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ABSTRACT

We present an algorithm enabling localization of mov-
ing wireless devices in an indoor setting. The method
uses only RF signal strength and can be implemented
without specialized hardware. The mobility of the users
is modeled by learning a function mapping a short his-
tory of signal strength values to a 2D position. We use
radial basis function (RBF) fitting to learn a reliable es-
timate of a mobile node’s position given its past signal
strength measurements.

Even though we deal with extremely noisy measure-
ments in a cluttered indoor setting, nodes are not re-
quired to be stationary during measurement or learn-
ing. We evaluate our algorithm in a real indoor setting
using MicaZ motes, achieving an average localization
accuracy of 1.3 m. In our experiments, using histori-
cal data improves the localization accuracy by almost a
factor of two compared to using only the most current
measurements.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems
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Algorithms, Experimentation

Keywords
Localization, Mobility, RSSI, Sensor Network

1. INTRODUCTION

With the advent of ubiquitous wireless networks, sup-
porting mobility of users has become a key topic in net-
work research. Localizing users moving through a net-
work is a fundamental problem in this area. Accurate
estimates of users’ locations enable more efficient rout-
ing strategies in the presence of mobile nodes. Location-
dependent network services, with application examples
ranging from building automation to targeted adver-
tising or augmented reality, first and foremost require
reliable localization techniques.

The field of localization has therefore been studied in
a wide variety of research communities. Triangulation
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methods [12, 14] are among the most common. These
methods estimate positions from a number of distance
or angle measurements to beacon nodes, utilizing mod-
els that describe how acoustic or radio signals propagate
in space (such as the inverse-square law). Even though
relatively accurate models [20] for open areas exist, they
are of limited use indoors, where model inaccuracies due
to reflections and signal fading can lead to significant
position errors. Since no accurate and efficient mod-
els of indoor signal propagation are available, a number
of methods pre-compute a signal-strength map of the
coverage area [1, 10]. These methods estimate position
of a node by comparing the signal-strength signature
of beacon nodes to the map. However, both acoustic
and radio signals indoors tend to be highly variable over
time, especially so for mobile users, resulting in reduced
accuracy of these algorithms.

In this paper, we focus on the problem of using re-
ceived signal strength indicator (RSSI) measurements
to localize mobile users in indoor environments. As
the structure of the environment is unknown, no good
transmission model is available. However, in an indoor
setting, the user’s mobility is restricted by the environ-
ment (we cannot go through walls), and we can assume
that not all possible movements within space are actu-
ally realized. Rather, the users move along a limited
set of typical trajectories, suggesting that we can learn
the structure of the space of possible movements from
repeated observation. We can use this inferred knowl-
edge to locate users, and extrapolate our observations
to unknown trajectories.

One of the main problems when using signal strength
data for localization is the large variance in these mea-
surements. Our experimental data shows that the vari-
ance due to reflections is particularly severe when either
transmitter or receiver are moving, even at low speeds.
Systems that use RSSI readings for localization there-
fore use averages or require the nodes to be stationary
during the measurement [1, 9, 10]. We propose to use a
function fitting and interpolation scheme to learn a po-
sition function in the high-dimensional space of signal
strength measurements. We not only use the current
set of RSSI values for reachable nodes, but also a num-
ber of past samples, thereby matching a trajectory in
signal strength space to a position.

The learning process handles noisy input data grace-
fully by computing a smooth approximation to the in-
put samples. After a learning phase which requires posi-
tion ground truth, queries to the localization subsystem



reduce to a simple function evaluation. We evaluate
several versions of this algorithm, exploring different
tradeoffs between the memory requirements, commu-
nication overhead, and localization accuracy. Our re-
sults clearly indicate benefits of user movement history,
almost cutting the position error in half compared to
using current measurements only. We also compare the
accuracy of our algorithm for three different link quality
estimators: received signal strength indicator (RSSI),
link quality indicator (LQI), and packet reception ratio
(PRR). Even though RSSI measurements are clearly su-
perior, other link quality measures perform reasonably
well.

The rest of this paper is organized as follows: after
giving an overview of related work in Sec. 2, we formally
define the problem that we are solving in Sec. 3. Sec. 4
describes our solution. We evaluate the performance of
our algorithm in Sec. 5 before concluding in Sec. 6.

2. RELATED WORK

The problem of localization and tracking has been ex-
tensively studied in robotics literature. Several variants
of the localization or tracking problem with or without
landmarks, with or without access to a map, and using
various forms of sensor input have been explored. A
good overview of the field is given in the introduction
of [19]. While most of these approaches use visual or
range finding sensors, some are applicable to the prob-
lem of locating users within a wireless network.

Spatial relations between nodes can be found using
a number of techniques, such as time of flight [14], an-
gle of arrival of a signal [13], walking GPS [17], ultra-
wideband [15], or Doppler shift ranging [8]. The local-
ization problem is then solved using optimization tech-
niques, for example [2, 4]. However, these techniques
often require sophisticated hardware. In contrast, we
assume that nodes are equipped with very basic hard-
ware that only allows us to measure some kind of radio
link quality estimate.

Approximate point in triangle (APIT) [6] and DV-
hop [11] are two representatives of range free algorithms.
These algorithms estimate locations using simple radio
connectivity information from multiple beacon nodes lo-
cated in the proximity of the unknown node. APIT
localizes nodes at an intersection of triangular regions
defined around beacon nodes, whereas DV-hop trian-
gulates the location using hop counts that estimate dis-
tances between nodes. These approaches, however, were
designed for static networks and thus do not support
mobility well. Moreover, their accuracy is often limited
by requiring dense deployment of sensor nodes.

RSSI pattern matching algorithms (RADAR [1], Mote-
Track [10]) are closely related to our approach. Users
are localized inside a building using RSSI measurements
from fixed beacon nodes. As no reliable radio propaga-
tion model is available, these techniques do not esti-
mate Euclidean distances from the measured RSSI val-
ues. Instead, they learn the properties of radio signals
for a particular position. The location of the unknown
node is found by matching the current RSSI signature
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of nearby beacons to this empirical model. This pro-
cess was shown capable of eliminating multipath and
shadowing effects, achieving meter-level localization ac-
curacy.

Ladd et al. [9] proposed an indoor localization algo-
rithm achieving an average error of 1.5 m. Similarly
to our approach they sense RF signal strengths using
standard hardware (Ethernet cards). However, their
approach suppresses mobility related variation of radio
signals, rather than utilizing it to its benefit: the train-
ing algorithm requires a person to stand still for a few
moments or requires filtering to calibrate mobile users.

The LOCADIO system [7] explicitly models moving
vs. stationary users in a probabilistic framework. Our
method goes one step further: we are interested in mo-
bile users and therefore explicitly use the history of the
users movement in the localization algorithm.

3. PROBLEM FORMULATION

This paper describes an approach to the indoor local-
ization problem using signal strength measurements as
input. Given information about the connection qual-
ity to close-by infrastructure nodes, we infer the posi-
tion of a mobile device. In our experiments, connection
quality is measured by RSSI values that are provided
by the wireless hardware. As some radio chips do not
support RSST measurements (e. g., the Nordic NRF903
used in [16]), it is important to note that our approach
does not depend on the presence of this specific type
of measurement. Packet reception ratios, which can be
extracted in all wireless networks, can be used instead
(see Sec. b).

We assume that a mobile user moves through a net-
work spanned by a set N, |]N| = N cooperating infras-
tructure nodes. The mobile node regularly broadcasts
radio packets allowing for RSSI measurements. We as-
sume that these packets are dedicated beacon packets,
however, we believe that aggressive suppression of bea-
con packets will enable virtually zero-cost localization
and tracking in practical applications, if regular network
traffic to and from the mobile node is present.

Whenever such a beacon packet is received by the in-
frastructure nodes, we extract RSSI information, yield-
ing values r;(t) that measure the signal strength of the
packet sent at time ¢, received by the infrastructure
node with ID 7. For localization, we will not only con-
sider the most recent RSSI values, but utilize historical
data as well. For our computations, we assemble these
values into a vector

T T

r1(t — 0AL) rn(t — 0AL)

r(t) (1)

r1(t — kAt) ry(t — kAt)
r(t) defines a point in the space X, v of sampled trajec-
tories through RSSI space, in which most of our com-
putations will take place. The localization problem can
then be described as finding a function L : X} v — R?
which maps a trajectory from &} x to its end position
in world space.



4. LOCALIZATION ALGORITHM

Our approach learns function L defined in the previ-
ous section from examples that we obtain in a training
phase. During the training phase, ground truth loca-
tions of the mobile user are required, however, locations
of infrastructure nodes are not needed. We use radial
basis function fitting to compute a function that ap-
proximates the (noisy) input examples and is able to
extrapolate from those examples in a smooth fashion in
the localization phase.

4.1 Training Phase

In a training phase, a mobile node explores the phys-
ical space that is covered by the network. While mov-
ing around in space, both world space position p(t) =
[p*(t),pY(t)]T and signal strength measurements 7;(t)
are recorded at discrete times ¢;. We then assemble the

sampled trajectories r(¢;), and form N pairs (r(t;), p(t;))

that we use as training data. These pairs are samples
of the function L that we are trying to find, and impose
constraints of the form

L(r(t;)) = p(t;)- (2)

We use RBF fitting to compute a smooth function that
approximates these constraints.

4.1.1 RBF Fitting

Due to space constraints, we will only briefly review
RBEF fitting here, and refer the reader to [3] for an in-
depth treatment of the subject.

We express the function L = [L%, LY]T as a weighted
sum of kernel functions ¢ plus a polynomial P% in r

N.
L“(r)ZZw?¢(|Ir—CiII)+P“(r)7 (3)

where a = {z,y}. The number, N., and the placement
of the kernel centers c; are free parameters. In our
implementation, we use a linear polynomial P%(r)
(a®|r)+b®. The kernel function ¢ determines properties
of the solution, such as its smoothness. We use the
common multiquadric ¢(d) = /1 + d?/o?, with o = 1.

To compute weights w¥, we minimize the quadratic
error at the constraints (2) by solving two linear systems
of equations for the variables [W?,a®, b*]T

to)T 1
®0,0 ¢o,nN. r(to) 2o (t)
R oo (W :
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c

in a least-squares sense. Here, ¢; ; = ¢(||r; — ¢;]|) and
W = [wf,...,w |7, If the number of constraints
equals the number of degrees of freedom, the computed
solution is exact and the function L interpolates the
training values. For N, < Ny, a least-squares approxi-
mation the training data is computed. In our case, the
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Figure 1: A map of the experiment area. Its size
is approximately 30 m x 25 m. Shown are the
infrastructure node locations. Areas that were
accessible to us are shaded.

training data is very noisy, and a smoother, approxi-
mate solution is desirable. The optimal number of cen-
ters depends on the complexity of L, in our case, 3000
centers were optimal (see Sec. 5.2).

Since our kernel functions ¢ have global support and
no singularities, the exact position of the centers c; has
little impact on the quality of the solution as long as the
relevant parts of X ny are well sampled. We place the
centers along the path by using a subset of the training
sample positions as centers.

4.2 Localization

Once training is complete, we can use L to compute
the position of the mobile node given measured data
r(t) along the trajectory of the node. The RSSI mea-
surements that are the components of r(t) are noisy, and
therefore the computed position p = L(r(¢)) is not re-
liable enough. We remedy this by prefiltering the RSSI
measurements, in particular, by replacing r(t) by a low-
pass filtered version r(¢).

However, this introduces a bias in the localization:
the computed position trails the true position as changes
in the RSSI values r(t) gradually impact the low-pass fil-
tered version r(t). We solve this by requiring the mobile
node to send a burst of b packets in a rapid succession
(we use b = 5 packets in 50 ms) and using low-pass filter
of width b. In our implementation, we use a simple box
filter. This ensures that r(t) is rapidly updated, keeping
the position bias to a minimum.

S. EVALUATION

We have validated our localization method in a small
indoor testbed. Fig. 1 shows a map of the space. We dis-
tributed 11 MicaZ motes [5] in the area. A mobile mote
sends beacon packets in regular intervals. Infrastruc-
ture nodes receive these packets and record sequence
numbers, timestamps, and various signal strength in-
dicators. MicaZ’s CC2420 radio chip [18] allows us to
measure RSSI and LQI for each received packet. Addi-
tionally, we compute a packet reception ratio (PRR) by
counting the number of received packets in each burst.
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Figure 2: Localization for routes (f) and (g). Figures on the left show recorded RSSI measurements
for all nodes, figures on the right show estimated and ground truth locations (blue and red dots,
respectively), corresponding pairs connected by a line.

As mentioned before, our method can be applied to any
indicator, as long as it gives some information about the
distance between transmitter and receiver. To study
the effect of measurement noise on the localization ac-
curacy, the mobile node transmits a burst of 30 packets,
rather than a single beacon packet. This allows us to ex-
periment with different filtering techniques to improve
the input signal. Further, we chose At=0.6 s in our ex-
periments, i.e., the mobile node transmits one burst of
packets every 0.6 s.

In the training phase, we require pairs (r(t), p(t)) as
described in Sec. 4.1. Therefore, we move the mobile
node along a predefined route through the experiment
area. We store timestamps for predefined waypoints,
while continually recording RSSI and LQI at all nodes.
The training positions p(t), which will also be used
as ground truth, are estimated using linear interpola-
tion between the waypoints. Fig. 2 shows some of the
routes and associated RSSI measurements. In our ex-
periments, we never use the same route for both training
and evaluation.

5.1 Error Measures

In order to evaluate our algorithm, we compute two
error measures along the path. The position error

epos(ti) = [[L(r(t:)) — p(t:) | ()
gives us information about the general performance of

the localization algorithm. We also compute the dis-
tance to the closest point on the path

eL(t:) = min [|L(r(t:)) - pl,

(6)
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where P is the ground truth path that we are testing
against. This error measure does not contain errors due
to imperfect timing information used for ground truth
computation. It also contains information on how ac-
curately a world-space trajectory can be reconstructed
using the localization data.

5.2 Parameters

Our algorithm accepts several parameters that can
be tuned for optimal performance. The number of past
measurements k determines how much historical infor-
mation about the trajectories is available. As can be
seen in Fig. 3 (a), a value of k = 4 is optimal in our
case. Note that this significantly outperforms the case
k = 0, in which our algorithm reduces to a traditional
localization method based on averaged RSSI measure-
ments.

The properties of the fitted RBF function depend on
the number of kernel functions (centers) used. Varying
the number of kernel functions, we see that using around
3000 kernels is optimal in our setting (Fig. 3 (b)). De-
creasing the number of centers degrades the quality
of the RBF approximation, while increasing it further
yields a function that interpolates the constraints too
faithfully. Since the input data is very noisy, interpo-
lation is not desirable. The optimal number of RBF
centers depends on the complexity of the environment
in which localization is attempted.

As described in Sec. 4.2, the function L is queried
with a low-pass filtered RSST vector F. Fig. 3 (¢) shows
the influence of the width b of the box filter on the local-
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Figure 3: Position error (epes, red) and path er-
ror (e;, blue) depending on algorithm param-
eters. The graphs show the mean error, error
bars represent 75% and 25% quantiles. (a) His-
tory size k. (b) The number N, of RBF centers.
(c) Low-pass filter width b. (d) Measurement
type: RSSI, LQI, or PRR with 5 burst packets.
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Figure 4: Routes used. (a)—(e) for training, (f)—
(i) for testing.

ization results. Our experiments show that a moderate
filter width of b = 5 performs best. While lower values
of b yield noisy measurements, high values of b smooth
out important details and degrade the localization ac-
curacy.

Unless otherwise noted, all results were obtained us-
ing k =4, N, = 3000, and b = 5, as described above.

5.3 Results

We use a training set of 5 routes (a) - (e), each of
which we recorded 5 times. All errors are computed for
4 different routes (f) - (i), each recorded several times
to obtain a total of 24 test routes. Although the routes
used for testing are composed of path segments seen
during training, none of the testing and training routes
are the same (see Fig. 4).

Table 1 summarizes the localization results. Overall,
our method is able to localize a mobile node with a mean
position error of less than 1.3 m. If radio contact is lost
entirely, we do not predict a location. Note that by lin-
early interpolating position values between waypoints,
we implicitly assume that the motion of the mobile node
is of constant speed between waypoints. This assump-
tion is generally not true in our experiments. We moved
the mobile device by carrying it while walking, and the
routes involved opening doors, and at one point, enter-
ing a 6 digit access code. Given perfect ground truth,
our results would probably improve further.

We can see in the experimental data that errors are
more likely to be along the path than perpendicular to
the path (c.f. Fig. 2). We attribute this in part to the
systematic timing errors in the ground truth. Table 1
also contains the path error e , which is not affected by
timing problems with the ground truth. However, it is
also invariant to other errors.

As mentioned above, our algorithm does not require
RSSI measurements, and can operate using LQI or ap-
proximate PRR measurements (see Fig. 3 (d)). Us-
ing these measures, the mean position error, measured
across all test routes, then increases to 1.7 m and 2 m
respectively. Comparing the three measures, the reason



epos 2.0% 25% 50% 75% 97.5% max avg
(f) 0.18 0.67 1.07 1.64 4.40 5.63 1.32
(g) 0.14 0.58 0.98 1.58 3.40 4.88 1.20
(h) 0.19 0.68 1.09 1.70 3.76 6.92 1.32
(i) 0.20 0.58 097 1.64 4.30 822 1.25
All 0.18 0.64 1.03 1.65 4.09 822 1.28
e; 25% 25% 50% 75% 97.5% max avg
(f) 0.09 0.30 052 0.86 224 497 0.68
(2) 0.07 023 034 051 146 4.03 044
(h) 0.09 0.28 0.47 0.74 1.75 3.03 0.57
(i) 0.08 0.26 038 0.65 247 4.36 0.56
All 0.08 0.26 043 0.71 2.13 4.97 0.58

Table 1: Summary of localization results (in me-
ters).

for the inferior performance of LQI and PRR measure-
ments is easy to see: the LQI values remain high when-
ever there is radio coverage and drop sharply as soon
as connectivity is about to be lost. Therefore, these
measurements are good as an indicator for link quality,
but contain only little information about distance of
the neighboring node. PRR measurements have similar
problems: as long as no packets are lost, PRR provides
limited information about distance. As packets start
being lost, the measurement is necessarily discrete. In
our case, we used averaging over only five packets, giv-
ing us only a very rough idea of how good, or bad, the
link really is. In this light, the results for PRR are as-
tonishingly good.

6. CONCLUSION AND FUTURE WORK

We have presented a novel method for locating mobile
users within a network using RSSI measurements. The
algorithm uses not only the current RSSI measurement
for localization, but takes advantage of past values. Us-
ing historical values significantly increases the stability
of the localization. This is particularly important in in-
door settings, where RSSI measurements are extremely
noisy, in particular for mobile nodes. Using trajectory
information in RSSI space allows us to locate mobile
users even while they are moving.

This research leaves ample room for future work. The
dimension of the RSSI trajectory space grows linearly
with the number of nodes. Therefore, exploiting locality
is crucial to ensure the scalability of the algorithm. Lo-
cal, overlapping localization areas can be used to solve
this problem.

Since we use past measurements at fixed time inter-
vals, we implicitly assume that the speed of the mobile
user at a given position is similar during training and
localization. Although the method can be trained for
different speeds, explicitly handling speed differences,
for example using dynamic time warping, would be an
interesting extension.
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