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ABSTRACT 
 

An algorithm is presented that automatically generates ground-
truthed video from a symbolic description for an object and a 
specification for the movement of a handheld video camera around 
that object.  This provides a method to generate large amounts of 
training and test data for the development of computer vision 
algorithms at very low cost.  We describe an implementation of 
this technique for an imaging application in which a cell phone 
video camera is moved over a paper document.  Experimental 
results demonstrate the similarity of images captured by the real 
camera to images generated by the proposed technique. 

1. INTRODUCTION 
Video recognition algorithms, such as face recognition or scene 

analysis techniques, require large numbers of ground-truthed video 
clips for their development and validation.  Ground truth 
information can be very detailed and can include the identity and 
location of relevant regions in every video frame.  For applications 
such as video surveillance of crowds of people, the ground-
truthing of a video clip can require the segmentation of each frame 
into regions associated with every person such as their body parts, 
their clothing and the objects they carry [9].  If the camera can 
move, a large number of video clips may be needed to represent 
the diversity of views that might be encountered. 

The typical solution to the production of ground-truthed video 
requires the manual annotation of every frame – obviously a 
tedious and expensive process.  While there do exist tools that 
make this easier (e.g. Viper [8]), the cost of producing ground-
truthed video is a significant impediment to the development of 
recognition algorithms.  As a result, small sets of ground truth data 
might circulate among the academic research community (e.g., the 
PETS dataset for crowd surveillance [9]).  Large collections 
created by commercial organizations are often considered a secret 
competitive advantage. 

This paper describes a novel solution to data acquisition for 
video recognition development in which we generate video clips 
from symbolic information so that each frame is automatically 
associated with ground truth information.  Furthermore, we 
incorporate a model for the movement of a camera that allows us 
to generate video clips for arbitrary paths around an object.  This 
enables us to provide a virtually unlimited number of video clips at 
almost no cost, thereby allowing any researcher to develop 
recognition algorithms with an accuracy unhindered by the amount 
of training data. 

 
 

2. ALGORITHM 

The algorithm for video generation from symbolic information 
is shown in Fig. 1.  Given a path in space, as specified by a series 
of control points, and a model for the movement of a video camera 
between those points, a path generator provides a sequence of 
coordinates for the position of the camera with respect to a given 
object.  One set of coordinates is provided for each time t when the 
camera would capture a frame.  The image generation model uses 
characteristics of the camera and a ray-tracing algorithm to 
produce a sequence of frames, one for each set of coordinates.  
Each frame is distorted to account for a given warp and shadow on 
the original object.  The collection of frames is concatenated to 
produce a video clip. 

In our path generation algorithm, the position and orientation of 
the camera is represented by three position parameters and three 
Euler angles.  Each of these is updated using a discrete-time linear 
dynamical system.  For example, the position of the camera, with 
respect to the origin of the source document (in inches) is given by 
X.  The state of the camera’s X location at time n is given by: 

    Xn =   [P[n] V[n] A[n] J[n]]′ 
where P[n] is the position of the camera in the X direction, V[n] 

is the velocity, A[n] is the acceleration, and J[n] is the jerk.  The 
state of the camera’s X location at time n+1 is given by the 
following relation:        Xn+1 = A*Xn + B*u(t), 
 
where u(t) is known as the driving force and  
 
 
 
 
 
The study of linear dynamical systems tells us that if a state is 
reachable in n steps, then the controllability matrix is: 

Cn = [ B  AB . . .  An-1B] 
If there is one way to reach Xdes in n steps, there may be many 

ways to do so.  We used the minimum energy solution for getting 
from a starting point to a desired state: 

u(t) = Cn
T(Cn Cn

T)-1Xdes 

A small amount of zero-mean Gaussian noise is added at each 
step to achieve a realistic trajectory.  The smooth acceleration and 
deceleration as well as the random but continuous movement that 
are characteristic of a human operator are readily apparent in the 
generated trajectories.  At each control point, we simulate a 
“hovering” of the camera by providing no explicit driving force.  
Zero-mean Gaussian noise is added in place of u(t).   

A =    1 1 0 0                 B =       0 
          0 1 1 0     and                   0 
          0 0 1 1                              0 
          0 0 0 1                              1 



3. IMAGE GENERATION 
The algorithm that generates individual frames receives 

extrinsic parameters that specify the position of the camera with 
respect to the object, a symbolic description for the object that 
enables the generation of photorealistic images, ground truth that 
identifies and locates items of interest on the object, parameters 
that can be applied to distort the generated image (e.g., a 
specification for the shadow cast by an external object), and 
intrinsic characteristics of the camera’s optics. 

An example of a symbolic object description and ground truth is 
a postscript file that can be processed by a rendering program to 
generate a raster image that’s equivalent to a printed document.  
The rendering program (e.g., ghostscript) can be modified so that it 
outputs ground truth information that includes the position and 
identity of every character in the image. 

For our purposes, the intrinsic parameters of the camera are the 
two focal lengths, fx and fy (in pixels), principal point coordinates, 
ccx and ccy (in pixels), the skew coefficient, and five coefficients 
describing radial and tangential distortions.  This is the model used 
by Bouget in his camera calibration toolbox [6].  This information 
is used during ray tracing to determine where rays cast through 
each pixel of the sensor from the camera origin will intersect with 
the source document.   

3.1 Camera-Related Effects 
The image generation algorithm models several of the 

characteristics that have the most significant effect on the images 
produced by a handheld video camera. 

Our model incorporates sensor noise as the pixel gain non-
uniformity described in [7].  We use a uniform variable, with mean 
1, and a range that can be adjusted to achieve the desired level of 
noise.  This gain non-uniformity is multiplied on a per-pixel basis 
by the result of the ray-tracing algorithm. 

In practice, the range of the histograms of images captured 
using a real sensor is smaller than the range of intensity values 
present in the scene.  This effect can be modeled either by 
mapping the histogram values of the virtual image to fall within 
the range of values appearing in some sample image taken with a 
real camera, or by a more complicated histogram matching which 
attempts to transform the virtual image’s histogram in such a way 
that its cumulative distribution of pixel values matches that of the 
example image by way of a look-up table transformation. 

The model implements a vignetting-like effect to capture the so-
called “cosine-fourth” falloff in brightness as the angle between 
the ray corresponding to an image pixel and the optical axis of the 
camera increases by multiplying a pixel’s value by the cosine of 
that angle raised to the fourth power.  Vignetting in real images is 
the result of distant off-axis light rays not reaching the physical 
aperture due to obstruction by lens elements.   

Focus blur was implemented as a single Gaussian point spread 
function whose sigma is the absolute value of the difference 
between the distance to the page along the optical axis of the 
camera and the distance at which the camera was empirically 
determined to be “in focus” (both in inches).  This sigma is then 
scaled by a user-specified value to control the magnitude of the 
focus blur.  The blur therefore increases and decreases linearly as 
the camera is moved.   

3.2 Environmental Effects 
The image generation algorithm also models several 

environmental characteristics that can significantly alter the 
appearance of the images a handheld camera produces.   

In order to model the large global shadows often cast over an 
object by a user’s arm or the camera, a shadow mask is used.  The 
mask is multiplied element-wise with the image calculated by the 
ray tracing algorithm. 

 An artificial but perceptually believable motion blur is achieved 
by calculating the virtual image at a set number, k, of equally-
spaced, intermediate positions that the camera would occupy if it 
were moving with a certain velocity and had a given exposure 
time.  The final image is the average of these k intermediate 
images.   

To model the effects of material and illuminant properties, a 
general lighting model was implemented that includes (grayscale) 
ambient, diffuse, and specular components as described in [1].  
When the ambient, diffuse, and specular components are added, 
the total intensity value is used to modulate the amplitude of the 
corresponding pixel in the virtual image.   

Extra information in the form of background clutter in a test or 
training image can cause problems for any object recognition 
application.  In order to mimic this effect, support was added for 
large, high-resolution images of desktop scenes to be used as 
backgrounds for the raytracing routine.  Ideal images for this 
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Fig. 1.  Algorithm for video generation from symbolic ground truth.
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purpose have a small depth of field, with the scene plane parallel 
to the image plane of the camera.   

4. IMPLEMENTATION 

We implemented a video generation system that simulates the 
movement of a Treo 700w cell phone video camera between points 
above the surface of document images.  We capture the symbolic 
description for the document images in the Windows XP print 
driver pipeline while Microsoft Word is printing.  This description 
is the graphics device interface (GDI) commands that result in the 
placement of toner.  We render these commands to a separate 
bitmap that is guaranteed to be equivalent pixel-for-pixel to the 
physical paper document.  The rendering process also creates an 
xml file that contains the bounding box and identity for every 
character glyph in the bitmap. 

Fig. 2 shows an example of the implementation.  Fig 2 (a) shows 
a thumbnail for a document with an example path composed of six 
control points.  The first is 14 inches above the document, the 
second 9 inches above and the third 4 inches above.  Several 
individual video frames are shown in Fig. 2 (b).  An example of 
the ground truth provided for each frame is shown in Fig. 2 (c).  
The clip corresponding to this example is available at 
http://rii.ricoh.com/~berna/virtualdoc/ricoh_vdoc.wmv 

The path generation algorithm receives control points, elapsed 
times between points, and the frame capture rate of the Treo as 
input.  A Matlab implementation of minimum energy solution of 
the linear dynamical system described earlier generates the 
position of the camera as 6-tuples (x, y, z, θx, θy, θz) for each 
instant in time when the camera would capture an image as it is 
moved between control points.   
 
5. EXPERIMENTAL RESULTS  

The success of our methodology is determined by the similarity 
of the virtual images we generate to the real images captured on a 
Treo.   Ideally, the images could be the same pixel-for-pixel.  But 
we recognize this could be an unrealistic goal and instead strive for 
similarity in a relevant feature space.  Since effects such as blur, 
noise, and lighting result in significant differences between the 
frequency signatures of the real and virtual images, we developed 
an image distance measure that uses a frequency domain-based 
feature.  Fig. 3 shows an example of a real image from a Treo and 
the corresponding virtual image of the same document as 

generated by our system.  Fig. 4 shows two examples of virtual 
images from close-up views of the document. 

Our Neighborhood Frequency Distribution (NFD) feature 
works as follows.  An image is divided into 8x8 blocks.  The 2D 
FFT of these blocks is computed.  Based on the DC coefficient, the 
block is discarded if it contains either no text, or is all black 
(corresponds to being inside the boundaries of a printed character).  
In this way, only blocks on the edges of text characters are used, 
where the frequency information is the most interesting.  For each 
of the remaining 15 values in the upper left corner of the 2D FFT 
data, a bit in a 15-bit feature vector is set to one if there is 
significant frequency content at that location.  Otherwise the bit is 
set to zero.  Significant frequency content is defined as being 
larger than the average value of that component of the 2D FFT 
taken over a set of representative images. 

The distance between two images is defined as follows.  The 
NFD feature vectors for an image are treated as a population of 
numbers in the range [0 – 2^15].   The image distance is the ks-
statistic from the Kolmogorov-Smirnov test.  As the two sets of 
NFD values look more and more like they were drawn from the 
same parent distribution this value will tend towards zero. 

The experimental evaluation used three sets of images.  R1 
contained 100 real images of a single document page, each 
176x144 pixels in size, captured with a Treo 700w.  This set of 
images has a large variation in camera position and viewpoint. 

V1 contained 100 virtual images that were created to simulate a 
variety of views that the Treo would capture of the same page.  
These images were created using ray-tracing and a high-quality 
ground-truthed representation of the source document.  These 
images included the simulated effects of shadow mask, 
background clutter, motion blur, focus blur, sensor noise, and 
vignetting.  Each of these images was 176x144 pixels in size. 

V2 contained 100 virtual images that were created using only 
the ray-tracing procedure described above, without the addition of 
the simulated effects.  That is, V2 contained high quality non-
degraded images.  Fig. 3 shows an example from each image set.  

The image distances between all the members of R1 and all the 
members of V1 were calculated (10,000 combinations).  The mean 
of these distances was 0.5564, and the standard deviation was 
0.2574.  A graphic representation of all the distances (with black 

Fig. 2.  Example of video generation.  The the original document as captured by the printer driver and showing the control points 
and path over the document (a), selected frames at the indicated distances from the document (b), and the ground truth 
provided for each frame (c). 
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corresponding to a distance of 0, and white corresponding to a 
distance of 1.0) is shown in Fig. 5.  For comparison, when the 
members of R1 were compared to each other, the mean distance 
was 0.2601 with a standard deviation of 0.1272. 

The image distances between all the members of R1 and all the 
members of V2 were also calculated.  The mean of these distances 
was 0.8307, and the standard deviation was 0.1696.  A graphic 
representation of all the distances (with black corresponding to a 
distance of 0, and white corresponding to a distance of 1.0) is 
shown in Fig. 5 (b).  By inspection of the gray scale distribution of 
the distance plots, we see that the images captured on the Treo are 
much more similar to virtual images that were generated to 
simulate the Treo (Fig. 5 (a)) than they are to virtual images that 
contained no camera effects (Fig. 5 (b)).  This is reflected in the 
significant differences in the mean of the two distributions (0.5564 
 vs.0.8307). 

 
6.  RELATED WORK 

The automatic generation of ground-truthed data for video 
recognition algorithm development can provide fertile ground for 
exploring new methodologies.  As with many developments in this 
field, the work reported here is similar to several previously 
described ideas and yet appears to be different from any of them.  
For example, one notable project generated surveillance videos of 
arbitrary complexity from a collection of manually ground-truthed 
clips captured with a single camera in a fixed position [4].  This 

contrasts sharply with our emphasis on fully automatic ground 
truth generation and the use of a portable video imaging device. 

The distortions introduced by an image sensor were modeled in 
work on document image degradation that simulated a relatively 
high-resolution flat bed image scanner and advocated the 
production of large collections of synthetically generated images 
[2].  Recently, this methodology was extended to incorporate 
ground truth generation [10].  However, this line of work did not 
consider a portable video capture device. 

7. DISCUSSION AND CONCLUSIONS 

We described a novel technique for generating ground-truthed 
video from a portable sensor that unifies concepts from graphics 
and computer vision to solve a significant problem in multimedia 
recognition.  Our first implementation addresses a domain 
(document imaging) in which the undistorted input data is 
guaranteed to be equivalent bit-for-bit with the corresponding real-
world paper document because we capture the data for rendering 
the document in the print driver.  We degrade those images to 
simulate the output of a cell phone video camera.  Experimental 
results showed that the model produced images that are very 
similar to those captured by a real cell phone.   

Future work should consider applications to multimedia 
recognition problems such as face recognition in which researchers 
are striving to produce photorealistic images from three-
dimensional models and where there is an almost unquenchable 
thirst for unlimited amounts of arbitrarily detailed training data.  
Our technique has the potential to satisfy this need and enable 
substantial improvements in performance. 
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Fig. 3.  A real image a document (a) as captured by a Treo 
video sensor and (b) a virtual image of the same document.  

    (a)      (b) 

 
Fig. 5.  (a) Image distances between real images R1 and 

virtual images V1 that simulate a Treo.  Black indicates 
distance 0 and white is distance 1.  (b) Image distances 
between V1 and clean virtual images V2.  The horizontal 
and vertical axes identify individual images.  

(a) (b) 

Fig. 4.  Virtual images at 176x144 showing close-up views. 
(a) (b) 


