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We present a novel deep learning framework for flow field predictions in irregular domains when the solution is
a function of the geometry of either the domain or objects inside the domain. Grid vertices in a computational
fluid dynamics (CFD) domain are viewed as point clouds and used as inputs to a neural network based on the
PointNet architecture, which learns an end-to-end mapping between spatial positions and CFD quantities.
Using our approach, (i) the network inherits desirable features of unstructured meshes (e.g., fine and coarse
point spacing near the object surface and in the far field, respectively), which minimizes network training cost;
(ii) object geometry is accurately represented through vertices located on object boundaries, which maintains
boundary smoothness and allows the network to detect small changes between geometries; and (iii) no data
interpolation is utilized for creating training data; thus accuracy of the CFD data is preserved. None of these
features are achievable by extant methods based on projecting scattered CFD data into Cartesian grids and
then using regular convolutional neural networks. Incompressible laminar steady flow past a cylinder with
various shapes for its cross section is considered. The mass and momentum of predicted fields are conserved.
We test the generalizability of our network by predicting the flow around multiple objects as well as an airfoil,
even though only single objects and no airfoils are observed during training. The network predicts the flow
fields hundreds of times faster than our conventional CFD solver, while maintaining excellent to reasonable
accuracy.

I. INTRODUCTION AND MOTIVATION

One of the main contributions of machine learning
techniques to Computational Fluid Dynamics (CFD)
simulations is reducing the computational costs. Even
with the presence of high performance computing tools
(see e.g., Refs. 1–5) and efficient numerical schemes (see
e.g., Refs. 6–10) to accelerate CFD simulations, investi-
gation of design parameters for device optimization re-
mains computationally expensive mainly because a huge
number of iterations for flow field analysis is required
by users11. Meanwhile, with an increase in the usage of
CFD both in the industry and academia, a growth in the
collection of CFD data has been observed12–14. Conse-
quently, deep learning schemes as a data-driven strategy
have been recently utilized in the CFD community as a
solution to overcome the computational burden. To take
advantage of this approach, a few or all the components
of a CFD solver have been replaced by a neural network
(see e.g., Refs. 11, 15–18). For instance, Xiao et al. 19 uti-
lized a Convolutional Neural Network (CNN), but only
as a replacement of the pressure Poisson equation, which
is the most time consuming component of pressure cor-
rection methods20–24. They achieved a speedup factor
of 90 for prediction of the inviscid flow field in compari-
son with the multigrid method introduced by McAdams,
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Sifakis, and Teran 25 . This is while Thuerey et al. 17 used
U-Net26 to completely skip a CFD solver and predicted
the velocity and pressure fields around an airfoil.

To use neural networks as a replacement of CFD
solvers, it is important to efficiently feed CFD data into
a network, and thus, an effective data representation is
crucial. The connection of neural networks with Carte-
sian grids is straightforward. For this scenario, using two
and three-dimensional CNNs is a popular methodology
among the CFD community (see e.g., Refs. 27–29). In
this method, each vertex of a Cartesian grid corresponds
to a pixel of an image processed by a CNN. However, in
real-world applications with complex geometries, employ-
ing unstructured grids is unavoidable. In contrast with
Cartesian grids, the connection of unstructured grids,
and consequently scatter CFD data, with neural net-
works becomes challenging, specifically because the flow
field is function of the geometry of the CFD domain. The
approach to connect scatter CFD data (arisen from un-
structured grids) to a two or three-dimensional CNN is to
use pixelation (voxelisation). In pixelation, scatter CFD
data is projected into a two or three-dimensional Carte-
sian grid such that they become amenable to traditional
CNNs (see e.g., Refs. 11, 15–18, 30–44).

The pixelation strategy has five main shortcomings.
First, the pixelation technique leads to decreasing the
order of accuracy of CFD data due to the data interpola-
tion or extrapolation. Nowadays, a considerable amount
of effort is undertaken to design high-order methods for
CFD solvers (e.g., see Ref. 45). However, all this effort
is ignored by the pixelation approach. For instance, Fig.
8 of Ref. 18 shows the error introduced to the velocity
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field of a S814 airfoil as a consequence of the interpo-
lation. Second, while the flow field around an object is
highly sensitive to small changes (e.g., rotation or length
increment of the object), the pixelation method cannot
capture these changes unless a CNN with super resolved
input is used, which by itself imposes high computational
cost to the system. To the best of our knowledge, the
maximum resolution of a CNN used in the CFD area
(with application to prediction of flow around an object)
is 201 × 301 pixels in two dimensions36 and 32 × 32 ×
32 in three dimensions15. Thus, the study of geometrical
parameters for an optimization goal using deep learn-
ing techniques remains unsolved in practice. Third, it
is common to mask the interior points of objects (e.g.,
an airfoil) in the pixelation approach (see e.g., Fig. 1 of
Ref. 17 and Fig. 3 of Ref. 18). However, by ignoring
network-predicted pixels that lie inside the object, some
computational capacity of the CNN is wasted. Fourth,
the importance of information in a CFD domain is not
equal. For instance, the velocity and pressure fields near
the surface of an airfoil and in its wake region are more
important than other areas. Nonetheless, when using
pixelation, and consequently Cartesian grids, the distri-
bution of CNN pixels is uniform everywhere in the do-
main. Thus, refining the resolution in the area of interest
requires refining everywhere else too, which is compu-
tationally inefficient. Fifth, the pixelation procedure is
usually along with coarsening previously-smooth bound-
aries of a shape and introduces artificial roughness to its
surface (see e.g., Fig. 5 of Ref. 11). This error can dra-
matically change the flow features such as the location
of the detachment point on the surface of an airfoil (see
e.g., Fig. 1).

� �b

� �a

FIG. 1. Geometrical representation of the airfoil of RAE2822
(a) by vertices of an unstructured grid, and (b) by a pixe-
lation procedure after a projection into a 32 × 32 Cartesian
grid; The blue dot in (a) shows a virtual separation point in
an imaginary Reynolds number, however, the corresponding
point in (b) cannot characterize the separation as we expect
that the flow separates at most at the red dot due to the
artificial steps introduced to the surface by the pixelation.

To obviate the aforementioned problems, we present a
simple and elegant deep learning framework. This frame-
work is fundamentally based on the PointNet architec-
ture proposed by Qi et al. 46 in 2017. PointNet46 was
introduced for classification and segmentation of three-

dimensional objects represented as point clouds. For our
targets, grid vertices of a CFD domain are imagined as
a point cloud and an end-to-end mapping between the
spatial position of a vertex and its velocity and pressure
values is defined. Accordingly, we take the segmentation
track of PointNet and use mean squared error as a loss
function to solve a gradient descent optimization prob-
lem. Using this framework, the point cloud simultane-
ously represents both the geometry of the shape and the
space of flow field. There are several main advantages
with this strategy. First, because no data interpolation
or extrapolation is employed in this framework, the or-
der of accuracy of CFD data is preserved for neural net-
work training purposes. Second, object geometries are
represented with the same accuracy as in the grid rep-
resentation, since vertices that make up the point cloud
are located on object boundaries in the CFD domain.
Hence, the network is able to capture even minor varia-
tions from one geometry to another. Third, no artificial
effects are introduced to the object geometry (see Fig.
1). Fourth, since the point cloud is identical to the gen-
erated grid vertices, it inherits the mesh features in terms
of spatial grid distribution (i.e., fine grids near the object
and coarse grids in far fields). Thus, the computational
expenses of the neural network training are optimized.
Fifth, the spatial size of the physical domain can vary
from one data to another. Our deep learning methodol-
ogy is provided in detail in Sect. II C.

We assess the efficacy of the introduced deep learning
framework through a representative benchmark problem:
flow past a cylinder with different cross sections. An ex-
ternal flow past a cylinder is a model for canonical CFD
problems and has been widely used for the study of in-
compressible Navier-Stokes equations in two dimensions
(see e.g., Ref. 47). To generate our data, we select vari-
ous cross sections with standard shapes already used in
the literature: circle48, square49, triangle50, rectangle51,
ellipse52, pentagon53, and hexagon53. For each shape,
we consider different aspect ratios of its lengths and dif-
ferent poses. Length scales of the shapes and physical
properties of the fluid are set such that the flow remains
steady for all the data generated. Further details of data
generation are provided in Sect. II B. We analyze the
performance of our deep learning framework and accu-
racy of its prediction in several ways. First, we carry out
a pointwise error measurement of the velocity and pres-
sure fields predicted around shapes not seen during train-
ing. Second, to evaluate the ability of our deep learn-
ing framework for conservation of mass and momentum,
we compute the residual of continuity and Navier-Stokes
equations for the predicted flow fields. Third, we investi-
gate the ability of our neural network for the prediction
of the velocity and pressure fields around multiple ob-
jects placed within a certain distance from each other,
though the network has only seen one object per data
during the training process. Fourth, we examine the ca-
pability of the deep learning methodology for prediction
of the velocity and pressure fields around a standard air-
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foil, though the network has never seen an airfoil during
the training process.

The rest of this article is structured as follows. Section
IIA provides the governing equations of incompressible
viscous flows as well as our strategy for the CFD as-
pects. We explain the procedure of data generation in
Sect. II B. The structure of the neural network is illus-
trated in Sect. II C. Network training is described in
Sect. IID. A typical performance analysis of the net-
work along with graphical representations are discussed
in Sect. III A. Conservation of mass and momentum for
predicted fields are investigated in Sect. III B. We ex-
plain how different components of the network represent
the problem physics in Sect. III C. We discuss the gener-
alizability of our network in Sect. IIID. Results of flow
prediction around multiple objects are allocated in Sect.
IIID 1. Prediction of the velocity and pressure spaces
around an airfoil is presented in Sect. IIID 2. Potentials
of the neural network for the prediction of turbulent flows
are discussed in Sect. III E. Conclusions and directions
for our future researches are given in Sect. IV.

II. PROBLEM FORMULATION AND METHODOLOGY

A. Governing equations of fluid dynamics

The Navier-Stokes and continuity equations respec-
tively describe the conservation of momentum and mass
of an incompressible viscous Newtonian fluid flow. The
governing equations along with boundary conditions are
given by

ρ

[
∂u
∂t

+ (u · ∇)u
]
− µ∆u +∇p = f in V, (1)

∇ · u = 0 in V, (2)

u = uΓD
on ΓD, (3)

−pn + µ∇u · n = tΓN
on ΓN , (4)

where u indicates the velocity vector and p denotes the
absolute pressure of fluid in the space of V . ρ and µ
stand for the fluid density and the dynamic viscosity, re-
spectively. The external body force vector is represented
by f . ΓD and ΓN are respectively the Dirichlet and Neu-
mann boundaries, while there is no overlapping between
them. tΓN

is the stress vector acting on ΓN , while n
is the outward unit vector normal to ΓN . Furthermore,
we indicate x and y components of the velocity vector
respectively by u and v.

Our CFD domain (which differs from the neural net-
work domain) is a rectangular field V :=[0, 38 m]×[0, 32
m]. An arbitrary two dimensional shape with center of
mass lying at the point (8 m, 16 m) and a length scale
of L represents the cross section of an infinite cylinder.
The object boundaries are assumed to be rigid, while we

impose no-slip conditions on its surfaces. Free stream
velocity with the magnitude of u∞ and parallel to the
x-axis is enforced at the inflow, bottom, and top of the
field. The open boundary condition

− pn + µ∇u · n = 0 (5)

is specified in the outflow velocity. Note that the geom-
etry and boundary conditions described here are mainly
accorded to the literature9,10,48,54 to satisfy far-field as-
sumptions. The fluid density and free stream velocity
are set to 1.00, and the fluid viscosity is set to 0.05 in
the International Unit System. The Reynolds number is
calculated as

Re =
ρLu∞
µ

. (6)

Given the fixed fluid density and viscosity as well as the
free stream velocity, the only free parameter to vary the
Reynolds number is the length scale, which depends on
the object geometry.

For any given object with an arbitrary shape, the ge-
ometry of space V is specified. We use the Gmsh55
application for the discretization of space V and gen-
erating unstructured finite volume meshes with fine grid
spacing near the object. Additionally, more grid points
are placed in the wake region to capture the secondary
flows accurately. As two examples, Figure 2 depicts the
unstructured finite volume meshes for elliptical and tri-
angular cross sections. In the next stage, we employ
the OpenFOAM software56 in order to obtain the nu-
merical solution to the governing equations. Specifi-
cally, Semi-Implicit Method for Pressure Linked Equa-
tions (SIMPLE)57 is used. The numerical computations
are executed until the L2 norm of residuals for both the
continuity and momentum equations reaches 10−3. Ac-
cordingly, we consider a converged solution as steady-
state flow if this criterion is satisfied. Figure 3, for in-
stance, demonstrates the velocity and pressure fields ob-
tained by the CFD software for cylinders with rectangu-
lar and pentagonal cross sections.

As a final note in this subsection, flow past a cylinder
is an example of external flows when the solution is a
function of the geometry of inner boundaries. However,
our deep learning framework introduced in this study is
also usable for flow predictions in cases when variations
in the geometry of outer boundaries matter (see e.g., Ref.
58).

B. Data generation

As discussed in Sect. II A, we investigate the prediction
of viscous flow past a cylinder to evaluate the capability
of the neural network presented in this study. The so-
lution of the continuity and Navier-Stokes equations is a
function of the shape of the cylinder cross section. With
this in mind, variations in the shape of the cross section
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(a) (b)

FIG. 2. Representation of the finite volume meshes used for solving the continuity and Navier-Stokes equations in the simulation
of flow over a cylinder with a an elliptical cross section, 2672 vertices; and with b a triangular cross section, 2775 vertices

FIG. 3. Velocity and pressure fields for the steady-state flow over a cylinder with a rectangular cross section and b pentagonal
cross section; p0 is the atmospheric pressure.

generate the data set used to train our model. Seven var-
ious shapes are considered: circle48, square49, triangle50,
rectangle51, ellipse52, pentagon53, and hexagon53. In
practice, we extend our data set by rotating the cylin-
der and altering the cross section size. A summary of the

cross section shapes is tabulated in Table I. Considering
the information provided in Table I along with the geo-
metrical definition of a and b for each cross section, the
length scale (L) for the cross sections with the shape of
circle, equilateral hexagon, equilateral pentagon, square,
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and equilateral triangle is a; while the length scale (L) is
b for the rectangle, ellipse, and triangle. Consequently,
the range of the Reynolds number (Re) is 20.0 to 84.0 in
the current study.

We already described the procedure of data genera-
tion for a single shape in Sect. II A. Given a shape for
the cross section, the geometry of the domain needs to
be defined mathematically. Afterwards, an unstructured
grid needs to be generated. Eventually, the CFD solver
needs to numerically obtain the velocity and pressure
spaces. Obviously, this procedure cannot be executed
manually for 2595 different geometries and automation
is unavoidable. This mission is accomplished using a set
of C++ codes, journal files, and batch files to automati-
cally run the Gmsh application for mesh generation, and
sequentially run the CFD software for solving Eqs. 1–4,
and finally write the numerical solutions on a hard disk.
Note that for each orientation of bodies inside the do-
main (see the third column of Table I), we regenerate
the mesh rather than rotating the previously-discretized
domain, which is different from usual data augmentation
techniques.

We described our CFD domain in Sect. II A. How-
ever, our neural network domain (VNN ) does not have to
be the same as our CFD domain (V ). Generally, a user
of our machine learning framework can take any subdo-
main into account such that VNN ⊂ V , and train the
neural network for that specific area of interest. For the
present problem, the flow field around the cylinder and
in the wake region is critical, whereas the far-field data
are unimportant. The input of our neural network is a
set of the spatial coordinates of a point cloud. The point
cloud takes the first N closest grid points (vertices) to
the center of mass of the cylinder. In other words, VNN
contains N points. In this study, we set N = 1024. The
output of our neural network is the corresponding veloc-
ity and pressure quantities at the given input points. It
is important to note that our network covers the whole
domain of interest using only N = 1024 input points. In
contrast, using regular CNNs needs a considerably higher
number of input points (e.g., 128×128 used in Ref. 17,
and 150×150 used in Ref. 18).

We normalize the output data (i.e., u, v, and p) in or-
der to speed up convergence of the network and equalize
the contribution of the velocity and pressure variables
to the determination of network parameters. We take
two separate steps for this matter. First, we make the
velocity and pressure variables dimensionless as follows:

u∗ =
u

u∞
, (7)

v∗ =
v

u∞
, (8)

p∗ =
p− p0

ρu2
∞

, (9)

where u∗, v∗, and p∗ are the corresponding dimensionless
variables and p0 is the atmospheric pressure. Next, we
scale them in a range of [0, 1] by the following formula-
tion:

φ
′

=
φ−min(φ)

max(φ)−min(φ)
, (10)

where φ is replaced by each set of u∗, v∗, and p∗. Using
this simple scheme, the desired normalized output data
is obtained as sets of u

′
, v

′
, and p

′
.

Alternatively, one may normalize the input data (i.e.,
spatial coordinates of grid points); however, our com-
putational experiments showed that such normalization
did not lead to a significant improvement in the training
practice. Thus, we keep the input data as they are in
the physical domain. For the generated data, the density
of grid point distribution varies from one point cloud to
another such that xmin ∈ [0, 5.46 m], xmax ∈ [10.55 m,
34.36 m], ymin ∈ [0, 13.41 m], and ymax ∈ [18.57 m, 32
m]. Such a variation is not practical by traditional CNNs
used in the literature (see e.g., Refs. 11, 15–18, 30–34, 36–
42). Contrarily, providing users with this flexibility is
feasible by our neural network introduced in Sect. II C.

C. Neural network architecture

Generally speaking, our goal is to design a neural net-
work that takes unstructured grid vertices inside VNN as
point clouds and predicts the CFD quantities of inter-
est. To accomplish this, our neural network is mainly
designed according to the PointNet46 architecture (see
Fig. 5). PointNet46 was first introduced in 2017 as an
effective solution to 3D computer vision tasks such as
shape classification and segmentation from point clouds.
It formed the foundation for numerous followup works,
for example in both outdoor59 and indoor60 object de-
tection, and scene flow prediction from temporal point
cloud data61. Recent work has proposed sophisticated ar-
chitectures that employ PointNet hierarchically62 or take
a different approach of graph63 or continuous64 convolu-
tions on point clouds. However, PointNet46 is conceptu-
ally and computationally simpler than these approaches,
making it easy to implement and efficient during both
training and evaluation, while still achieving competi-
tive accuracy on shape classification and segmentation
tasks63.

In this section, we denote vectors relevant to machine
learning operations with bold letters but not italic to dis-
tinguish them from the vectors used for the description
of physical spaces. Mathematically, we consider a set of
N points of VNN as X = {xi ∈ Rd}Ni=1, where each point
has spatial dimension d. We define a regression prob-
lem that seeks a function f so that f(X ) = Y, where
Y = {yi ∈ RnCFD}Ni=1 is the set of desired CFD quanti-
ties of dimension nCFD, and each output yi corresponds
to the input point xi. We propose to approximate the
function f with a neural network that is learned through
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FIG. 4. Examples of input and output of our data set



A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow Fields on Irregular Geometries 7

TABLE I. Description of the generated data

Shape Schematic
figure

Variation in
orientation

Variation in
length scale

Number
of data

Circle

a

- a = 1 m 1

Equilateral hexagon

a

3◦, 6◦, . . . , 60◦ a = 1 m 20

Equilateral pentagon

a

3◦, 6◦, . . . , 72◦ a = 1 m 24

Square

a

3◦, 6◦, . . . , 90◦ a = 1 m 30

Equilateral triangle

a

3◦, 6◦, . . . , 180◦ a = 1 m 60

Rectangle

b

a

3◦, 6◦, . . . , 180◦ a = 1 m; b/a = 1.2, 1.4, . . . , 3.6 780

Ellipse

b

a

3◦, 6◦, . . . , 180◦ a = 1 m; b/a = 1.2, 1.4, . . . , 4.2 960

Triangle
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FIG. 5. Structure of our neural network; Labels in the format of (A,B) demonstrate the size of the first layer, A, and the
second layer, B, of the MLP. Labels in the form of (A,B,C) are similarly classified for three layers. nCFD indicates the number
of CFD variables; in this study, nCFD = 3. The figure shows the structure for handling three-dimensional problems; though we
consider two-dimensional problems in this study.
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direct supervision of CFD data. This is a challenging task
since X is an unstructured point cloud, which does not
lend itself to typical convolutional architectures that op-
erate on structured grids. In other words, the challenge
of learning on point cloud data is the need for “permuta-
tion invariance”: the output of the neural network (e.g.,
the classification of a 3D object, or a feature descriptor of
the shape) should not depend on the ordering of the in-
put points. The key idea behind PointNet46 is to achieve
this through a symmetric function which aggregates in-
formation over points. For example, the maximum, sum-
mation, or average of a point set are all permutation
invariant functions. This is specifically important in our
CFD application, as the network must collect information
over the set of vertices to reason about the object’s shape
and location which determine the flow fields. PointNet46
approximates a function g on a point set by first trans-
forming elements of the set with some function h, and
then applying a symmetric function s. Mathematically,
this idea is formulated as

g(X ) ≈ s(h(x1), . . . , h(xN )). (11)

This formulation results in a permutation invariant func-
tion with a single output. In our work, this output is
a latent description of the input point cloud referred to
as the “global feature”. However, we desire an output yi
for every input point xi; for this we use the PointNet
segmentation architecture46 as illustrated in Fig. 5.

Before detailing the architecture of our neural network,
we briefly review the machine learning concepts leveraged
in PointNet46. The point processing function h is imple-
mented with Multilayer Perceptrons (MLP). An MLP
consists of a series of Fully-Connected (FC) layers, each
parameterized by a weight matrix W and additive bias
vector b. The number of rows in W is the “size” of the
layer which refers to its number of nodes. The output of
each FC layer i is defined by a recursive relation

ai = σ(Wiai−1 + bi), (12)

where σ is a nonlinear activation function that is applied
elementwise and a0 = x is an input point. For all layers
except the final output layer, we use the Rectified Linear
Unit (ReLU) activation function defined as

σ(ξ) = max(0, ξ). (13)

In this work, layers in MLPs are separated by “batch
normalization” which has been shown to greatly improve
convergence rate during training65. Note that in Eq. 11,
the same function h is applied to every point, so we say
that the MLP is “shared” across points (or that the MLPs
“share weights”). For the symmetric function s, we use
the “max pooling” operation, following the strategy pro-
posed by Qi et al. 46 . For a set of m-dimensional vec-
tors {gi ∈ Rm}Ni=1, the max pooling operation is simply
max(g1, . . . ,gN ) ∈ Rm where the “max” function is ap-
plied elementwise.

We use the PointNet segmentation46 architecture de-
picted in Fig. 5, which can be broken into the top and
bottom parts. The top part implements Eq. 11 with the
elements described previously. In particular, it takes the
input point set X and outputs the global feature of di-
mension 1024. It operates on each input point indepen-
dently using two shared MLPs - the first has two FC
layers of size (64, 64) and the second with three layers
of size (64, 128, 1024) - followed by max pooling to ar-
rive at the global feature. Note that labels in the form
of (A,B) indicate the size of the first layer, A, and the
second layer, B, of the associated machine learning com-
ponent. Similarly, labels in the form of (A,B,C) are de-
fined for three layers. The input points and intermediate
features (64 dimensional) undergo affine transformations
predicted by a set of Transformation Networks (T-Nets).
The T-Nets are themselves mini PointNets: they use a
small shared three-layer MLP of size (64, 128, 1024) and
max pooling, followed by an additional two-layer MLP of
size (512, 256) to predict a transformation matrix. For
a more detailed description of T-Net implemented here,
one may refer to Ref. 46.

The global feature aggregates information over all in-
put points, but we need an individual output corre-
sponding to each input point. This is accomplished with
the bottom part of the architecture depicted in Fig. 5.
Namely, intermediate features of size 64 are taken from
the top part of the neural network, and each is concate-
nated to a copy of the final global feature. This provides
N features of dimension 1088. The concatenated feature
goes through a final shared MLP to produce the regressed
CFD quantities of size N × nCFD. As discussed in Sect.
II B, the output data is normalized in the range of [0, 1].
Thus, a sigmoid activation function, expressed as

σ(ξ) =
1

1 + e−ξ
, (14)

is used in the output layer to cover the corresponding
range. Note that one could employ separate bottom
branches to decode the global feature for each CFD quan-
tity, however, it imposes extra computational costs.

As discussed in Sect. II A, the solution of the Navier-
Stokes and continuity equations (see Eqs. 1–2) is a func-
tion of the geometry of the cylinder cross section. With
this in mind, we devise the deep learning environment
such that the point set “implicitly” defines the shape of
cross sections through its null space. In fact, the cylinder
object is contained where there are not points (see e.g.,
Fig. 4). We expect the network to learn this function
during training. The strategy of implicit shape repre-
sentation becomes more crucial when a point cloud rep-
resents multiple bodies inside VNN . This paradigm is
discussed further in Sect. IIID.

Note that our neural network is designed for handling
three-dimensional (d = 3) fluid dynamics problems, how-
ever, we restrict our attention to two-dimensional (d = 2)
applications in this article. Furthermore, we are inter-
ested in predicting the velocity (u and v) and pressure
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(p) fields and thus we set nCFD = 3 in this study, though
our formulation is general enough to encompass other
CFD variables such as temperature, for instance, when
the energy equation is involved.

D. Training

As can be realized from the literature (see e.g., Refs.
11 and 18), the selection of “mean squared error” as the
loss function (L) is a reliable norm in deep learning appli-
cations of computational mechanics. Hence, we use this
function defined as

L =
1

3×N

(
N∑
i=1

[
(u

′

i − ũ
′

i)
2 + (v

′

i − ṽ
′

i)
2 + (p

′

i − p̃
′

i)
2
])

.

(15)
As mentioned in Sect. II B, u

′

i, v
′

i, and p
′

i are respec-
tively the ground truth velocity and pressure data ob-
tained from the CFD solver. ũ

′

i, ṽ
′

i, and p̃
′

i are respec-
tively the velocity and pressure fields predicted by our
neural network. We scale the predicted variables back
into the physical space and indicate them by ũ, ṽ, and
p̃. The Adam optimizer66 is used with the learning rate
of α = 5 × 10−4 and the hyper-parameters of β1 = 0.9,
β2 = 0.999, and ε̂ = 10−6 (see Ref. 66 for the mathe-
matical definition of α, β1, β2, and ε̂). Furthermore, the
batch size of 256 is chosen. As explained in Sect. II C,
2595 data are generated in total. Figure 4 exhibits a few
examples of the input and output data. We categorize
the generated data into three sets of training (80%), vali-
dation (10%), and test (10%) through a random process.
Thus, we train the neural network over 2076 data. 260
data are used for the validation and the remaining 259
data (as unseen data) are reserved for evaluation. After
each epoch, the network is validated over the validation
data set for tracing the convergence rate and avoiding
over-fitting. The training procedure is stopped after 4000
epochs. Training 3552588 parameters is performed on
an NVIDIA TITAN Xp graphics card with the memory
clock rate of 1.582 GHz and 12 Gigabytes of RAM and
approximately takes 10 hours.

We listed the values assigned to the hyperparameters of
our neural network in the previous paragraph. To deter-
mine these hyperparameters, a systematic procedure is
carried out. For brevity, we only present one important
portion of this process: selection of the batch size and
the size of the latent global feature (see Fig. 5) through
a grid search. Mini batch gradient descent techniques
allow us to accelerate training by vectorization (in con-
trast with stochastic gradient descent) and make training
feasible by grouping data into small mini batches (in con-
trast with full batch gradient descent) when a memory
limitation exists. However, the chosen size of the mini
batch impacts network performance, including its ability
to generalize. On the other hand, the size of the global
feature affects the representational capacity of the net-

work as discussed in Sect. II C. The result of the investi-
gation is tabulated in Table II. Note that a change in the
size of the global feature is followed by an adjustment in
the size of the MLP directly following the global feature
in the network (see Fig. 5). This is to ensure that the
global feature is the main information bottleneck in the
network. As can be realized from Table II, according to
the test loss (L) the optimal choice is the global feature
size of 1024 with the batch size of 256. There are several
general notes here. First, it is conjectured that the global
feature size of 2048 with the batch size of 256 would lead
to a higher performance; however, our computational fa-
cilities limited our choices. Second, one may investigate
the degree of “bias” and “variance” respectively by mea-
suring the distance between the training loss (L) and val-
idation loss (L) and the distance between the validation
loss (L) and the test loss (L) for all the cases presented in
Table II. Particularly, we observe low bias and low vari-
ance for our choice. Third, we list the training time for
each case in Table II as well, since it could be another
restriction for potential users.

Figure 6 shows the velocity and pressure fields obtained
by the CFD solver along with those predicted by the net-
work for a geometry belonging to the test set after 10,
100, and 1000 epochs. As can be seen from Fig. 6, the
network prediction is inaccurate after 10 epochs. After
100 epochs, although the general structure of the flow
fields predicted by the network is in a right configura-
tion, the homogeneous velocity Dirichlet boundary con-
dition on the object surface is not yet satisfied. Further-
more, the predicted values for the space of velocity and
pressure fields are not in a correct range. After 1000
epochs, the latter issue is almost resolved, however, the
predicted flow still slips on the body surface (see e.g.,
ṽ in Fig. 6). In this sense, the most time consuming
component of the training process for the network is to
learn the no-slip condition on the edges of bodies. This
fact demonstrates the main difference between training a
network for the prediction of viscous flows versus invis-
cid flows (when the flow is permitted to artificially slip
on surfaces). Certainly, this is one of the core challenges
of designing networks for prediction of realistic flow fields
versus artificial flow fields used largely for visual effects
(see e.g., Ref. 67).

III. RESULTS AND DISCUSSION

A. General analysis

Figures 7–10 illustrate a comparison between the
ground truth and our network prediction for the veloc-
ity and pressure spaces for eight examples chosen from
the test set. These examples display objects from var-
ious object classes with different sizes and orientations,
and thus different length scales. It is worthwhile to note
that our network successfully predicts the flow separa-
tion phenomenon (see e.g., the u velocity field for the
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Ground truth Prediction after 10 epochs Prediction after 100 epochs Prediction after 1000 epochs
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FIG. 6. A comparison between the ground truth and prediction of the network for the velocity and pressure fields after 10,
100, and 1000 epochs

TABLE II. Training, validation, and test loss (L) as well as training time for different batch sizes and sizes of the global feature;
MLP size shows the size of different layers of the MLP right after the global feature in the network (see Fig. 5). The cross
symbol (×) indicates that the training is not doable due to the lack of sufficient memory.

global feature size MLP size batch size of 64 batch size of 128 batch size of 256

256 (256,256,128)

training time = 24194 s training time = 24418 s training time = 24230 s
training loss = 4.71790E−5 training loss = 4.47410E−5 training loss = 7.91800E−5
validation loss = 3.60867E−4 validation loss = 3.13515E−4 validation loss = 3.96315E−4
test loss = 1.62594E−3 test loss = 1.57643E−3 test loss = 1.63278E−3

512 (256,256,128)

training time = 27666 s training time = 27866 s training time = 27699 s
training loss = 3.96650E−5 training loss = 4.96650E−5 training loss = 8.11420E−5
validation loss = 3.40380E−4 validation loss = 3.16175E−4 validation loss = 3.99710E−4
test loss = 1.41908E−3 test loss = 1.40274E−3 test loss = 1.63381E−3

1024 (512,256,128)

training time = 24044 s training time = 23382 s training time = 23169 s
training loss = 3.0541E−5 training loss = 4.08800E−5 training loss = 6.89100E−5
validation loss = 5.43850E−4 validation loss = 4.81712E−4 validation loss = 3.83702E−4
test loss = 2.22772E−3 test loss = 1.97172E−3 test loss = 1.37766E−3

2048 (512,256,128)

training time = 29459 s training time = 29173 s training time = ×
training loss = 2.58860E−5 training loss = 4.30400E−5 training loss = ×
validation loss = 3.69553E−4 validation loss = 4.97283E−4 validation loss = ×
test loss = 1.50372E−3 test loss = 2.02906E−3 test loss = ×

rectangular cross section in Fig. 7). Additionally, the
input points shown in Figs. 7–10 have varying spatial
distribution densities, which demonstrates the flexibility

and generality of our neural network. The maximum,
minimum, and average pointwise error (L2 norm) for the
test set are tabulated in Table. III. Concerning the av-



A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow Fields on Irregular Geometries 11

4 6 8 10 12

x (m)

12

13

14

15

16

17

18

19

20

y
(m

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

4 6 8 10 12

x (m)

12

13

14

15

16

17

18

19

20

y
(m

)

−0.4

−0.2

0.0

0.2

0.4

4 6 8 10 12

x (m)

12

13

14

15

16

17

18

19

20

y
(m

)

−0.4

−0.2

0.0

0.2

0.4

4 6 8 10 12

x (m)

12

13

14

15

16

17

18

19

20

y
(m

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

4 6 8 10 12

x (m)

12

13

14

15

16

17

18

19

20

y
(m

)

0.4

0.2

0.0

0.2

0.4

4 6 8 10 12

x (m)

12

13

14

15

16

17

18

19

20

y
(m

)

0.4

0.2

0.0

0.2

0.4

� �0
Pap p��� �m sv�� �m su�

� �0
Pap p�� �m sv� �m su

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

x (m)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

y
(m

)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

x (m)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

y
(m

)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

x (m)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

y
(m

)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

x (m)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

y
(m

)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

x (m)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

y
(m

)

0.4

0.2

0.0

0.2

0.4

0.6

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

x (m)

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

y
(m

)

0.4

0.2

0.0

0.2

0.4

0.6

� �m su � �m sv � �0
Pap p�

� �m su� � �m sv� � �0
Pap p��

FIG. 7. The first set of examples comparing the ground truth to our network prediction for the velocity and pressure fields of
two different cross sections taken from the test set

eraged error (see the first row of Table III), the largest
loss belongs to the x-component of velocity (ũ) simply
because this is a more complicated field in comparison
with the y-component of velocity (ṽ) and pressure (p̃)
fields in the current regime (see e.g., Fig. 3). On the

other hand, the smallest loss occurs in the pressure (p̃)
field since no boundary condition is imposed on the pres-
sure space in the domain of interest VNN . Recall that ΓD
does not overlap ΓN . The role of boundary conditions in
the learning procedure, and consequently the loss, can be
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FIG. 8. The second set of examples comparing the ground truth to our network prediction for the velocity and pressure fields
of two different cross sections taken from the test set

observed by this example. For instance, it is conjectured
if an open boundary condition (see e.g., Eq. 5) had to
be satisfied in an assumed VNN , the largest level of loss
would belong to the pressure field.

Figure 11 presents the pointwise error distribution

along the point cloud for geometries with the maximum
or minimum pointwise error (L2 norm) among the test
set. By looking at Fig. 11, it is apparent that the mini-
mum or maximum loss of the predicted velocity and pres-
sure fields does not belong to a specific object, indicating
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FIG. 9. The third set of examples comparing the ground truth to our network prediction for the velocity and pressure fields of
two different cross sections taken from the test set

that our network is not overfitted to a particular class of
object. Interestingly, the maximum loss does not happen
in grids with the highest variation in spatial distribution
density.

For all the cases shown in Fig. 11, the maximum

pointwise error (L2 norm) takes place on the edges of
objects, where the no slip condition has to be applied.
As discussed in Sect. IID, the most demanding fraction
of training is to learn zero velocity Dirichlet Boundary
conditions at solid walls, which is due to two main rea-
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FIG. 10. The fourth set of examples comparing the ground truth to our network prediction for the velocity and pressure fields
of two different cross sections taken from the test set

sons. First, there is a relatively large jump in u′ and v′
when we move from the wall surfaces toward the inside of
the active space. To defend this reasoning, we perform
a simple experiment: instead of imposing zero velocity
boundary conditions on the object surfaces, we extrap-

olate the velocity data from inside the domain into the
object surfaces, mimicking inviscid flow conditions. In
this case, the maximum pointwise error (L2 norm) com-
puted for ũ reduces by 34% compared to the viscous flow
assumption, indicating a more straightforward process of
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ṽ, (c) maximum for p̃, (d) minimum for ũ, (e) minimum for ṽ, and (f) minimum for p̃.

TABLE III. Error analysis of the velocity and pressure fields
predicted by our neural network for 259 unseen data; || . . . ||
indicates the L2 norm.

||u− ũ|| ||v − ṽ|| ||p− p̃||
Average 4.49666E−2 3.70540E−2 2.71661E−2
Maximum 2.49088E−1 2.34281E−1 1.16901E−1
Minimum 1.10453E−2 9.20977E−3 7.58447E−3

network training for inviscid flows. Second, the point dis-
tribution differs the most across different objects at this
boundary.

Concerning the influence of data normalization, scaling
the output data in the range of [−1, 1] (instead of [0, 1])
would increase the average pointwise error (L2 norm)
roughly by a factor of 2 for the test set based on our
numerical experiments.

The last component of our general analysis addresses
the speedup factor obtained by means of the neural net-
work introduced in this study. The average wall time con-
sumed for prediction of the 259 unseen data in the test
set using our network is approximately 6 seconds. Sim-
ulation of the flow fields for these 259 geometries takes
approximately 11071 seconds (about 3 hours) using the
CFD software on a single Intel(R) Core(TM) processor
with a 2.30 GHz clock rate. Thus, the average achieved
speedup using our neural network is a factor of approxi-
mately 1846 in the framework of our available computa-

tional facilities. Note that the speedup factor is strongly
a function of the CFD solver efficiency and the types of
Central Processing Unit (CPU) and Graphics Processing
Unit (GPU) used. Moreover, we expect achieving higher
factors of acceleration for turbulent flow regimes.

B. Investigation of conservation of mass and momentum

So far we have examined the efficiency of our neural
network in predicting the velocity and pressure fields by
the metric of pointwise error (L2 norm). To more pre-
cisely analyze the network performance, we assess the ca-
pacity of our network to conserve mass and momentum.
This assessment has two valuable advantages. First, in-
stead of analyzing the error of each predicted field in-
dividually, the examination of conservation of mass and
momentum offers the error analysis of all the predicted
spaces jointly. Second, since the point cloud distribution
is non-uniform, the error of each point is weighted by
the volume of its corresponded cell. For this purpose, we
define three residuals for steady-state flows according to
Eqs. 1–2 as follow:

rmomentumx = (16)∣∣∣∣∫
VNN

(
ρ

(
ũ
∂ũ

∂x
+ ṽ

∂ũ

∂y

)
+
∂p̃

∂x
− µ

(
∂2ũ

∂x2
+
∂2ũ

∂y2

))
dV

∣∣∣∣ ,
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rmomentumy = (17)∣∣∣∣∫
VNN

(
ρ

(
ũ
∂ṽ

∂x
+ ṽ

∂ṽ

∂y

)
+
∂p̃

∂y
− µ

(
∂2ṽ

∂x2
+
∂2ṽ

∂y2

))
dV

∣∣∣∣ ,

rcontinuity =

∣∣∣∣∫
VNN

(
∂ũ

∂x
+
∂ṽ

∂y

)
dV

∣∣∣∣ , (18)

where rmomentumx
and rmomentumy

are respectively the
residuals of momentum (Navier-Stokes) equations (see
Eq. 1) in the x and y directions. Similarly, rcontinuity
indicates the residual of the continuity equation (see Eq.
2) for incompressible flows. The absolute value is shown
by | . . . |.

To compute the residuals, a first order finite volume
method is used to numerically approximate the spatial
derivatives in Eqs. (16)–(18). Note that the input of our
network is finite volume grids and information such as cell
connectivity is available. Although our network does not
use this information, we can put the predicted velocity
and pressure fields back into the finite volume mesh for a
post-processing analysis. The results are shown in Table
IV. Based on the data collected in Table IV, the neural
network conserves the mass and momentum of the flow
fields with an excellent to reasonable level of accuracy.
The maximum residual occurs for rmomentumx

. This
trend is expected because the maximum loss also occurs
for ũ as tabulated in Table III. However, the maximum or
minimum rmomentumx

and rmomentumy
does not belong

to the point clouds with the maximum or minimum loss
in ũ and ṽ, respectively. Furthermore, the maximum or
minimum rmomentumx

, rmomentumy
, and rcontinuity hap-

pens in different point clouds. In general, rcontinuity is
greater than rmomentumy because mathematically ũ plays
a more significant role in Eq. 18 in comparison with Eq.
17.

It is worthwhile to note that the error analysis pre-
sented in this subsection is closely connected to the idea
of semi-supervised learning of the continuity and Navier-
Stokes equations. This idea forms one of our future stud-
ies. We elaborate this concept further in Sect. IV, when
we discuss the physics-informed neural networks.

TABLE IV. Investigation of conservation of mass and mo-
mentum of the flow fields predicted by our neural network for
259 unseen data. All values are reported in the International
Unit System.

rmomentumx rmomentumy rcontinuity

Average 4.14958E−3 2.46155E−3 2.99411E−3
Maximum 3.38842E−1 3.59399E−2 8.74008E−2
Minimum 5.69245E−6 9.03372E−7 3.58928E−6

C. Physical interpretation

The concern of this subsection is to explore how dif-
ferent layers of our neural network are connected to the
physics of problem. Because we supervise the network
output directly with the desired CFD quantities during
training, we expect that intermediate layers of the net-
work learn to represent the underlying physics in an ex-
plicit or implicit form.

One way to gain insight into the features learned by
PointNet are to look at the set of “critical points” deter-
mined by the network during inference46. Critical points
are defined as the set of input points whose latent features
contribute to the global feature extracted by the network.
In other words, after the final MLP of the top branch of
the network (see Fig. 5), a critical point contains the
maximum value over all N input points for at least one
dimension of its 1024-dimensional latent vector, thereby
contributing to the global feature that results from “max
pooling”. Note that “non-critical” points can only influ-
ence the network output through the 64-dimensional “lo-
cal” feature passed directly to the bottom branch of the
architecture. In practice, we identify critical points for
each test geometry by computing the “argmax” in addi-
tion to the “max pooling” operation for the global feature;
this gives the indices of critical points in the N × 3 in-
put tensor. The critical (red dots) and non-critical (blue
dots) points are plotted for several point clouds of our in-
put test data set in Fig. 12. The number of critical points
is different for each point cloud and varies between 376
and 526 for the current test data set. Two main insights
relevant to the physics are understood by comparing the
critical and non-critical points.

The first insight is relevant to the geometry of bluff
bodies. As can be seen in Fig. 12, all the points located
on the edges of cylinder cross sections are critical. Recall
that the flow fields are a function of the geometry of the
objects. This demonstrates that the network learns the
function by passing all the points placed on the boundary
of bluff bodies to the latent global feature.

The second insight is relevant to the momentum (see
Eq. 1) and continuity (see Eq. 2) of the interior points.
We define three residuals as follow:

r̂momentumx
= (19)∣∣∣∣∣ 1

M

M∑
i=1

(
ρ

(
ũi
δũi
δxi

+ ṽi
δũi
δyi

)
+
δp̃i
δxi
− µ

(
δ2ũi
δx2
i

+
δ2ũi
δy2
i

))∣∣∣∣∣ ,
r̂momentumy

= (20)∣∣∣∣∣ 1

M

M∑
i=1

(
ρ

(
ũi
δṽi
δxi

+ ṽi
δṽi
δyi

)
+
δp̃i
δyi
− µ

(
δ2ṽi
δx2
i

+
δ2ṽi
δy2
i

))∣∣∣∣∣ ,

r̂continuity =

∣∣∣∣∣ 1

M

M∑
i=1

(
δũi
δxi

+
δṽi
δyi

)∣∣∣∣∣ , (21)
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where the δ operator computes the derivatives of the
network-predicted CFD quantities with respect to input
points by means of the auto-differentiation capabilities of
TensorFlow68, in which our network is implemented. In
particular, after a forward pass of the network that pre-
dicts (ũ, ṽ, p̃) at each point, backpropagation computes
the derivative of each output with respect to each input
dimension (x, y). These terms capture how network pre-
dictions will vary with perturbations of the input point
locations. M can indicate the number of all critical or
non-critical interior points, depending on which set of
points we wish to compute the residuals. Note that Eqs.
19—21 are not conceptually equivalent to Eqs. 16–18. As
discussed in Sect. III B, we compute the spatial deriva-
tives of Eqs. 16–18 using a finite volume method on a
closed volume (VNN ). In contrast, the spatial derivatives
of Eqs. 19–21 are computed by backpropagation on non-
neighboring sets of points; this is why we use a different
notation for the spatial derivative in Eqs. 19–21.

Average, maximum, and minimum values of
r̂momentumx

, r̂momentumy
, and r̂continuity for the

critical and non-critical points are tabulated in Table
V. As can be realized from Table V, these residuals
are relatively close to zero for both the critical and
non-critical points. Note that in contrast with the
physics informed neural network techniques (see e.g.,
Refs. 69–71), we do not impose Eqs. 19–21 as loss
functions (L) to the network. In fact, although the loss
function (L) of the neural network is the mean squared
error (see Eq. 15), the values listed in Table V show that
the network learns to represent the underlying physics
governed by the Navier-Stokes and continuity equations
(see Eqs. 1–2) to a large extent. Notably, the residuals
of critical points are higher compared to the non-critical
point values. Mathematically, this is because during
backpropagation critical point derivatives will involve
terms from “both” the global and local features, unlike
non-critical points which will have no global feature
terms due to the “max” function. Therefore, we expect
derivatives for critical points to have greater magnitude,
reflecting their relative influence on network predictions.
Physically, this is because of the fact that the neural
network represents the physical space of a given point
cloud (VNN ) in an implicit and lower-dimensional space
denoted as UNN through the critical points. The space of
UNN is represented by the latent global feature (see Fig.
5). By transition from one point cloud to another, the
space of UNN takes a new shape (i.e. the network uses
different critical points). During the training process,
the weights of the network (see Eq. 12) are updated
mainly based on the variation in the space of UNN ,
which is constructed by the associated critical points.
In other words, the network experiences more difficulty
learning the physics on the critical points compared to
non-critical points since the critical points create the
underlying space (UNN ); that is why we observe higher
residuals at critical points than at non-critical points.

D. Neural network generalizability

In the field of computer graphics, it is common (see
e.g., Refs. 72 and 73) to test a neural network on a
totally new class of shape. For instance, Qi et al. 46
tested PointNet for the semantic segmentation of unseen
categories such as “face”, “house”, “rabbit”, and “teapot”,
while these objects did not exist in their data set. The
outcomes demonstrated that the learned PointNet func-
tions were generalizable, although the results were nega-
tively affected by the training data set. In contrast with
the computer graphics community, the idea of fabricat-
ing neural networks with an ability to generalize to new
domain geometry categories is not yet well-established
in the deep learning area of computational mechanics.
We hope experiments given in this subsection provides a
starting point to this context in the field of study.

To examine the generalizability of our neural network,
we consider two sets of tests in the following subsections:
prediction of the velocity and pressure fields around mul-
tiple cylinders with different cross sections, and an airfoil.
None of these domain geometries are in our data set (see
Table I). Although it is not expected to achieve a high
level of accuracy for such cases, this investigation might
reveal new aspects of the neural network and provide di-
rections for increasing its performance.

1. Prediction of flow around multiple objects

For the first time, the neural network proposed in this
article predicts the velocity and pressure spaces around
multiple objects without seeing multi-object data during
the training process. In all the test cases, we set the dis-
tance between objects such that the flow remains steady
and laminar.

Figures 13–16 compare the solution of the Navier-
Stokes and continuity equations obtained by the CFD
solver and our neural network for various multi-object
test cases. Table VI summarizes the pointwise error (L2

norm) for each test case, showing that the network pre-
dicts these flow fields with reasonable levels of accuracy.
In all cases, the error of predicting ũ is greater than the
corresponding error of ṽ and p̃, similar to the average
error reported in Table III. Interestingly, the maximum
errors of the velocity fields are less than the maximum
corresponding errors for prediction of unseen data in the
test set reported in Table III (22% versus 25% and 9%
versus 24% for ũ and ṽ, respectively). For the pressure
field, we observe nearly the same extremum (13% ver-
sus 12% for unseen data from seen categories and unseen
data from unseen categories, respectively). We explain
details of each test case in the following paragraph.

To more precisely investigate the prediction integrity,
let us discuss the outcomes of Fig. 13 where the network
predicts the velocity and pressure spaces around two cir-
cular cylinders located a horizontal distance from each
other. As can be seen in Fig. 13, the pressure in front
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FIG. 12. Critical (red dots) versus non-critical (blue dots) for several point clouds of our test data set

TABLE V. Residuals of momentum and continuity equations computed by the auto-differentiation capabilities of TensorFlow68

for the interior critical and non-critical points of 259 unseen point clouds. All values are reported in the International Unit
System.

r̂momentumx r̂momentumy r̂continuity

Average for the critical interior points 4.94592E−1 3.22539E−1 5.42833E−1
Maximum for the critical interior points 2.26805 2.24237 3.54595
Minimum for the critical interior points 2.22393E−1 2.83308E−1 1.14674E−1
Average for the non-critical interior points 6.32048E−2 5.77430E−2 4.89946E−2
Maximum for the non-critical interior points 1.45977E−1 1.35531E−1 7.97416E−2
Minimum for the non-critical interior points 1.71704E−2 1.38868E−2 1.91979E−2

of the first cylinder experiences higher values in com-
parison to the second cylinder. This experiment demon-
strates that the network takes into account the presence
of both cylinders in the domain. Otherwise, we observed
the same pressure values in front of the both cylinders.
This scenario is repeated for the prediction of the velocity
field as well, as can be monitored in Fig. 13. A similar
conclusion is taken by observing the results exhibited in
Figs. 14–16. In comparison with the test case shown
in Fig. 13, Figure 14 depicts a more challenging condi-
tion: two cylinders are located in VNN , one with circular
and another with elliptical cross sections with two dif-
ferent length scales. According to the data collected in
Table VI, the pointwise error (L2 norm) of all the ve-
locity and pressure fields slightly increase in comparison
with the presence of two circular cylinders. To evaluate
a more complicated test case, we consider two elliptical
cylinders in the next experiment as shown in Fig. 15.
As expected, the corresponding L2 norm of the velocity
and pressure fields moderately increase compared to the

two previous test cases as tabulated in Table VI. Lastly,
we challenge the network by placing three cylinders with
three different cross sections of elliptical, circular, and
rectangular shapes inside the flow field as exhibited in
Fig. 16. Note that such an experiment has not been per-
formed in the recent literature11,15–18,30–34 using CNNs
due to the limited size of the considered domain, which
cannot accommodate several bodies that are a reasonable
distance from each other.

We explain this specific characteristic of our network
from a computer science perspective at a high level. The
network extracts geometrical features of point clouds and
represents them as a global feature with a latent code of
size 1024 as can be seen in Fig. 5. Additionally, the
bottom branch of the network is a combination of non-
linear functions (see Eqs. 13–14) that learned to rep-
resent the solution of the Navier-Stokes and continuity
equations (see Eqs. 1–4) as a function of the geometri-
cal features. Moreover, for the data generated here we
set the Reynolds number to only be a function of the
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FIG. 13. A comparison between the ground truth and our network prediction for the velocity and pressure fields of two circular
cylinders

TABLE VI. Error analysis of the velocity and pressure fields predicted by our neural network for multiple bodies; || . . . ||
indicates the L2 norm.

||u− ũ|| ||v − ṽ|| ||p− p̃||
Two circular cylinders (Fig. 13) 1.51130E−1 5.80172E−2 9.22659E−2
Circular and elliptical cylinders (Fig. 14) 1.63664E−1 7.50613E−2 1.09544E−1
Two elliptical cylinders (Fig. 15) 2.19626E−1 8.93397E−2 1.35396E−1
Elliptical, circular, and rectangular cylinders (Fig. 16) 1.30335E−1 8.59303E−2 1.33239E−1

length scale which is a geometrical feature. Recall that
the Reynolds number determines the flow regime. Thus,
we conclude that our network is trained, in fact, for a
specific range of the Reynolds number rather than for a
specific number of bodies inside the domain. Therefore,
although the network has only seen one object per object
class during the training procedure, it predicts the flow
field around multiple bodies at least with a reasonable

level of accuracy assuming two conditions hold. First,
the flow remains in the training regime (e.g., laminar
and steady in the current study). Second, the size of
the latent code of global feature is large enough to digit
the necessary geometrical features of input point clouds.
For instance, it is expected that a network with a latent
global feature of size 2048 would predict the velocity and
pressure fields around three cylinders (see Fig. 16) more
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FIG. 14. A comparison between the ground truth and our network prediction for the velocity and pressure fields of two circular
and elliptical cylinders

accurately in comparison with the current network. Fur-
ther elaboration on this feature of our network needs an
advanced machine learning discussion and goes beyond
the scope of this journal; thus we skip it in this article.

It is essential to mention that our network’s ability to
predict flow fields around multiple bodies is important
mainly because the Navier-Stokes equations (see Eq. 1)
are nonlinear and using superposition is not valid in this
case. For instance, if we trained our network for a physi-
cal phenomenon governed by a linear equation (e.g., heat
conduction governed by the Poisson equation), predicting
the temperature field over multiple objects would not be
advantageous for our network, since one could simply ask
the network to predict the temperature field around each
object individually and then superpose them manually.

2. Prediction of flow around an airfoil

Prediction of CFD quantities for airfoils using deep
learning techniques has been previously reported in the
literature11,17,18,31–33,74. In all the works cited, the class
of airfoil object was among the training data set. For
the first time, our neural network tackles prediction of
the space of velocity and pressure fields around an air-
foil at different angles of attack, while the network has
never seen airfoils during the training process. For this
purpose, we select NACA 0028, which is an important
four-digit symmetrical airfoil and a useful tool for aca-
demic and industrial researches (see e.g., Refs. 75–77).

A visual comparison between the velocity and pressure
spaces predicted by the neural network and obtained by
the CFD solver is made in Figs. 17–19 respectively for



A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow Fields on Irregular Geometries 21

0 5 10 15 20

x (m)

5

10

15

20

25

30

y
(m

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20

x (m)

5

10

15

20

25

30

y
(m

)

0.4

0.2

0.0

0.2

0.4

0 5 10 15 20

x (m)

5

10

15

20

25

30

y
(m

)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0 5 10 15 20

x (m)

5

10

15

20

25

30

y
(m

)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 5 10 15 20

x (m)

5

10

15

20

25

30

y
(m

)

0.4

0.2

0.0

0.2

0.4

0 5 10 15 20

x (m)

5

10

15

20

25

30

y
(m

)

0.4

0.2

0.0

0.2

0.4

0.6

0 5 10 15 20

x (m)

5

10

15

20

25

30

y
(m

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

x (m)

5

10

15

20

25

30

y
(m

)

0.1

0.2

0.3

0.4

0 5 10 15 20

x (m)

5

10

15

20

25

30

y
(m

)

0.1

0.2

0.3

0.4

0.5

� �m su u� � � �m sv v� � � �Pap p� �

� �m su � �m sv � �0
Pap p�

� �m su� � �m sv� � �0
Pap p��

FIG. 15. A comparison between the ground truth and our network prediction for the velocity and pressure fields of two elliptical
cylinders

TABLE VII. Error analysis of the velocity and pressure fields
predicted by our neural network for NACA 0028; || . . . || indi-
cates the L2 norm.

Angle of attack ||u− ũ|| ||v − ṽ|| ||p− p̃||
0◦ 1.05631E−1 5.47357E−2 1.04842E−1
30◦ 2.83492E−1 1.30977E−1 2.07335E−1
−30◦ 1.62185E−1 1.00821E−1 2.42353E−1

three angles of attack of 0◦, 30◦, and −30◦; along with
the pointwise error distribution on the point clouds. In
addition to the graphical comparison, Table VII lists the
pointwise error (L2 norm) for the predicted fields with
reference to the numerical solution computed by the CFD
solver as the ground truth. Since airfoils are not con-
tained in our training data set, only a reasonable level

of accuracy is obtained. Based on the data collected in
Table VII, the minimum error occurs for the angle of at-
tack of 0◦ in comparison with the other two cases with
the angles of attack of 30◦ and −30◦. In all the cases, the
pointwise error (L2 norm) of ũ is greater than the corre-
sponding error of ṽ. Similar trends are observed in Table
III, where we report the error on the test set. Moreover,
the maximum error happens in the front of the airfoil
for all the angles of attack, due to a more complicated
curvature compared to the rear of NACA 0028. Besides
the flow fields exhibited in Figs. 17–19, the pressure dis-
tribution obtained using the CFD solver and our neural
network on the airfoil surface is plotted in Fig. 20 for
a more precise evaluation of the network generalizabil-
ity. We select the pressure distribution because the max-
imum infinity-norm error on the airfoil surface belongs to
this field rather than the velocity fields. Moreover, this
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FIG. 16. A comparison between the ground truth and our network prediction for the velocity and pressure fields of three
elliptical, circular, and rectangular cylinders

maximum error happens on the airfoil surface instead of
elsewhere in the domain. As shown in Fig. 20, there is
good agreement between the ground truth and predic-
tion on both the upper and lower surfaces of NACA 0028
for the angle of attack of 0◦. For the angle of attack
of 30◦, a relatively good agreement is observable for the
front lower surface of the airfoil as well as the rear upper
surface. In contrast, the opposite occurs for the angle of
attack of −30◦. In this case, although the predicted pres-
sure on the front upper and rear lower surfaces of NACA
0028 are in good agreement with the ground truth, rel-
atively high errors happen at other locations of the air-
foil surface. As mentioned earlier in this subsection, this
generalizability experiment provides insight that helps us
increase the network performance. Here is the main in-
sight from the investigation of the predicted pressure on
the airfoil surface: by rotating the airfoil, the error of the

pressure prediction by the network increases in the front
or rear of the airfoil, but not in both parts for a given
angle of attack. This is mainly because the network has
never seen the curvature associated with the upper or
lower surface. Therefore, at prediction time, sometimes
the network only considers the curvature pattern of the
airfoil front and treats the airfoil similar to a circle or
an ellipse with a small length scale. In these cases, the
maximum error happens in rear of the airfoil (either on
the upper or lower surface). On the other hand, some-
times the network only views the curvature pattern of
the airfoil rear and treats the airfoil similar to an ellipse,
triangle, or rectangle with a large length scale. In these
cases, the maximum error occurs in front of the airfoil (ei-
ther on the upper or lower surface). To resolve this issue,
we need to adjust our neural network such that it views
the curvature of both the front and rear of the airfoil
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FIG. 17. A comparison between the ground truth and our network prediction for the velocity and pressure fields of NACA
0028 for the angle of attack of 0◦

simultaneously. PointNet++ (Ref. 62) makes this feasi-
ble by means of two fundamental features of multi-scale
grouping (MSG) and multi-resolution grouping (MRG)
which allows the network to learn better local geomet-
ric features in addition to global ones. As is apparent
from the name, PointNet++62 is an advanced version of
PointNet46, which our current neural network is based
on. One may refer to the original PointNet++ paper62
for the further details.

To close this subsection, we discuss a few points. First,
as can be seen in Fig. 17, the point cloud accurately il-
lustrates the geometry of NACA 0028 through the null
space. We have also explained this characteristic of our
network in Fig. 1 and its caption. Second, the high
density of points chosen near the airfoil surface had not
been experienced by the network during training, demon-
strating another key feature of our neural network. As

pointed out earlier, this organization cannot be captured
using traditional two or three-dimensional CNNs. Third,
even though the network had never seen airfoils during
the training operation, the NACA 0028 length scale, and
consequently the associated Reynolds number, was in the
range of training data set.

E. Potentials for turbulent flow predictions

In this article, our main focus is the prediction of lam-
inar steady flows. However, the scientific field of deep
learning of turbulent flows is advancing (see Ref. 78 for
a review of recent articles in this scope). To assess the
capability of our neural network for turbulent flow predic-
tions, a thorough set of machine-learning experiments is
mandatory. However, several critical considerations must
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FIG. 18. A comparison between the ground truth and our network prediction for the velocity and pressure fields of NACA
0028 for the angle of attack of 30◦

be addressed before starting such experiments. First, to
obtain a resolved turbulent flow solution for a given ge-
ometry, a finer mesh is usually required in comparison
with the corresponding laminar flows (see e.g., Ref. 79).
Thus, more input points (increased N) are essential to
capture all the grid vertices of the area of interest. More-
over, due to the greater complexity of physics in turbulent
flows compared to laminar flows, a larger global feature
size is necessary to capture all geometric and physical
features. Consequently, a deeper neural network is re-
quired. The architecture of our neural network (see Fig.
5) has this flexibility. For instance, one may make the
network deeper simply by adding two MLP components
with three layers: one right before the “max pooling” op-
erator, and one just after the “global feature” (see Fig. 5).
Such a change preserves the key features of our network
and the integrity of the associated underlying mathemat-

ical theories presented in the original PointNet paper46.
Second, efficient unstructured grids are the key tool for
simulating turbulent flows in boundary layers and com-
plex geometries (see e.g., Ref. 80). As shown in Sect.
IIIA and Sect. IIID (specifically, see Figs. 17–19), our
deep learning approach is designed to connect unstruc-
tured data to our neural network for the aim of train-
ing and prediction. Third, recent research studies have
highlighted the contribution of deep learning techniques
to derive different terms in large eddy simulation equa-
tions (see e.g., Refs. 81–83). However, the proposed
deep learning networks in these studies81–83 are limited
to Cartesian grids with uniform grid distribution. Con-
sidering the features of our neural network, it can lever-
age these deep learning approaches for the large eddy
simulation of turbulent flows on irregular geometries.
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FIG. 19. A comparison between the ground truth and our network prediction for the velocity and pressure fields of NACA
0028 for the angle of attack of −30◦

IV. CONCLUSIONS AND FUTURE DIRECTIONS

Deep learning algorithms have become popular among
the CFD community, particularly for the study of geo-
metrical parameters for the purpose of design optimiza-
tion. Realistic CFD problems usually involve compli-
cated domains, where Cartesian grids are not suitable.
However, recent strategies used in the community have
been to project scattered CFD data into Cartesian grids
through pixelation and then utilize CNNs as deep learn-
ing tools.

In this article, we proposed a novel deep learning
framework for the prediction of velocity and pressure
fields (or any other field of interest) in complicated do-
mains. The construction of this framework was mainly
accorded to the segmentation architecture of PointNet46.

Using our framework, the order of accuracy of the CFD
data was preserved. Moreover, the framework was able
to capture the effect of small changes in the geometry of
domains, something that is essential for an efficient de-
sign optimization. Additionally, no artificial effect such
as spurious roughness was introduced to the geometry of
the domain, specifically, the smoothness of curved sur-
faces was preserved. By means of this framework, there
was freedom to set a non-uniform distribution of points
for inquiries over the CFD domain. Thus, users could
select a fine-scaled point distribution in important zones
(from a CFD point of view) of the domain and a coarse
scale in other areas. None of these key features were
achievable by the extant pixelation techniques.

In order to inspect the performance of our neural
network, two-dimensional incompressible laminar steady
flow past a cylinder with different shapes for its cross sec-
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FIG. 20. A comparison between the ground truth and our network prediction for the pressure distribution on the surface of
NACA 0028 for the angles of attack of 0◦, 30◦, and −30◦

tion was considered. While the density and viscosity of
the fluid were fixed, the length scale of cross section var-
ied, mainly due to the rotation of the cross section, and
changes in its shape and size. This setting produced our
data set. The L2 norm of the predicted velocity and pres-
sure fields over unseen data demonstrated an excellent
performance of the presented machine learning frame-
work. The network predictions were hundreds of times
faster compared to our traditional CFD solver. By com-
puting the residuals of the continuity and Navier-Stokes
equations, it was demonstrated that the mass and mo-
mentum were conserved with an excellent to reasonable
level of accuracy. We discussed the physical interpreta-
tion of different layers of our neural network through the
concept of critical and non-critical points. Furthermore,
the generalizability of our neural network was discussed
by two examples. First, while the network had seen
point clouds representing only one object during train-
ing, it reasonably predicted the flow fields past two and
three blunt bodies existed in a domain. Second, even
though the neural network had never seen airfoils during
the training procedure, it could reasonably predict the
flow fields for NACA 0028 for three angles of attack of
0◦, 30◦, and −30◦. In this study, we replaced the whole
CFD solver by our deep learning framework; however, it
is possible to only replace a specific component of a CFD
solver by our neural network. For example, one may re-
place a Poisson solver by the network embedded in the

projection schemes to predict pressure or intermediate
pressure fields (as the network output) from the scalar
field of the divergence of intermediate velocity (as the
network input). As a final note, although we explored
the application of our deep learning framework in CFD,
it is applicable to other areas of computational mechanics
(see e.g., Ref. 84).

There are several potential directions for our future
studies. One of these is to perform unsteady fluid dy-
namics prediction using deep learning techniques. Gen-
erally speaking, fluid flow becomes unsteady due to phys-
ical features and/or geometrical changes. For instance,
when the Reynolds number (Re) approximately exceeds
40.0 in the case of a two-dimensional flow past a circular
cylinder, a transition from steady to unsteady behavior
is observed54. Although this is an unsteady test case,
the geometry, and consequently the generated mesh, is
fixed in time. However, we are particularly interested in
transient problems wherein an object or interface moves
inside the CFD domain, and consequently unstructured
grids need to be regenerated during simulations85. Ex-
amples of classical benchmark problems are shock-box
interaction and objects falling into free stream86. There-
fore, the target is to design a deep learning framework
to handle these types of unsteady problems. This can
be accomplished by integrating our current neural net-
work with a recurrent autoencoder (see e.g., Ref. 87) or
using spatio-temporal point cloud representation tech-
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niques (see e.g., Ref. 88).
Another topic for future investigation is the prediction

of flow fields in three-dimensional spaces when the influ-
ence of variations in the shape of a three-dimensional ob-
ject (e.g., an airplane wing) on the velocity and pressure
fields in an area of interest matters. For this subject, our
methodology is slightly different from what was proposed
in the current work. In fact, we only consider the grid
points located on the surface of the three-dimensional
object (e.g., the wing) and extract its features using the
encoder component of our current neural network. Af-
terwards, the latent code is concatenated with the spa-
tial coordinates of the area of interest. The new code is
used as the input of a decoder, similar to the DeepSDF
network (see e.g., Ref. 89), to predict the velocity and
pressure fields of the area of interest. We hope that this
design could manipulate a wide range of scientific and
engineering applications.

Finally, we are interested in merging our network
introduced here with the physics-informed neural net-
work (PINN)69–71. The application of current versions
of PINN is limited to fixed geometries (see e.g., Ref.
90). This combination assembles a semi-supervised deep
learning configuration for prediction of the solution of
partial differential equations in realistic and complicated
domains as well as dynamic geometries.
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