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A wireless network
of sensors can cover
a large geographical
region, and hence
can be used to
detect and track 
non-local phenomena
which cannot be 
captured by any 
individual sensor.
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INTRODUCTION
A wireless network of sensors can cover a large
geographical region, and hence can be used to
detect and track non-local phenomena that can-
not be captured by any individual sensor.
Because of its dense spatial sampling and multi-
modality sensing, the network can assemble
information from spatially diverse sources to
improve the signal-to-noise ratio. The redundan-
cy in the network can ensure a certain degree of
robustness against node failures. The network
may be quickly deployed for a particular applica-

tion, and the ubiquity and low-cost nature of the
micro-electromechanical system (MEMS) micro-
sensors can potentially give users unprecedented
access to real-time situational information.

While sensor data are local to each node, the
information content to be extracted from the net-
work can be global, which must be obtained
through collaboration among nodes. Let us con-
sider a scenario of tracking chemical plumes using
ad hoc just-in-time deployment of sensor nets:

The Valley Authority just declared a region-wide
emergency: A large-scale hazardous chemical gas leak
occurred ten minutes ago near the town of XYZ. The
National Guard has been activated to evacuate near-
by towns, and to close roads and bridges. To get a
real-time situational assessment of the extent and
movement of the gas release and aid evacuation, a
SWAT Team is called in. Three unmanned aerial
vehicles (UAVs) are immediately launched from an
open field 15 miles south of the accident site, each
carrying 1000 wireless chemical sensing nodes (Fig.
1). Upon flying over the vicinity of the accident site,
the sensor nodes are released. The nodes self-organize
into an ad hoc network once they get to the ground
and relay the tracking result back to a base station
nearby: Where is the plume? How big is it? What is
the shape? How fast is it moving?

In this example, each sensor only has limited
information such as whether certain chemical
elements exist at the sensing spot, whereas the
global information such as the shape of the
plume and its motion need to be determined
collaboratively by many sensors. In addition,
because of limited resources (e.g., battery power
and communication bandwidth), such processing
and communication must be carefully managed.

The ultimate way to reduce energy consump-
tion of a sensor node is by turning it off. Modern
wireless sensor hardware platforms usually have
low-power sleeping modes, in which parts of the
processor, sensors, and wireless communication
circuits are shut down to preserve power. For

ABSTRACT
A powerful concept to cope with resource

limitations and information redundancy in wire-
less sensor networks is the use of collaboration
groups to distill information within the network
and suppress unnecessary activities. When the
phenomena to be monitored have large geo-
graphical extents, it is not obvious how to define
these collaboration groups. This article presents
the application of geometric duality to form such
groups for sensor selection and non-local phe-
nomena tracking. Using a dual-space transfor-
mation, which maps a non-local phenomenon
(e.g., the edge of a half-plane shadow) to a sin-
gle point in the dual space and maps locations of
distributed sensor nodes to a set of lines that
partitions the dual space, one can turn off the
majority of the sensors to achieve resource
preservation without losing detection and track-
ing accuracy. Since the group so defined may
consist of nodes that are far away in physical
space, we propose a hierarchical architecture
that uses a small number of computationally
powerful nodes and a massive number of power
constrained motes. By taking advantage of the
continuity of physical phenomena and the duali-
ty principle, we can greatly reduce the power
consumption in non-local phenomena tracking
and extend the lifetime of the network.
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example, in Berkeley/Crossbow MICA2 motes,1
1 s of sleeping can save enough energy to send
more than 70 packets, or performing ~70,000
CPU instructions. Sensor nodes can be turned
back on by timers or by receiving wakeup pack-
ets using, for example, carrier detect circuits.
Thus, the art of the system design is to selective-
ly put sensors to sleep without losing application
performance. This has traditionally been dealt
with by adjusting the sampling and communica-
tion rate of the sensor nodes. In this article we
push this philosophy further. That is, we use
application-specific physical constraints to select
nodes to be activated.

In a large-scale dense sensor network, it is
sometimes desirable to process the information
collected by the sensors within the network rather
than sending raw data to a central server [1].
There are primarily two reasons. First is that the
information collected by a sensor network is high-
ly redundant. Considering that typical physical
phenomena only have limited ranges of impact,
most sensor data from a network contain no
information about the phenomena of interest.
Sending them out is simply a waste of resources.
Second, given our current technologies in wireless
sensor node design, wireless communication is
still limited in bandwidth and expensive in power
consumption. So even for meaningful sensor data,
it is desirable to summarize the sensor data local-
ly before sending to the edge of the network.

The set of sensor nodes (or computing agents
in general) that collaboratively process the data
within the network is called a collaboration
group. There are many ways to define collabora-
tion groups (e.g., based on geographical loca-
tions or data of interests) [2]. For instance, let us
consider a point signal source to be tracked at
(x, y) and its radius of impact r (defined by a cer-
tain signal-to-noise ratio); then it is intuitive to
define a collaboration group that consists of all
nodes within the circle defined by (x, y) and r. Of
course, since the true location of the signal
source is unknown, one may have to estimate its
location and maintain the group accordingly [3].
However, when the phenomenon is non-local, as
in the case of the chemical plume, it is not obvi-
ous how to find the minimum set of sensors that
contribute to tracking the phenomenon.

This article reviews the dual-space transfor-
mation in computational geometry and applies it
to the tracking of non-local phenomena [4]. We
consider a dense sensor network so that the
edge of a non-local phenomenon, modeled as a
shadow, can be piece-wise approximated by
straight lines. We study edge detection and
tracking problems for a 2D continuous shadow
over the senor field. A dual-space transform
maps non-local line segments into a set of points
in an appropriately parameterized configuration
space. We then show how motion constraints
from the target shape and dynamics can be
exploited to activate only those sensors relevant
to the current configuration. This algorithm can
serve as a building block in a scalable hierarchi-
cal architecture that overcomes the communica-
tion and computation limitations. In our
experiment of a shadow tracking using 16 motes,
we have observed that only 28 percent of the
sensors on average are awake at any given time.

DUAL-SPACE-BASED EDGE DETECTION
What does a dual-space representation buy us?
The geometric duality described below allows us
to map a seemingly non-local phenomenon (the
position of the shadow edge) into a local
attribute in the dual space. This allows the sen-
sor nodes to be ordered according to how “close”
they are relative to the frontier of the object
motion and simplifies the sensor activation pro-
cedure. If the sensor activation algorithm were
implemented in the primal space, without using
the dual-space transformation, each sensor node
would have to reason about its distance to the
object edge relative to other sensor nodes and
the motion of the object, a fairly complex geo-
metric problem to solve. We consider a half-

n Figure 1. Tracking chemical plumes using ad hoc distributed sensors.

nnnn Figure 2. The mapping between the primal space and the dual space.
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bow Technology, Inc.,
http://www.xbow.com
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plane shadow in this section, and generalize it to
other shapes later.

DUAL-SPACE TRANSFORMATION
Let us consider a line in a 2D space (called the
primal space): y = α ⋅ x + β, which is uniquely
defined by two parameters α and β. To repre-
sent this line through this pair of parameters, we
can use the point (–α, β) in another 2D space
(called the dual space).2 Similarly, a point in the
primal space (a, b) uniquely defines a line in the
dual space: ϕ = a ⋅ θ + b. This 1-to-1 mapping,
as shown in Fig. 2, is one form of a dual-space
transformation3 [5, 6].

A dual-space transform has several useful
properties, which follow immediately from the
definition:
AIf, in the primal space, a point (a, b) is on a

line y = α ⋅ x + β, in the dual space, the cor-
responding line ϕ = a ⋅ θ + b goes through
the corresponding point (–α, β), and vice
versa.

B If, in the primal space, a point (a, b) is above a
line y = α ⋅ x + β , i.e., b > a ⋅ α + β, in the
dual space, the corresponding line ϕ = a ⋅ θ +
b is above the corresponding point (–α, β)
(i.e., β < –α ⋅ a + b). Similar results hold for
the below relation.

C If, in the primal space, a line y = α ⋅ x + β
performs a continuous motion, including rota-
tion and translation, the corresponding point
(–α, β) performs a continuous motion in the
dual space.
For example, consider a set of points {P1, …,

P4} and one line L in the primal space, as shown
in Fig. 3a, whose corresponding dual-space rep-
resentations, {p1, …, p4} and l, are shown in Fig.
3b.

In Fig. 3b, the lines {p1, …, p4} define a line
arrangement that partitions the dual space into a set
of convex polygons, called cells [5, 6]. The bound-
aries of these cells are line segments lying on the
lines {p1, …, p4}. Obviously, some cells are com-
pletely bounded, while others extend to infinity.
The dual of a primal line L is a point l that must be
contained in one of the cells (in this example, the
shaded cell in Fig. 3b), unless it is on a cell bound-
ary. By abusing notations, let us use l < p to denote
that point l is below line p in the dual space; then
the shaded cell in Fig. 3b contains all points l satis-
fying l > p1, l < p2, and l < p3.

When line L in the primal space moves, l
moves in the dual space accordingly. As long as
L does not rotate across the vertical direction or
intersect any point in the primal space, l stays in
the cell defined by the above set of constraints in
the dual space. Furthermore, in the dual space, l
can enter other cells only if it crosses one of the
cell boundaries, including, conceptually, a
boundary at infinity. In particular, as shown in
Fig. 3b, l cannot intersect p4 before it crosses
one of the current cell boundaries. This observa-
tion is the key to our sensor selection scheme: if
{P1, …, P4} are the positions of four sensors and
L is the boundary of a half-plane shadow, P4 can
be safely turned off as long as none of P1, P2,
and P3 senses a transition.

SHADOW EDGE ESTIMATION AND
SENSOR SELECTION

For a half-plane shadow, by using the dual space
transformation, we can estimate its edge by solv-
ing the set of constraints imposed by the particu-
lar sensor readings. Using that information, we
can further determine the group of sensors at
the “frontier” (i.e., the ones that may detect a

nnnn Figure 3. a) A set of points and a line in the primal space; b) their representations in the dual space.
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3 It is also called a Hough
transformation in some
of the literature.
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transition next when the shadow moves). For
ease of discussion, we use light sensors as a
metaphor for the sensing model. Obviously, the
mechanism applies to any sensing models that
give binary readings through quantization. Let 0
represent a dark reading at a sensor, and 1 rep-
resent a light reading. Then at any time, the sen-
sor field gives a vector of readings consisting of
0s and 1s. The goal is to identify the set of sen-
sors that bounds the shadow edge, and thus esti-
mate the shadow location and turn off the nodes
that are irrelevant at this time.

Using the dual space transform, each sensor
defines a line in the dual space, and the edge of
the shadow is a point. So the problem is convert-
ed to determining the cells that are consistent
with current sensor readings; these are the cells
that may contain the dual of the shadow edge.
Note that the constraints in the dual space are in
the form of above and below relations. The same
vector of sensor reading may yield two possible
answers for the location of the shadow: the shad-
ow is above its edge or it is below its edge. For
example, the two shadow locations shown in Fig.
4a and 4b yield the same sensor readings, [0, 1,
1, 1], on {P1, …, P4}. 

Moreover, in the dual space, situations in Fig.
4a and 4b have different representations. The
representation of a is exactly the same as in Fig.
3b, while the representation of b is illustrated in
Fig. 5.

The cells that are consistent with the set of
sensor readings can be computed via linear pro-
gramming over the results of a topological
sweep. A topological sweep algorithm computes
the segments created by the intersections of the
set of lines, and their relative locations in terms
of adjacency and direction. Using that arrange-
ment, one may first assume that the shadow is
above the line and use a linear programming
algorithm to find the cell that is consistent with
the set of sensor readings. A similar computa-
tion can be performed under a below assump-
tion. Sometimes only one of the assumptions
yields a feasible answer; sometimes both of them
do. The details of the topological sweep and cell
finding algorithms are out of the scope of this
article. Interesting readers are referred to [4, 7,
8]. But it is worth noticing that these are all cen-
tralized algorithms that require location knowl-
edge of all points.

Once we find the cells that satisfy the sensor
reading constraints, the corners of the cells,
which map to several lines in the primal space,
we can determine the “extreme” positions where
the edge of the shadow could be. Each pair of
lines intersecting at a corner point, together with
the corresponding constraints on the lines, give a
wedge in the primal space. For example, in Fig.
3b the corner of the intersection of p1 and p3
together with the relations that the cell is above
p1 and below p3 define a wedge that contains all
lines above P1 and below P3 in the primal space.
Similarly, the intersection of p2 and p3 and the
fact that the cell is below p2 and below p3 give a
wedge that contains all lines below P2 and P3.
For each cell, the intersection of these wedges is
the estimate of the shadow edge. That is, the
edge of the shadow must be within that wedge
under a certain assumption (e.g., dark means

below). Of course, if there are two consistent
cells in the dual space, the union of each shadow
edge estimate gives the overall answer. For
example, mapping back the cells in Fig. 3b and
Fig. 5, we get the wedge shown in Fig. 6. In gen-
eral, the size of the cells in the dual space dic-
tates the “freedom” of the edge in the primal
space. Thus, the smaller the cells, the more
accurate estimation one can get.

Furthermore, at any time, the dual of the
edge of a shadow can possibly be in at most two
cells. The sensors corresponding to the bound-
aries of these cells are the sensors at the fron-
tier, in the sense that no matter how the shadow
moves, it must cross one (or more) of these sen-
sors before crossing any other sensors. So only
those sensors corresponding to the lines bound-
ing the cell(s) need be kept active, thereby bring-
ing the energy savings. It can be shown that in
any 2D line arrangement the expected number
of lines bounding an “average” cell is at most
four [5] (in the model where all cells are equally
likely), independent of the overall number of
sensors present. Thus, we can expect the number
of sensors that need to be active at any moment
to be very small. In a dense sensor field this may
lead to substantial energy savings over time with-
out losing the tracking quality.

n Figure 5. The dual space representation for the
situation shown in Fig. 4b.
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DISTRIBUTED SENSOR MANAGEMENT
The method described above for finding the
cells in the dual space is static, and could be
applied without knowing the motion history of
the shadow. If we take advantage of the fact
that the motion of a shadow is continuous, so
the dual of its edge can only move from one cell
to an adjacent cell, the computationally inten-
sive linear programming part does not have to
be performed after the system is properly ini-
tialized. For example, if the cell {C, G, H} in
Fig. 7 contained the dual of the shadow edge,
and sensor p2 just flipped its reading, it is clear
that {H, K, I} is the new cell. If the line arrange-
ments are precomputed and stored in the sensor
nodes, finding the new cell is simply a table
lookup.

This process is so simple that it is amend-
able for a distributed implementation on tiny
sensors with very limited memory and process-
ing power. After giving each cell a unique ID,
each sensor node only need remember those
dual space cells that are incident on the line
representing it. These cells correspond to the
concept of the zone [5] of a line in a line
arrangement, and it is known that the storage
required is only linear in the total number of
lines (nodes). The network can be initialized by
having all sensors agree on the same cell ID.
The sensor nodes that know nothing about that
cell can go into sleep mode. When one of the
sensors on guard notices a flip of sensor read-
ing, it wakes up sensor nodes that are new in
the new cell, and broadcasts to all awakened
sensors the new cell ID. The sensor nodes form-
ing the old cell but no longer in the new cell
can put themselves into sleep mode.

A LABORATORY EXPERIMENT
We have built an experiment [4] to validate the
shadow tracking algorithms and demonstrate the
benefits of sensor management using a network
of Rene motes with light sensors [9]. The Rene
motes are an older generation of Berkeley motes
that have an 8-bit Atmel AT90LS8535 processor
running at 4 MHz, 8 kbytes of flash memory,
and 512 bytes of SRAM. One of the analog-to-
digital (A/D) channels is connected to a light
sensor. The sensor’s sampling rate is pro-

grammed to be 8 Hz. RF communications
between motes are carried on the 916 MHz
band. Data are communicated at up to 10 kb/s.

The experiment is performed on a vertical 6
ft × 6 ft board to allow an overhead viewgraph
projector to illuminate the entire platform. Six-
teen motes are mounted on the board at ran-
domized but known locations. Figure 8a shows
the photograph of the board and the motes,
which are numbered from 1 to 16.

Figures 8a and 8b show a scenario where the
shadow covers mote 16. Five of the motes are
elected as the frontier of the shadow tracking,
which is obtained from the boundaries of the
cell in the dual space (shown in Fig. 8c). In Fig.
8b, the lines connecting the frontier motes depict
the extreme position and orientation of the edge
of the shadow. In other words, the shadow’s
edge must lie within the bounds of all five lines.

In this particular setup, the 16 lines create a
total of 102 cells, which cover all possible posi-
tions of the shadow edge. The number of bound-
aries for each cell indicates the number of motes
that need to be activated when the dual of the
shadow edge falls in that cell. In almost all cases
(> 97 percent), only 3 to 5 out of the 16 nodes
need to be active at the same time. In other
words, less than 30 percent of the motes are
active at any time on average. The rest can be
put into sleep to preserve power.

A TWO-TIER ARCHITECTURE
There are still two potential pitfalls for the
above sensor management scheme:
• Obtaining the cell configuration is computa-

tionally expensive, and the algorithm is cen-
tralized.

• In a large deployment, sensor nodes that form
a particular cell in the dual space may be very
far away in the primal space.

There may not be a direct communication link
to wake up a remote sensor node if all not-on-
guard nodes are sleeping. To overcome these
limitations, we present a two-tier sensor manage-
ment architecture over a virtual grid. The ideas
of tiered architectures and virtual grids have
been shown helpful for scalable network services
such as ad hoc routing [10, 11] and data dissemi-
nation [12]. Here we apply similar ideas to sen-
sor management.

The two-tier hierarchical architecture consists
of a large number of featherweight sensor motes
and a small number of more powerful (in terms
of computation) nodes serving as cluster heads.4
In order to maximize the lifetime of the net-
work, both motes and cluster heads may have a
deep sleep mode that consumes almost no
power. We assume that they can also be awak-
ened wirelessly via carrier sensing. As shown in
Fig. 9, the sensor field is virtually divided into a
regular grid. Each grid square (whose shape may
not be exactly square) has one cluster head
(shown as a star) and a set of motes (shown as
circles) deployed in an ad hoc fashion. Both
cluster heads and motes have wireless communi-
cation capabilities. In addition to communicating
with the motes in its square, a cluster head can
also communicate with other cluster heads in
adjacent squares to create a mesh network topol-
ogy (depicted as the hashed lines in Fig. 9). The

n Figure 7. A line arrangement of four lines.
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size of the grid squares is small enough that a
broadcast from one mote can be heard by all the
motes (and the cluster head) in that square, and
it is big enough to minimize the total number of
squares in the field. The cluster heads, which
may not be equipped with any sensor, can be
placed arbitrarily in the grid. We also assume
that all motes are localized, presumably with the
help from cluster heads.

Suppose that the boundary of the physical
phenomenon to be detected and tracked (e.g., a
chemical plume) is smooth such that it can be
approximated as a straight line in each grid
square. Then a dual-space-based detection,
tracking, and sensor management scheme can be
applied as follows.

Intracluster initialization: Once deployed,
the motes send the cluster head their locations
and current sensor readings. Using that informa-
tion, the cluster head can perform a topological
sweep algorithm and compute all cells in the

dual space and the current cell(s). This configu-
ration is then sent back to the motes in the form
of a table.

Intercluster initialization: A grid square is
called covered by the shadow if all its sensors
have dark readings; it is called uncovered if all
sensors have light readings; and it is called par-
tially covered otherwise. The coverage properties
are sent by the cluster heads to their direct neigh-
bor cluster heads. For partially covered squares,
their cluster heads also send the current estimate
of the shadow edge. Upon receiving these mes-
sages, a cluster head decides whether to activate
its cluster using the grid activation criteria:
• A: A partially covered square is always active

in the sense that the frontier motes continu-
ously sense the shadow.

• B: A covered or uncovered square is active
only if at least one of its neighbors estimates
that the edge of the shadow possibly intersects
the grid boundary between them.

n Figure 8. a) A testbed contains 16 motes mounted on a board; a half-plane shadow is cast onto the board; b) the detection and
estimation of the shadow edge; c) the dual-space representation of the corresponding cell. Motes 16, 15, 14, 13, and 5 are the current
frontiers for detection.
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nnnn Figure 9. Using a hierarchical architecture to track non-local phenomena.
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For an inactive square, all nodes are in sleep
mode.

Tracking: An active square performs a track-
ing and sensor selection scheme using the algo-
rithm described earlier. Motes that are not at
the frontier of tracking go into sleep mode.
Once the current dual-space cell in a square
changes, its cluster head is awakened by the
mote that senses the change. The cluster head
tells all direct neighboring cluster heads about
its new estimate of the shadow edge. The receiv-
ing cluster head then determines whether it
needs to activate its own cluster by the grid acti-
vation criteria.

By using this scheme, only the sensors that
are absolutely necessary in detecting and track-
ing the non-local phenomena are activated. Note
that one of the assumptions we made in the sys-
tem is that the edge of the shadow can be piece-
wise approximated as straight lines in each grid
square. While the straight line approximation
assumption is in general true, the extent of the
lines may not be aligned with the boundaries of
the grid squares. Future work is to dynamically
create the clusters to adapt to complex shapes.

CONCLUSION

In large-scale dense sensor networks, the scala-
bility requirements suggest we organize sensor
nodes and computation into collaboration groups
for in-network information processing. This arti-
cle reviews the dual-space transformation princi-
ple and applies it to tracking the boundary of a
non-local shadow. By converting non-local phe-
nomena into localized representations and solv-
ing the problem in an appropriate configuration
space, the sensor nodes at the frontier can be
identified easily. Thus, other nodes can be safely
switched to a power saving mode. To scale up
this approach, we propose a hierarchical hetero-
geneous network with more powerful nodes per-
forming dual-space transformation and
long-range communication, and tiny motes per-
forming fine-grained edge detection and track-
ing.
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By converting
non-local phenomena
into localized
representations and
solving the problem
in an appropriate
configuration space,
the sensor nodes at
the frontier can be
identified easily.
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