, +1. As the proposed relay scheme provides in-
centives to nodes obeying the rule of the game, the distribution
is moved toward the right as in Fig. 1(b) and Fig. 1(c).
This movement means that many nodes are changed into
cooperative nodes whose credits are greater than 0. At the
end of the simulation run, most of the nodes are willing to
participate in cooperation as in Fig. 1(d).
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Fig. 2. Required time to reach 70 percent cooperative nodes over all the
nodes where α = 1, β = 0.1, and βtot = 100.

Fig. 2 shows the required time to reach a certain level of
cooperative percentage of all the nodes. It is observed that
the time needed for 70 percent cooperative nodes over all the
nodes decreases as the initial percentage of cooperative nodes
increases. This means that the initial cooperative percentage
impacts how fast the nodes in the network become cooperative.

The effect of parameters used in payoff functions is shown
in Fig. 3. As the cooperation factor α increases, the curve of
cooperative percentage of nodes goes up steeply in Fig. 3(a).
This reveals that it takes less time to make nodes cooperative
because each node puts more weight on the accumulation
of the credit rather than other utilities. Fig. 3(b) shows the
effect of transmission cost β. As β increases, the node should
carefully decide to join the game as a relay because it costs
much to forward a packet from a sender. Thus, the increase
of β makes it slower to turn nodes into being cooperative.
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Fig. 3. The effect of each parameter: cooperation factor α and transmission
cost β, respectively, on the cooperative percentage.
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Fig. 4. The forward probability increases as time goes by under the proposed
scheme where α = 1, β = 0.1, and βtot = 100.

Fig. 4 shows the average forward probability as simulation
continues. Under the proposed scheme, it was shown that the
number of cooperative nodes increases in Fig. 1. As the entire
network gets more cooperative, the forward probability also
increases because each node is more willing to help coopera-
tive nodes. This implies that the network is getting cooperative
to forward packets with higher forward probability.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
ot

al
 T

hr
ou

gh
pu

t u
til

ity

Normalized Time

 

 

game−theoretic
randomized
fixed
hybrid

Fig. 5. The total throughput utility under different schemes to decide the
willingness wi with α = 1, β = 0.1, and βtot = 100, and a hybrid scheme.

Fig. 5 compares the total throughput utility under differ-
ent schemes on the decision of the willingness wi and a
conventional scheme to isolate selfish nodes as in [15]. The
result demonstrates that the proposed game-theoretic scheme
outperforms the other schemes, i.e., the random selection of wi

in [wmin, wmax] or the fixed use of wi = 0.5, confirming that
the game-theoretic wi selection is the best response through
optimization. It is observed that the randomized algorithm has
an advantage over the fixed-value method because randomized
behavior avoids the worst case of wi selection. In addition,
the total throughput utility of the conventional reputation-

based scheme is relatively low since it isolates non-cooperative
nodes from the network and inherently prevents them from
contributing to relay packets at all. On the other hand, the
game-theoretic scheme turns non-cooperative nodes into being
cooperative, allowing them to contribute to relay packets.

VII. CONCLUSION

This paper studies an incentive-based relay scheme to en-
courage nodes to be cooperative in wireless ad-hoc networks.
The proposed scheme takes a game-theoretic perspective so
that the payoff of each node can be maximized given the
condition that its energy remains available. As a result, it
is shown that the distribution of nodes’ credit moves toward
being cooperative and most of the nodes become willing to
help one another under the proposed scheme.

The main benefit of this scheme is in two aspects. First,
the proposed scheme is based on a decentralized algorithm.
Even if there is no central authority, the network is driven to
relay packets from neighbor nodes so that it becomes actively
operated. Second, in this work, each node adaptively decides
its best response depending on the network environment.
In every game, each node can control the amount of its
participation to relay packets. Both the forward probability
of a relaying packet and the amount of energy consumption
can be effectively managed by its rational behavior. For these
reasons, the proposed scheme fits well into wireless ad-hoc
networks where each node is self-operating.
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