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Abstract

Many applications in robotics and human-computer in-
teraction can benefit from understanding 3D motion of
points in a dynamic environment, widely noted as scene
flow. While most previous methods focus on stereo and
RGB-D images as input, few try to estimate scene flow di-
rectly from point clouds. In this work, we propose a novel
deep neural network named FlowNet3D that learns scene
flow from point clouds in an end-to-end fashion. Our net-
work simultaneously learns deep hierarchical features of
point clouds and flow embeddings that represent point mo-
tions, supported by two newly proposed learning layers for
point sets. We evaluate the network on both challenging
synthetic data from FlyingThings3D and real Lidar scans
from KITTI. Trained on synthetic data only, our network
successfully generalizes to real scans, outperforming vari-
ous baselines and showing competitive results to the prior
art. We also demonstrate two applications of our scene flow
output (scan registration and motion segmentation) to show
its potential wide use cases.

1. Introduction

Scene flow is the 3D motion field of points in the
scene [28]. Its projection to an image plane becomes 2D
optical flow. It is a low-level understanding of a dynamic
environment, without any assumed knowledge of structure
or motion of the scene. With this flexibility, scene flow can
serve many higher level applications. For example, it pro-
vides motion cues for object segmentation, action recogni-
tion, camera pose estimation, or even serve as a regulariza-
tion for other 3D vision problems.

However, for this 3D flow estimation problem, most pre-
vious works rely on 2D representations. They extend meth-
ods for optical flow estimation to stereo or RGB-D images,
and usually estimate optical flow and disparity map sepa-
rately [33, 29, 17], not directly optimizing for 3D scene
flow. These methods cannot be applied to cases where point
clouds are the only input.

* indicates equal contributions.

point cloud 1: !1×3
point cloud 2: !2×3

scene flow: !1×3

FlowNet3D

Figure 1: End-to-end scene flow estimation from point
clouds. Our model directly consumes raw point clouds
from two consecutive frames, and outputs dense scene flow
(as translation vectors) for all points in the 1st frame.

Very recently, researchers in the robotics community
started to study scene flow estimation directly in 3D point
clouds (e.g. from Lidar) [8, 26]. But those works did not
benefit from deep learning as they built multi-stage systems
based on hand-crafted features, with simple models such as
logistic regression. There are often many assumptions in-
volved such as assumed scene rigidity or existence of point
correspondences, which make it hard to adapt those systems
to benefit from deep networks. On the other hand, in the
learning domain, Qi et al. [20, 21] recently proposed novel
deep architectures that directly consume point clouds for
3D classification and segmentation. However, their work
focused on processing static point clouds.

In this work, we connect the above two research frontiers
by proposing a deep neural network called FlowNet3D that
learns scene flow in 3D point clouds end-to-end. As illus-
trated in Fig. 1, given input point clouds from two consec-
utive frames (point cloud 1 and point cloud 2), our network
estimates a translational flow vector for every point in the
first frame to indicate its motion between the two frames.
The network, based on the building blocks from [20], is
able to simultaneously learn deep hierarchical features of
point clouds and flow embeddings that represent their mo-
tions. While there are no correspondences between the
two sampled point clouds, our network learns to associate
points from their spatial localities and geometric similar-
ities, through our newly proposed flow embedding layer.
Each output embedding implicitly represents the 3D mo-
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tion of a point. From the embeddings, the network further
up-samples and refines them in an informed way through
another novel set upconv layer. Compared to direct feature
up-sampling with 3D interpolations, the set upconv layers
learn to up-sample points based on their spatial and feature
relations.

We extensively study the design choices in our model
and validate the usefullness of our newly proposed point
set learning layers, with a large-scale synthetic dataset
(FlyingThings3D). We also evaluate our model on the
real LiDAR scans from the KITTI benchmark, where our
model shows significantly stronger performance compared
to baselines of non-deep learning methods and competitive
results to the prior art. More remarkably, we show that our
network, even trained on synthetic data, is able to robustly
estimate scene flow in point clouds from real scans, showing
its great generalizability. With fine tuning on a small set of
real data, the network can achieve even better performance.

To support future research based on our work, we will
release our prepared data and code for public use.

The key contributions of this paper are as follows:

• We propose a novel architecture called FlowNet3D
that estimates scene flow from a pair of consecutive
point clouds end-to-end.

• We introduce two new learning layers on point clouds:
a flow embedding layer that learns to correlate two
point clouds, and a set upconv layer that learns to prop-
agate features from one set of points to the other.

• We show how we can apply the proposed FlowNet3D
architecture on real LiDAR scans from KITTI and
achieve greatly improved results in 3D scene flow es-
timation compared with traditional methods.

2. Related Work
Scene flow from RGB or RGB-D images. Vedula et

al. [28] first introduced the concept of scene flow, as three-
dimensional field of motion vectors in the world. They as-
sumed knowledge of stereo correspondences and combined
optical flow and first-order approximations of depth maps
to estimate scene flow. Since this seminal work, many oth-
ers have tried to jointly estimate structure and motion from
stereoscopic images [13, 19, 34, 27, 6, 33, 29, 30, 2, 31, 17],
mostly in a variational setting with regularizations for
smoothness of motion and structure [13, 2, 27], or with as-
sumption of the rigidity of the local structures [30, 17, 31].

With the recent advent of commodity depth sensors, it
has become feasible to estimate scene flow from monocular
RGB-D images [10], by generalizing variational 2D flow
algorithms to 3D [11, 15] and exploiting more geometric
cues provided by the depth channel [22, 12, 24]. Our work
focuses on learning scene flow directly from point clouds,

without any dependence on RGB images or assumptions on
rigidity and camera motions.
Scene flow from point clouds. Recently, Dewan et al. [8]
proposed to estimate dense rigid motion fields in 3D Li-
DAR scans. They formulate the problem as an energy
minimization problem of a factor graph, with hand-crafted
SHOT [25] descriptors for correspondence search. Later,
Ushani et al. [26] presented a different pipeline: They train
a logistic classifier to tell whether two columns of occu-
pancy grids correspond and formulate an EM algorithm to
estimate a locally rigid and non-deforming flow. Compared
to these two previous works, our method is an end-to-end
solution with deep learned features and no dependency on
hard correspondences or assumptions on rigidity.

Concurrent to our work, [3] estimate scene flow as rigid
motions of individual objects or background with network
that jointly learns to regress ego-motion and detect 3D ob-
jects. [23] jointly estimate object rigid motions and segment
them based on their motions. Compared to those works, our
formulation does not rely on semantic supervision and fo-
cuses on solving the scene flow problem.
Related deep learning based methods. FlowNet [9] and
FlowNet 2.0 [14] are two seminal works that propose to
learn optical flow with convolutional neural networks in an
end-to-end fashion, showing competitive performance with
great efficiency. [16] extends FlowNet to simultaneously es-
timating disparity and optical flow. Our work is inspired by
the success of those deep learning based attempts at optical
flow prediction, and can be viewed as the 3D counterpart
of them. However, the irregular structure in point clouds
(no regular grids as in image) presents new challenges and
opportunities for design of novel architectures, which is the
focus of this work.

3. Problem Definition

We design deep neural networks that estimate 3D mo-
tion flow from consecutive frames of point clouds. Input to
our network are two sets of points sampled from a dynamic
3D scene, at two consecutive time frames: P = {xi|i =
1, . . . , n1} (point cloud 1) and Q = {yj |j = 1, . . . , n2}
(point cloud 2), where xi, yj ∈ R3 areXY Z coordinates of
individual points. Note that due to object motion and view-
point changes, the two point clouds do not necessarily have
the same number of points or have any correspondences be-
tween their points. It is also possible to include more point
features such as color and Lidar intensity. For simplicity we
focus on XY Z only.

Now consider the physical point under a sampled point
xi moves to location x′i at the second frame, then the trans-
lational motion vector of the point is di = x′i − xi. Our
goal is, given P and Q, to recover the scene flow for every
sampled point in the first frame: D = {di|i = 1, . . . , n1}.
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Figure 2: Three trainable layers for point cloud processing. Left: the set conv layer to learn deep point cloud features.
Middle: the flow embedding layer to learn geometric relations between two point clouds to infer motions. Right: the set
upconv layer to up-sample and propagate point features in a learnable way.

4. FlowNet3D Architecture
In this section, we introduce FlowNet3D (Fig. 3), an end-

to-end scene flow estimation network on point clouds. The
model has three key modules for (1) point feature learn-
ing, (2) point mixture, and (3) flow refinement. Under these
modules are three key deep point cloud processing layers:
set conv layer, flow embedding layer and set upconv layer
(Fig. 2). In the following subsections, we describe each
modules with their associating layers in details, and spec-
ify the final FlowNet3D architecture in Sec. 4.4.

4.1. Hierarchical Point Cloud Feature Learning

Since a point cloud is a set of points that is irregular and
orderless, traditional convolutions do not fit. We therefore
follow a recently proposed PointNet++ architecture [21],
a translation-invariant network that learns hierarchical fea-
tures. Although the set conv layer 1 was designed for 3D
classification and segmentation, we find its feature learning
layers also powerful for the task of scene flow.

As shown in Fig. 2 (left), a set conv layer takes a point
cloud with n points, each point pi = {xi, fi} with itsXY Z
coordinates xi ∈ R3 and its feature fi ∈ Rc (i = 1, ..., n),
and outputs a sub-sampled point cloud with n′ points, where
each point p′j = {x′j , f ′j} has its XY Z coordinates x′j and
an updated point feature f ′j ∈ Rc′ (j = 1, ...n′).

Specifically, as described more closely in [21], the layer
firstly samples n′ regions from the input points with farthest
point sampling (with region centers as x′j), then for each re-
gion (defined by a radius neighborhood specified by radius
r), it extracts its local feature with the following symmetric
function

f ′j = MAX
{i|‖xi−x′

j‖≤r}

{
h(fi, xi − x′j)

}
. (1)

where h : Rc+3 → Rc′ is a non-linear function (realized as
a multi-layer perceptron) with concatenated fi and xi − x′j
as inputs, and MAX is element-wise max pooling.

1Noted as set abstraction layer in [21]. We name it set conv here to
emphasize its spatial locality and translation invariance.

4.2. Point Mixture with Flow Embedding Layer

To mix two point clouds we rely on a new flow embed-
ding layer (Fig. 2 middle). To inspire our design, imagine a
point at frame t, if we know its corresponding point in frame
t+1 then its scene flow is simply their relative displacement.
However, in real data, there are often no correspondences
between point clouds in two frames, due to viewpoint shift
and occlusions. It is still possible to estimate the scene flow
though, because we can find multiple softly corresponding
points in frame t+ 1 and make a “weighted” decision.

Our flow embedding layer learns to aggregate both (ge-
ometric) feature similarities and spatial relationships of
points to produce embeddings that encode point motions.
Compared to the set conv layer that takes in a single point
cloud, the flow embedding layer takes a pair of point
clouds: {pi = (xi, fi)}n1

i=1 and {qj = (yj , gj)}n2
j=1 where

each point has its XY Z coordinate xi, yj ∈ R3, and a fea-
ture vector fi, gj ∈ Rc. The layer learns a flow embedding
for each point in the first frame: {ei}n1

i=1 where ei ∈ Rc′ .
We also pass the original coordinates xi of the points in
the first frame to the output, thus the final layer output is
{oi = (xi, ei)}n1

i=1.
The underneath operation to compute ei is similar to the

one in set conv layers. However, their physical meanings
are vastly different. For a given point pi in the first frame,
the layer firstly finds all the points qj from the second frame
in its radius neighborhood (highlighted blue points). If a
particular point q∗ = {y∗, g∗} corresponded to pi, then the
flow of pi were simply y∗−xi. Since such case rarely exists,
we instead use a neural layer to aggregate flow votes from
all the neighboring qj’s

ei = MAX
{j|‖yj−xi‖≤r}

{h(fi, gj , yj − xi)} . (2)

where h is a non-linear function with trainable parameters
similar to the set conv layer and MAX is the element-wise
max pooling. Compared to Eq. (1), we input two point fea-
tures to h, expecting it to learn to compute the “weights” to
aggregate all potential flow vectors dij = yj − xi.

An alternative formulation is to explicitly specify how
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Figure 3: FlowNet3D architecture. Given two frames of point clouds, the network learns to predict the scene flow as
translational motion vectors for each point of the first frame. See Fig. 2 for illustrations of the layers and Sec. 4.4 for more
details on the network architecture.

we relate point features, by computing a feature distance
dist(fi, gj). The feature distance is then fed to the non-
linear function h (instead directly feeding the fi and gj).
In ablation studies we show that our formulation in Eq. (2)
learns more effective flow embeddings than this alternative.

The computed flow embeddings are further mixed
through a few more set conv layers so that we obtain spa-
tial smoothness. This also help resolve ambiguous cases
(e.g. points on the surface of a translating table) that require
large receptive fields for flow estimation.

4.3. Flow Refinement with Set Upconv Layer

In this module, we up-sample the flow embeddings as-
sociated with the intermediate points to the original points,
and at the last layer predict flow for all the original points.
The up-sampling step is achieved by a learnable new layer
– the set upconv layer, which learns to propagate and refine
the embeddings in an informed way.

Fig. 2 (right) illustrates the process of a set upconv
layer. The inputs to the layer are source points {pi =
{xi, fi}|i = 1, . . . , n}, and a set of target point coordinates
{x′j |j = 1, . . . , n′} which are locations we want to propa-
gate the source point features to. For each target location
x′j the layer outputs its point feature f ′j ∈ Rc′ (propagated
flow embedding in our case) by aggregating its neighboring
source points’ features.

Interestingly, just like in 2D convolutions in images
where upconv2D can be implemented through conv2D, our
set upconv can also be directly achieved with the same set
conv layer as defined in Eq. (1), but with a different local re-
gion sampling strategy. Instead of using farthest point sam-
pling to find x′j as in the set conv layer, we compute features

on specified locations by the target points {x′j}n
′

j=1.
Note that although n′ > n in our up-sampling case, the

set upconv layer itself is flexible to take any number of target
locations which unnecessarily correspond to any real points.
It is a flexible and trainable layer to propagate/summarize
features from one point cloud to another.

Compared to an alternative way to up-sample
point features – using 3D interpolation (f ′j =∑
{i|‖xi−x′

j‖≤r}
w(xi, x

′
j)fi with w as a normalized

inverse-distance weight function [21]), our network learns
how to weight the nearby points’ features, just as how the
flow embedding layer weights displacements. We find that
the new set upconv layer shows significant advantages in
empirical results.

4.4. Network Architecture

The final FlowNet3D architecture is composed of four
set conv layers, one flow embedding layer and four set up-
conv layers (corresponding to the four set conv layers) and
a final linear flow regression layer that outputs the R3 pre-
dicted scene flow. For the set upconv layers we also have
skip connections to concatenate set conv output features.
Each learnable layer adopts multi-layer perceptrons for the
function h with a few Linear-BatchNorm-ReLU layers pa-
rameterized by its linear layer width. The detailed layer
parameters are as shown in Table 1.

5. Training and Inference wtih FlowNet3D

We take a supervised approach to train the FlowNet3D
model with ground truth scene flow supervision. While this
dense supervision is hard to acquire in real data, we tap
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Layer type r Sample rate MLP width
set conv 0.5 0.5× [32, 32, 64]
set conv 1.0 0.25× [64, 64, 128]

flow embedding 5.0 1× [128, 128, 128]
set conv 2.0 0.25× [128, 128, 256]
set conv 4.0 0.25× [256, 256, 512]

set upconv 4.0 4× [128, 128, 256]
set upconv 2.0 4× [128, 128, 256]
set upconv 1.0 4× [128, 128, 128]
set upconv 0.5 2× [128, 128, 128]

linear - - 3∗

Table 1: FlowNet3D architecture specs. Note that the last
layer is linear thus has no ReLU and batch normalization.

large-scale synthetic dataset (FlyingThings3D) and show
that our model trained on synthetic data generalizes well
to real Lidar scans (Sec. 6.2).

Training loss with cycle-consistency regularization.
We use smooth L1 loss (huber loss) for scene flow su-
pervision, together with a cycle-consistency regularization.
Given a point cloud P = {xi}n1

i=1 at frame t and a point
cloud Q = {yj}n2

j=1 at frame t + 1, the network predicts
scene flow as D = F (P,Q; Θ) = {di}n1

i=1 where F is the
FlowNet3D model with parameters Θ. With ground truth
scene flow D∗ = {d∗i }

n1
i=1, our loss is defined as in Eq. (3).

In the equation, ‖d′i + di‖ is the cycle-consistency term that
enforces the backward flow {d′i}

n1
i=1 = F (P ′,P; Θ) from

the shifted point cloud P ′ = {xi + di}n1
i=1 to the original

point cloud P is close to the reverse of the forward flow

L(P,Q,D∗,Θ) =
1

n1

n1∑
i=1

{
‖di − d∗i ‖+λ‖d′i + di‖

}
(3)

Inference with random re-sampling. A special chal-
lenge with regression problems (such as scene flow) in point
clouds is that down-sampling introduces noise in predic-
tion. A simple but effective way to reduce the noise is to
randomly re-sample the point clouds for multiple inference
runs and average the predicted flow vectors for each point.
In the experiments, we will see that this re-sampling and
averaging step leads to a slight performance gain.

6. Experiments
In this section, we first evaluate and validate our design

choices in Sec. 6.1 with a large-scale synthetic dataset (Fly-
ingThings3D), and then in Sec. 6.2 we show how our model
trained on synthetic data can generalize successfully to real
Lidar scans from KITTI. Finally, in Sec. 6.3 we demonstrate
two applications of scene flow on 3D shape registration and
motion segmentation.

Method Input EPE
ACC
(0.05)

ACC
(0.1)

FlowNet-C [9]
depth 0.7887 0.20% 1.49%

RGBD 0.7836 0.25% 1.74%

ICP [4] points 0.5019 7.62% 21.98%
EM-baseline (ours) points 0.5807 2.64% 12.21%
LM-baseline (ours) points 0.7876 0.27% 1.83%
DM-baseline (ours) points 0.3401 4.87% 21.01%

FlowNet3D (ours) points 0.1694 25.37% 57.85%

Table 2: Flow estimation results on the FlyingThings3D
dataset. Metrics are End-point-error (EPE), Acc (<0.05 or
5%, <0.1 or 10%) for scene flow.

6.1. Evaluation and Design Validation on FlyingTh-
ings3D

As annotating or acquiring dense scene flow is very ex-
pensive on real data, there does not exist any large-scale real
dataset with scene flow annotations to the best of our knowl-
edge 2. Therefore, we turn to a synthetic, yet challenging
and large-scale dataset, FlyingThings3D, to train and eval-
uate our model as well as to validate our design choices.

FlyingThings3D [16]. The dataset consists of stereo and
RGB-D images rendered from scenes with multiple ran-
domly moving objects sampled from ShapeNet [7]. There
are in total around 32k stereo images with ground truth dis-
parity and optical flow maps. We randomly sub-sampled
20,000 of them as our training set and 2,000 as our test set.
Instead of using RGB images, we preprocess the data by
popping up disparity maps to 3D point clouds and optical
flow to scene flow. We will release our prepared data.

Evaluation Metrics. We use 3D end point error (EPE)
and flow estimation accuracy (ACC) as our metrics. The
3D EPE measures the average L2 distance between the es-
timated flow vector to the ground truth flow vector. Flow
estimation accuracy measures the portion of estimated flow
vectors that are below a specified end point error, among
all the points. We report two ACC metrics with different
thresholds.

Results. Table 2 reports flow evaluation results on the test
set, comparing FlowNet3D to various baselines. Among
the baselines, FlowNet-C is a CNN model adapted from
[14] that learns to predict scene flow from a pair of depth
images or RGB-D images (depth images transformed to

2The KITTI dataset we test on in Sec. 6.2 only has 200 frames with
annotations. [32] mentioned a larger dataset however it belongs to Uber
and is not publicly available.
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Figure 4: Three meta-architectures for scene flow net-
work. FlowNet3D (Fig. 3) belongs to the deep mixture.

XY Z coordinate maps for input), instead of optical flow
from RGB images as originally in [14] (more architecture
details in supplementary). However, we see that this image-
based method has a hard time predicting accurate scene flow
probably because of strong occlusions and clutters in the 2D
projected views. We also compare with an ICP (iterative
closest point) baseline that finds a single rigid transform for
the entire scene, which matches large objects in the scene
but is unable to adapt to the multiple independently moving
objects in our input. Surprisingly, this ICP baseline is still
able to get some reasonable numbers (even better than the
2D FlowNet-C one).

We also report results of three baseline deep models that
directly consume point clouds (as instantiations of the three
meta-architectures in Fig. 4). They mix point clouds of
two frames at early, late, or intermediate stages. The EM-
baseline combines two point clouds into a single set at input
and distinguishes them by appending each point with a one-
hot vector of length 2. The LM-baseline firstly computes a
global feature for the point cloud from each frame, and then
concatenates the global features as a way to mix the points.
The DM-baseline is similar in structure to our FlowNet3D
(they both belong to the DM meta-architecture) but uses a
more naive way to mix two intermediate point clouds (by
concatenating all features and point displacements and pro-
cessing it with fully connected layers), and it uses 3D in-
terpolation instead of set upconv layers to propagate point
features. More details are provided in the supplementary.

Compared to those baseline models, our FlowNet3D
achieves much lower EPE as well as significantly higher
accuracy.

Ablation studies. Table 3 shows the effects of several de-
sign choices of FlowNet3D. Comparing the first two rows,
we see max pooling has a significant advantage over aver-

Feature
distance

Pooling Refine
Multiple
resample

Cycle-
consistency

EPE

dot avg interp 7 7 0.3163

dot max interp 7 7 0.2463
cosine max interp 7 7 0.2600
learned max interp 7 7 0.2298

learned max upconv 7 7 0.1835
learned max upconv 3 7 0.1694
learned max upconv 3 3 0.1626

Table 3: Ablation studies on the FlyingThings3D dataset.
We study the effects of distance function, type of pooling in
h, layers used in flow refinement, as well as effects of re-
sampling and cycle-consistency regularization.

Method Input
EPE

(meters)
outliers

(0.3m or 5%)
KITTI
ranking

LDOF [5] RGB-D 0.498 12.61% 21
OSF [17] RGB-D 0.394 8.25% 9

PRSM [31]
RGB-D 0.327 6.06%

3
RGB stereo 0.729 6.40%

Dewan et al. [8] points 0.587 71.74% -
ICP (global) points 0.385 42.38% -

ICP (segmentation) points 0.215 13.38% -

FlowNet3D (ours) points 0.122 5.61% -

Table 4: Scene flow estimation on the KITTI scene flow
dataset (w/o ground points). Metrics are EPE, outlier ra-
tio (>0.3m or 5%). KITTI rankings are the methods’ rank-
ings on the KITTI scene flow leaderboard. Our FlowNet3D
model is trained on the synthetic FlyingThings3D dataset.

age pooling, probably because max pooling is more selec-
tive in picking “corresponding” point and suffers less from
noise. From row 2 to row 4, we compare our design to the
alternatives of using feature distance functions (as discussed
in Sec. 4.2) with cosine distance and its unnormalized ver-
sion (dot product). Our approach gets the best performance,
with (11.6% error reduction compared to using the cosine
distance. Looking at row 4 and row 5, we see that our newly
proposed set upconv layer significantly reduces flow error
by 20%. Lastly, we find multiple re-sampling (10 times)
during inference (second last row) and training with cycle-
consistency regularization (with λ = 0.3) further boost the
performance. The final row represents the final setup of our
FlowNet3D.

6.2. Generalization to Real Lidar Scans in KITTI

In this section, we show that our model, trained on the
synthetic dataset, can be directly applied to detect scene
flow in point clouds from real Lidar scans from KITTI.
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Figure 5: Scene flow on KITTI point clouds. We show scene flow predicted by FlowNet3D on four KITTI scans. Lidar
points are colored to indicate points as from frame 1, frame 2 or as translated points (point cloud 1 + scene flow).

Method
PRSM [31]

(RGB stereo)
PRSM [31]
(RGB-D)

ICP
(global)

FlowNet3D
(without finetune)

FlowNet3D + ICP
(without finetune)

FlowNet3D
(with finetune)

3D EPE 0.668 0.368 0.281 0.211 0.195 0.144

3D outliers 6.42% 6.06% 24.29% 20.71% 13.41% 9.52%

Table 5: Scene flow estimation on the KITTI sceneflow dataset (w/ ground points). The first 100 frames are used to
finetune our model. All methods are evaluated on the rest 50 frames.

Data and setup. We use the KITTI scene flow dataset [18,
17], which is designed for evaluations of RGB stereo based
methods. To evaluate point cloud based method, we use
its ground truth labels and trace raw point clouds associ-
ated to the frames. Since no point cloud is provided for the
test set (and part of the train set), we evaluate on all 150
out of 200 frames from the train set with available point
clouds. Furthermore, to keep comparison fair with the pre-
vious method [8], we firstly evaluation our model on Lidar
scans with removed grounds 3 (see supplementary for de-
tails) in Table 4. We then report another set of results with
the full Lidar scans including the ground points in Table 5.

Baselines. LDOF+depth [5] uses a variational model to
solve optical flow and treats depth as an extra feature di-
mension. OSF [17] uses discrete-continuous CRF on su-
perpixels with the assumption of rigid motion of objects.

3The ground is a large piece of flat geometry that provides little cue to
its motion but at the same time occupies a large portion of points, which
biases the evaluation results.

PRSM [31] uses energy minimization on rigidly moving
segments and jointly estimates multiple attributes together
including rigid motion. Since the three RGB-D image based
methods do not output scene flow directly (but optical flow
and disparity separately), we either use estimated disparity
(fourth row) or pixel depth change (first three rows) to com-
pute depth-wise flow displacements.

ICP (global) estimates a single rigid motion for the en-
tire scene. ICP (segmentation) is a stronger baseline that
first computes connected components on Lidar points after
ground removal and then estimates rigid motions for each
individual segment of point clouds.

Results. In Table 4, we compare FlowNet3D with prior
arts optimized for 2D optical flow as well as the two ICP
baselines on point clouds. Compared to 2D-image based
methods [5, 17, 31], our method shows great advantages on
scene flow estimation – achieving significantly lower 3D
end-point error (63% relative error reduction from [31])
and 3D outlier ratios. Our method also outperforms the two
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Input 
point clouds

ICP 
registration Scene flow Ours

registration

Figure 6: Partial scan registration of two chair scans.
The goal is to register point cloud 1 (red) to point cloud 2
(green). The transformed point cloud 1 is in blue. We show
a case where ICP fails to align the chair while our method
grounded by dense scene flow succeeds.

ICP Scene flow (SF) SF + Rigid motion

EPE 0.384 0.220 0.125

Table 6: Point cloud warping errors.

ICP baselines that rely more on rigidity of global scene or
correctness of segmentation. Additionally, we conclude that
our model, although only trained on synthetic data, remark-
ably generalizes well to the real Lidar point clouds.

Fig. 5 visualizes our scene flow prediction. We can see
our model can accurately estimate flows for dynamic ob-
jects, such as moving vehicles and pedestrians.

In Table 5 we report results on the full Lidar scans with
ground point clouds. We also split the data to use 100
frames to finetune our FlowNet3D model on Lidar scans,
and use the rest 50 for testing. We see that including ground
points negatively impacted all methods. But our method
still outperforms the ICP baseline. By adopting ICP es-
timated flow on the segmented grounds and net estimated
flow for the rest of points (FlowNet3D+ICP), our method
can also beat the prior art (PRSM) in EPE. The PRSM leads
in outlier ratio because flow estimation for grounds is more
friendly with methods taking images input. By finetuning
FlowNet3D on the Lidar scans, our model even achieves
better results (the last column).

6.3. Applications

While scene flow itself is a low-level signal in under-
standing motions, it can provide useful cues for many
higher level applications as shown below (more details on
the demo and datasets are included in supplementary).

6.3.1 3D Scan Registration

Point cloud registration algorithms (e.g. ICP) often rely
on finding correspondences between the two point sets.
However due to scan partiality, there are often no direct
correspondences. In this demo, we explore in using the

Figure 7: Motion segmentation of a Lidar point cloud.
Left: Lidar points and estimated scene flow in colored
quiver vectors. Right: motion segmented objects and re-
gions.

dense scene flow predicted from FlowNet3D for scan reg-
istration. The point cloud 1 shifted by our predicted scene
flow has a natural correspondence to the original point cloud
1 and thus can be used to estimate a rigid motion between
them. We show in Fig. 6 that in partial scans our scene flow
based registration can be more robust than the ICP method
in cases when ICP stucks at a local minimum. Table 6 quan-
titatively compares the 3D warping error (the EPE from
warped points to ground truth points) of ICP, directly us-
ing our scene flow and using scene flow followed by a rigid
motion estimation.

6.3.2 Motion Segmentation

Our estimated scene flow in Lidar point clouds can also
be used for motion segmentation of the scene – segment-
ing the scene into different objects or regions depending on
their motions. In Fig. 7, we demonstrate motion segmen-
tation results in a KITTI scene, where we clustered Lidar
points based on their coordinates and estimated scene flow
vectors. We see that different moving cars, grounds, and
static objects are clearly segmented from each other. Re-
cently, [23] also tried to jointly estimate scene flow and mo-
tion segmentation from RGB-D input. It is interesting to
augment our pipeline for similar tasks in point clouds in the
future.

7. Conclusion

In this paper, we have presented a novel deep neural net-
work architecture that estimates scene flow directly from 3D
point clouds, as arguablely the first work that shows success
in solving the problem end-to-end with point clouds. To
support FlowNet3D, we have proposed a novel flow em-
bedding layer that learns to aggregate geometric similar-
ities and spatial relations of points for motion encoding,
as well as a new set upconv layer for trainable set feature
propagation. On both challenging synthetic dataset and real
Lidar point clouds, we validated our network design and
showed its competitive or better results to various baselines
and prior arts. We have also demonstrated two example ap-
plications of using scene flow estimated from our model.
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Supplementary

A. Overview
In this document, we provide more details to the main

paper and show extra results on model size, running time
and feature visualization.

In Sec. B we describe details in the FlyingThings3D ex-
periments. In Sec. C, we provide more details on the base-
line architectures (main paper Sec. 6.1). In Sec. D we de-
scribe how we prepared KITTI Lidar scans for our evalua-
tions (Sec. 6.2). In Sec. E and Sec. F we explain more de-
tails about the experiments for the two applications of scene
flow (Sec. 6.3). Lastly in Sec. G we report our model size
and runtime and in Sec. H we provide more visualization
results on FlyingThings3D and network learned features.

B. Details on FlyingThings 3D Experiments
(Sec. 6.1)

The FlyingThings3D dataset only provides RGB images,
depth maps and depth change maps. We constructed the
point cloud scene flow dataset by popping up 3D points
from depth map. The virtual camera intrinsic matrix is

K =

fx = 1050.0 0.0 cx = 479.5
0.0 fy = 1050.0 cy = 269.5
0.0 0.0 1.0


where (fx, fy) are the focal lengths and (cx, cy) is the loca-
tion of principal point. We didn’t use RGB images in point
cloud experiments.

The Z values of background are significantly larger than
the moving objects in the foreground of FlyingThings3D
scenes. In order to prevent depth values from explosion and
to focus on more apparent motion of foreground objects, we
only use points whose Z is larger than a certain threshold t.
We set t = 35 in all experiments.

We generate a mask for disappearing/emerging points
due to: 1) change of field of view; 2) occlusion. Scene
flow loss at the masked points are ignored during training
but were used during testing (since we do not have masks at
the test time).

C. Details on Baseline Architectures (Sec. 6.1)
FlowNet-C on depth and RGB-D images. This model is
adapted from [9]. The original CNN model takes a pair of
RGB images as input. To predict scene flow, we send a pair
of depth images or RGB-D images into the network. Depth
maps are transformed to XY Z coordinate maps. RGB-D
imags are six-channel maps where the first three channels
are RGB images and the rest are XY Z maps. The model
has the same architecture as FlowNet-C in [9] except that
the input has six channels for RGB-D input.

The RGB values are scaled to [0, 1]. We use the same
threshold t as point cloud experiments. Also, scene flow
loss at positions where Z value is larger than t are ignored
during training and testing.

EM-baseline. The model mixes two point clouds at input
level. How to represent the input is not obvious though as
two point clouds do not align/correspond. A possible solu-
tion is to append a one-hot vector (with length two) as an
extra feature to each point, with (1, 0) indicating the point
is from the first set and (0, 1) for the other set, which is
adopted in our EM-baseline.

In Fig. 8, we illustrate our baseline architectures for the
EM-baseline. For each set conv layer, r means radius for
local neighborhood search, mlp means multi-layer percep-
tron used for point feature embedding, “sample rate” means
how much we down-sample the point cloud (for example
1/2 means we keep half of the original points). The fea-
ture propagation layer is originally defined in [21], where
features from sub-sampled points are propagated to up-
sampled points by 3D interpolation (with inverse distance
weights). Specifically, for an up-sampled point its feature
is interpolated by three k-NN points in the sub-sampled
points. After this step, the interpolated features are then
concatenated with the local features linked from the outputs
of the set conv layers. For each point, its concatenated fea-
ture passes through a few fully connected layers, the widths
of which are defined by mlp{l1, l2, ...} in the block.

LM-baseline. The late mixture baseline (LM-baseline)
mixes two point clouds at the global feature level, which
makes it difficult to recover detailed local relations among
the point clouds. In Fig. 9, we illustrate its architecture,
which firstly computes global feature from each of the two
point clouds, then concatenates the global features and fur-
ther processes it with a few fully connected layers (mixture
happens at global feature level), and finally concatenates the
tiled global feature with local point feature from point cloud
1 to predict the scene flow.

DM-baseline. While our FlowNet3D model and the DM-
baseline both belong to the deep mixture meta architec-
ture, they share the same point feature learning modules to
learn intermediate point features and then fix two points at
this intermediate level. However they are different in two
ways. First the DM-baseline does not adopt a flow em-
bedding layer to “mix” the two point clouds (with XY Z
coordinates and intermediate features). Instead The DM-
baseline concatenates all feature distances and XY Z dis-
placements into a long vector and passes it to a fully con-
nected network before more set conv layers. This however
results in sub-optimal learning because it is highly affected
by the point orders. Specifically, given a point pi = (xi, fi)
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Method RANSAC GroundSegNet

Accuracy 94.02% 97.60%

Time per frame 43 ms 57 ms

Table 7: Evaluation for ground segmentation on KITTI Li-
dar scans. Accuracy is averaged across test frames.

in the first point cloud’s intermediate point cloud (the one
to be mixed with the cloud from the second frame), its r
radius neighborhood points in the second frame {qj}kj=1

with qj = (yj , gj), the DM-baseline subsample points in
the second frame so that k is fixed and then creates a long
vector vi ∈ R2k by concatenation: (yj − xi, d(fi, gj)) for
j = 1, ..., k. The function d is a cosine distance function
to compute the feature distance of two points. The vector
vi is then processed with a few fully connected layers be-
fore feature propagation. Second, compared to FlowNet3D,
the baseline just uses 3D interpolation (with skip links) for
flow refinement, with interpolation of three nearest neigh-
borhood with inverse distance weights as described in [21].

D. Details on KITTI Data Preparation (Sec.
6.2)

Ground removal. For our first evaluation on the KITTI
dataset (Table 4 in the main paper), we evaluate on Lidar
scans with removed grounds, for two reasons. First, this is
a more fair comparison with previous works that relied on
ground segmentation/removal as a pre-processing step [8,
26]. Second, since our model is not trained on the KITTI
dataset (due to the very small size of the dataset), it is hard
to make it generalize to predicting motions of ground points
because the ground is a large flat piece of geometry with
little cue to tell its motion.

To validate we can effectively remove grounds in Li-
DAR point clouds, we evaluate two ground segmentation
algorithms: RANSAC and GroundSegNet. RANSAC fits a
tilted plane to point clouds and classify points close to the
plane as ground points. GroundSegNet is a PointNet seg-
mentation network trained to classify points (in 3D patches)
to ground or non-ground (we annotated ground points in all
150 frames and used 100 frames as train and the rest as test
set). Both methods can run in real time: 43ms and 57ms per
frame respectively, and achieve very high accuracy: 94.02%
and 97.60% averaged across test set. Note that for eval-
uation in the main paper Table 4, we used our annotated
ground points for ground removal, to avoid dependency on
the specific ground removal algorithm.

Inference on large point clouds. On large KITTI scenes,
we split the scene into multiple chunks. Chunk positions are
the same for both frames. Each chunk has size of 5m×5m

and is aligned with XY axes (considering Z is the up-axis).
There are overlaps between chunks. In practice, neighbor-
ing chunks are off by 2.5m with a small noise (Gaussian
with 0.3 std) in X or Y direction to each other.

We run the final FlowNet3D model on pairs of frame
1 chunk and frame 2 chunk that are at the same location.
Points appearing in more than one chunk have their esti-
mated flows averaged to get the final output.

E. Details on the Scan Registration Application
(Sec. 6.3.1)

For this experiment we prepared a partial scan dataset by
virtually scanning the ModelNet40 [35] CAD models with
a rotated camera around the center axis of the object, with
the same train/test split as for the classification task. The
virtual scan tool is provided by the Point Cloud Library. In
partial scans, parts of an object may appear in one scan but
missing in the other, which makes registration/warping very
challenging.

We finetuned our FlowNet3D model on this dataset, to
predict the 3D warping flow from points in one partial scan
to their expected positions in the second scan. Then at in-
ference time, we predict the flow for each point in the first
scan as its scene flow. Since the point moving distance can
be very large in those partial scans, we iteratively regress
twice for the scene flow (i.e. predict a flow from point cloud
1 to point cloud 2, and then predict a second residual flow
from point cloud 1 + first flow to point cloud 2). Then the
final scene flow is the 1st flow + the residual flow (visual-
ized in Fig. 6 main paper). To get a rigid motion estimation
from the scene flow, we can fit a rigid transformation from
the point cloud 1 to the point cloud 2 + scene flow, as they
have one-to-one correspondences. Then the rigidly trans-
formed point cloud 1 is the final estimation of our warping
(shown in main paper Fig. 6 right while the warping error
is reported in main paper Table 6).

F. Details on the Motion Segmentation Appli-
cation (Sec. 6.3.2)

We first obtained the estimated scene flow with the
method discussed in Sec. D. Then the flow is multiplied
with a factor λ and is concatenated with coordinates of each
point as a 6-dim vector (x, y, z, λdx, λdy, λdz). Next based
them we find connected components in the 6-dim space by
setting two hyperparamters: a proper minimum cluster size
and distance upper bound for forming a cluster.

G. Model Size and Runtime
FlowNet3D has a model size of 15MB, which is much

smaller than most deep convolutional neural networks. In
Table 8, we show the inference speed of the model on point
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Figure 8: Architecture of the Early Mixture baseline model (EM-baseline).
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Figure 9: Architecture of the Late Mixture baseline model (LM-baseline).

clouds with different scales. For this evaluation we assume
both point clouds from the two frames have the same num-
ber of points as specified by #points. We test the runtime on
a single NIVIDA 1080 GPU with TensorFlow [1].

#Points 1K 1K 2K 2K 4K 4K 8K

Batch size 1 8 1 4 1 2 1

Time (ms) 18.5 43.7 36.6 58.8 101.7 117.7 325.9

Table 8: Runtime of FlowNet3D with different input point
cloud sizes and batch sizes. For this evaluation we assume
the two input point clouds have the same number of points.

H. More Visualizations
Visualizing scene flow results on FlyingThings3D We
provide results and visualization of our method on Fly-
ingThings3D test set [16]. The dataset consists of ren-
dered scenes with multiple randomly moving objects sam-
pled from ShapeNet [7]. To clearly visualize the complex
scenes, we provide the view of the whole scene from top.
We also zoom in and view each object from one or more
directions. The directions can be inferred from consistent
XY Z coordinates shown in both the images and point cloud
scene. We show points from frame 1, frame 2 and estimated
flowed points in different colors. Note that local regions
are zoomed in and rotated for clear viewing. To help find

correspondence between images and point clouds, we used
distinct colors for zoom-in boxes of corresponding objects.
Ideal prediction would roughly align blue and green points.
The results are illustrated in Figure 10-12.

Our method can handle challenging cases well. For ex-
ample, in the orange zoom-in box of Figure 10, the gray
box is occluded by the sword in both frames and our net-
work can still estimate the motion of both the sword and
visible part of the gray box well. There are also failure
cases, mainly due to the change of visibility across frames.
For example, in the orange zoom-in box of Figure 12, the
majority of the wheel is visible in the first frame but not vis-
ible in the second frame. Thus our network is confused and
the estimation of the motion for the non-visible part is not
accurate.

Network visualization Fig. 13 visualizes the local point
features our network has learned, by showing a heatmap
of correlations between a chosen point in frame 1 and all
points in frame 2. We can clearly see that the network has
learned geometric similarity and is robust to partiality of the
scan.

Fig. 14 shows what has been learned in a flow embed-
ding layer. Looking at one neuron in the flow embedding
layer, we are curious to know how point feature similar-
ity and point displacement affect its activation value. To
simplify the study, we use a model trained with cosine dis-
tance function instead of network learned distance (through
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Figure 10: Scene flow results for TEST-A-0061-right-0013 of FlyingThings3D.
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Figure 11: Scene flow results for TEST-A-0006-right-0011 of FlyingThings3D.

directly inputing two point feature vectors). We iterate dis-
tance values and displacement vector, and show in Fig. 14
that as similarity grows from -1 to 1, the activation becomes
significantly larger. We can also see that this dimension is
probably responsible for a flow along the positive Z direc-
tion.
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Figure 12: Scene flow results for TEST-B-0011-left-0011 of FlyingThings3D.

Figure 13: Visualization of local point feature similarity. Given a point P (pointed by the blue arrow) in frame 1 (gray), we
compute a heat map indicating how points in frame 2 are similar to P in feature space. More red is more similar.
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Figure 14: Visualization of flow embedding layer. Given a certain similarity score (defined by one minus cosine distance, at
the bottom of each cube), the visualization shows which (x, y, z) displacement vectors in a [−5, 5]× [−5, 5]× [−5, 5] cube
activate one output neuron of the flow embedding layer.
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