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Abstract

This paper addresses the task of category-level pose

estimation for articulated objects from a single depth image.

We present a novel category-level approach that correctly

accommodates object instances previously unseen during

training. We introduce Articulation-aware Normalized

Coordinate Space Hierarchy (ANCSH) – a canonical

representation for different articulated objects in a given

category. As the key to achieve intra-category general-

ization, the representation constructs a canonical object

space as well as a set of canonical part spaces. The

canonical object space normalizes the object orientation,

scales and articulations (e.g. joint parameters and states)

while each canonical part space further normalizes its part

pose and scale. We develop a deep network based on

PointNet++ that predicts ANCSH from a single depth point

cloud, including part segmentation, normalized coordi-

nates, and joint parameters in the canonical object space.

By leveraging the canonicalized joints, we demonstrate: 1)

improved performance in part pose and scale estimations

using the induced kinematic constraints from joints; 2) high

accuracy for joint parameter estimation in camera space.

1. Introduction

Our environment is populated with articulated objects,

ranging from furniture such as cabinets and ovens to small

tabletop objects such as laptops and eyeglasses. Effectively

interacting with these objects requires a detailed under-

standing of their articulation states and part-level poses.

Such understanding is beyond the scope of typical 6D pose

estimation algorithms, which have been designed for rigid

objects [31, 25, 24, 28]. Algorithms that do consider object

articulations [13, 14, 12, 16] often require the exact object

CAD model and the associated joint parameters at test time,

preventing them from generalizing to new object instances.

In this paper, we adopt a learning-based approach

to perform category-level pose estimation for articulated

objects. Specifically, we consider the task of estimating per-

part 6D poses and 3D scales, joint parameters (i.e. type,

position, axis orientation), and joint states (i.e. joint angle)
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Figure 1. Category-level articulated object pose estimation.

Given a depth point cloud of a novel articulated object from a

known category, our algorithm estimates: part attributes, including

part segmentation, poses, scales and amodal bounding boxes; joint

attributes, including joint parameters and joint states.

of a novel articulated object instance in a known category

from a single depth image. Here object instances from one

category will share a known kinematic chain composing of

a fixed number of rigid parts connected by certain types

of joints. We are particularly interested in the two most

common joint types, revolute joints that cause 1D rotational

motion (e.g., door hinges), and prismatic joints that allow

1D translational movement (e.g., drawers in a cabinet). An

overview is shown in Figure 1. To achieve this goal, several

major challenges need to be addressed:

First, to handle novel articulated objects without

knowing exact 3D CAD models, we need to find a

shared representation for different instances within a given

category. The representation needs to accommodate the

large variations in part geometry, joint parameters, joint

states, and self-occlusion patterns. More importantly, for

learning on such diverse data, the representation needs to

facilitate intra-category generalization.

Second, in contrast to a rigid object, an articulated object

is composed of multiple rigid parts leading to a higher

degree of freedom in its pose. Moreover, the parts are

connected and constrained by certain joints and hence their
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poses are not independent. It is challenging to accurately

estimate poses in such a high-dimensional space while

complying with physical constraints.

Third, various types of joints provide different physical

constraints and priors for part articulations. Designing a

framework that can accurately predict the parameters and

effectively leverage the constraints for both revolute and

prismatic joints is yet an open research problem.

To address the representation challenge, we propose a

shared category-level representation for different articulated

object instances, namely, Articulation-aware Normalized

Coordinate Space Hierarchy (ANCSH). Concretely,

ANCSH is a two-level hierarchy of canonical space,

composed of Normalized Articulated Object Coordinate

Space (NAOCS) at the root level and a set of Normalized

Part Coordiante Spaces (NPCSs) at the leaf level. In the

NAOCS, object scales, orientations, and joint states are

normalized. In the NPCS of each rigid part, the part pose

and scale are further normalized . We note that NAOCS and

NPCS are complimentary to each other: NAOCS provides

a canonical reference on the object level while NPCSs

provide canonical part references. The two-level reference

frames from ANCSH allow us to define per-part pose as

well as joint attributes for previously unseen articulated

object instances on the category-level.

To address the pose estimation challenge, we segment

objects into multiple rigid parts and predict the normalized

coordinates in ANCSH. However, separate per-part pose

estimation could easily lead to physically impossible

solutions since joint constraints are not considered. To

conform with the kinematic constraints introduced by

joints, we estimate joint parameters in the NAOCS from the

observation, mathematically model the constraints based

upon the joint type, and then leverage the kinematic priors

to regularize the part poses. We formulate articulated

pose fitting from the ANCSH to the depth observation as

a combined optimization problem, taking both part pose

fitting and joint constraints into consideration. In this work

we mainly focus on 1D revolute joints and 1D prismatic

joints, while the above formulation can be extended to

model and support other types of joints.

Our experiments demonstrate that leveraging the joint

constraints in the combined optimization leads to improved

performance in part pose and scale prediction. Noting

that leveraging joint constraints for regularizing part poses

requires high-accuracy joint parameter predictions, which

itself is very challenging. Instead of directly predicting

joint parameters in the camera space, we consider and

leverage predictions in NAOCS, where joints are posed

in a canonical orientation, e.g. the revolute joints always

point upward for eyeglasses. By transforming joint

parameter predictions from NAOCS back to camera space,

we further demonstrate supreme accuracy on camera-space

joint parameter predictions. In summary, the primary

contribution of our paper is a unified framework for

category-level articulated pose estimation. In support of this

framework, we design:

· A novel category-level representation for articulated

objects – Articulation-aware Normalized Coordinate

Space Hierarchy (ANCSH).

· A PointNet++ based neural network that is capable of

predicting ANCSH for previously unseen articulated

object instances from a single depth input.

· A combined optimization scheme that leverages

ANCSH predictions along with induced joint

constraints for part pose and scale estimation.

· A two-step approach for high-accuracy joint parameter

estimation that first predicts joint parameters in the

NAOCS and then transforms them into camera space

using part poses.

2. Related Work

This section summarizes related work on pose estimation

for rigid and articulated objects.

Rigid object pose estimation. Classically, the goal of

pose estimation is to infer an object’s 6D pose (3D rotation

and 3D location) relative to a given reference frame. Most

previous work has focused on estimating instance-level

pose by assuming that exact 3D CAD models are available.

For example, traditional algorithms such as iterative closest

point (ICP) [4] perform template matching by aligning the

CAD model with an observed 3D point cloud. Another

family of approaches aim to regress the object coordinates

onto its CAD model for each observed object pixel, and then

use voting to solve for object pose [6, 7]. These approaches

are limited by the need to have exact CAD models for

particular object instances.

Category-level pose estimation aims to infer an object’s

pose and scale relative to a category-specific canonical

representation. Recently, Wang et al. [28] extended the

object coordinate based approach to perform category-

level pose estimation. The key idea behind the intra-

category generalization is to regress the coordinates within

a Normalized Object Coordinate Space (NOCS), where the

sizes are normalized and the orientations are aligned for

objects in a given category. Whereas the work by [28]

focuses on pose and size estimation for rigid objects, the

work presented here extends the NOCS concept to accom-

modate articulated objects at both part and object level. In

addition to pose, our work also infers joint information and

addresses particular problems related to occlusion.

Articulated object pose estimation. Most algorithms

that attempt pose estimation for articulated objects assume

that instance-level information is available. The approaches
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Figure 2. Articulation-aware Normalized Coordinate Space Hierarchy (ANCSH) is a category-level object representation composed

of a Normalized Articulated Object Coordinate Space (NAOCS) on top of a set of Normalized Part Coordinate Spaces (NPCSs) per

part. Here we show two examples of ANCSH representation (points are colored according to its corresponding coordinates in the

NAOCS/NPCS). Note that NAOCS sets the object articulations to pre-defined states, all the joints in the NAOCS are hence canonicalized,

e.g. the axes of the revolute joints in the eyeglasses example all point upwards and the joint angles are right angles. For each individual

part, NPCS maintains the part orientation as in the NAOCS but zero-centers its position and normalizes its scales.

often use CAD models for particular instances along with

known kinematic parameters to constrain the search space

and to recover the pose separately for different parts [18,

9]. Michel et al. [18] used a random forest to vote for

pose parameters on canonical body parts for each point

in a depth image, followed by a variant of the Kabsch

algorithm to estimate joint parameters using RANSAC-

based energy minimization. Desingh et al. [9] adopted a

generative approach using a Markov Random Field formu-

lation, factoring the state as individual parts constrained by

their articulation parameters. However, these approaches

only consider known object instances and cannot handle

different part and kinematic variations. A recent work [1]

also tries to handle novel objects within the same category

by training a mixed density model [5] on depth images,

their method could infer kinematic model using probabil-

ities predictions of a mixtures of Gaussians. However they

don’t explicitly estimate pose on part-level, the simplified

geometry predictions like length, width are for the whole

object with scale variation only.

Another line of work relies on active manipulation of an

object to infer its articulation pattern [13, 14, 12, 16, 32].

For example, Katz et al. [14], uses a robot manipulator

to interact with articulated objects as RGB-D videos are

recorded. Then the 3D points are clustered into rigid parts

according to their motion. Although these approaches could

perform pose estimation for unknown objects, they require

the input to be a sequence of images that observe an object’s

different articulation states, whereas our approach is able to

perform the task using a single depth observation.

Human body and hand pose estimation. Two specific

articulated classes have gained considerable attention

recently: the human body and the human hand. For

human pose estimation, approaches have been developed

using end-to-end networks to predict 3D joint locations

directly [17, 23, 19], using dense correspondence maps

between 2D images and 3D surface models [3], or

estimating full 3D shape through 2D supervision [15,

20]. Similarly, techniques for hand pose estimation (e.g.,

[27, 11]) leverages dense coordinate regression, which

is then used for voting 3D joint locations. Approaches

for both body and hand pose estimation are often specif-

ically customized for those object types, relying on a

fixed skeletal model with class-dependent variability (e.g.,

expected joint lengths) and strong shape priors (e.g., using

parametric body shape model for low-dimensional parame-

terization). Also, such hand/body approaches accommodate

only revolute joints. In contrast, our algorithm is designed

to handle generic articulated objects with varying kinematic

chain, allowing both revolute joints and prismatic joints.

3. Problem Statement
The input to the system is a 3D point cloud P =

{pi ∈ R
3| i = 1, ..., N} backprojected from a single depth

image representing an unknown object instance from a

known category, where N denotes the number of points.

We know that all objects from this category share the same

kinematic chain composed of M rigid parts {S(j) | j =
1, ...,M} and K joints with known types {Jk | k =
1, ...,K}. The goal is to segment the point cloud into rigid

parts {S(j)}, recover the 3D rotations {R(j)}, 3D transla-

tions {t(j)}, and sizes {s(j)} for the parts in {S(j)}, and

predict the joint parameter {φk} and state {θk} for the

joints in {Jk}. In this work, we consider 1D revolute joints

and 1D prismatic joints. We parameterize the two types of

joints as following. For a revolute joint, its joint param-

eters include the direction of the rotation axis u
(r)
k as well

as a pivot point qk on the rotation axis; its joint state is

defined as the relative rotation angle along u
(r)
k between the

two connected parts compared with a pre-defined rest state.

For a prismatic joint, its joint parameter is the direction of

the translation axis u
(t)
k , and its joint state is defined as

the relative translation distance along u
(t)
k between the two

connected parts compared with a pre-defined rest state.
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4. Method

ANCSH provides a category-specific reference frame

defining per-part poses as well as joint attributes for previ-

ously unseen articulated object instances. In Sec. 4.1, we

first explain ANCSH in detail. In Sec. 4.2, we then present

a deep neural network capable of predicting the ANCSH

representation. Sec. 4.3 describes how the ANCSH repre-

sentation is used to jointly optimize part poses with explicit

joint constraints. Last, we describe how we compute joint

states and deduce camera-space joint parameters in Sec. 4.4.

4.1. ANCSH Representation

Our ANCSH representation is inspired by and closely

related to Normalized Object Coordinate Space (NOCS)

[28], which we briefly review here. NOCS is defined as

a 3D space contained within a unit cube and was intro-

duced in [28] to estimate the category-level 6D pose and

size of rigid objects. For a given category, the objects

are consistently aligned by their orientations in the NOCS.

Furthermore, these objects are zero-centered and uniformly

scaled so that their tight bounding boxes are all centered

at the origin of the NOCS with a diagonal length of 1.

NOCS provides a reference frame for rigid objects in a

given category so that the object pose and size can then be

defined using the similarity transformation from the NOCS

to the camera space. However, NOCS is limited for repre-

senting articulated objects. Instead of the object pose and

size, we care more about the poses and the states for each

individual parts and joints, which isn’t addressed in NOCS.

To define category-level per-part poses and joint

attributes, we present ANCSH, a two-level hierarchy of

normalized coordinate spaces, as shown in Figure 2. At the

root level, NAOCS provides an object-level reference frame

with normalized pose, scale, and articulation; at the leaf

level, NPCS provides a reference frame for each individual

part. We explain both NPCS and NAOCS in detail below.

NAOCS. To construct a category-level object reference

frame for the collection of objects, we first bring all the

object articulations into a set of pre-defined rest states.

Basically, for each joint Jk, we manually define its rest

state θk0 and then set the joint into this state. For example,

we define the rest states of the two revolute joints in the

eyeglasses category to be in right angles; we define the rest

states of all drawers to be closed. In addition to normal-

izing the articulations, NAOCS applies the same normal-

ization used in [28] to the objects, including zero-centering,

aligning orientations, and uniformly scaling.

As a canonical object representation, NAOCS has the

following advantages: 1) the joints are set to predefined

states so that accurately estimating joint parameters in

NAOCS, e.g. the direction of rotation/translation axis,

becomes an easy task; 2) with the canonical joints, we can

build simple mathematical models to describe the kinematic

constraints regarding each individual joint in NAOCS.

NPCS. For each part, NPCS further zero-centers its

position and uniformly scales it as is done in [28], while

at the same time keeps its orientation unchanged as in

NAOCS. In this respect, NPCS is defined similarly to

NOCS [28] but for individual parts instead of whole objects.

NPCS provides a part reference frame and we can define

the part pose and scale as the transformation from NPCS

to the camera space. Note that corresponding parts of

different object instances are aligned in NPCS, which facil-

itates intra-category generalization and enables predictions

for unseen instances.

Relationship between NPCS, NAOCS and NOCS.

Both NPCS and NAOCS are inspired by the NOCS repre-

sentation and designed for handling a collection of artic-

ulated objects from a given category. Therefore, similar

to NOCS, both representations encode canonical infor-

mation and enable generalization to new object instances.

However, each of the two representations has its own advan-

tages in modeling articulated objects and hence provides

complementary information. Thus, our ANCSH leverages

both NPCS and NAOCS to form a comprehensive represen-

tation of both parts and articulations.

On the one hand, NPCSs normalize the position, orien-

tation, and size for each part. Therefore, transformation

between NPCSs and camera space can naturally be used

to compute per-part 3D amodal bounding boxes, which

is not well-presented in NAOCS representation. On the

other hand, NAOCS looks at the parts from a holistic

view, encoding the canonical relationship of different parts

in the object space. NAOCS provides a parent reference

frame to those in NPCSs and allows a consistent definition

of the joint parameters across different parts. We hence

model joints and predict joint parameters in the NAOCS

instead of NPCSs. The joint parameters can be used to

deduce joint constraints, which can regularize the poses

between connected parts. Note that the information defined

in NPCS and NAOCS is not mutually exclusive – each

NPCS can transform into its counterpart in NAOCS by

a uniform scaling and translation. Therefore, instead of

independently predicting the full NAOCS representation,

our network predicts the scaling and translation parameters

for each object part and directly applies it on the corre-

sponding NPCS to obtain the NAOCS estimation.

4.2. ANCSH Network

We devise a deep neural network capable of predicting

the ANCSH representation for unseen articulated object

instances. As shown in Figure 3, the network takes a depth

point cloud P as input and its four heads output rigid part

segmentation, dense coordinate predictions in each NPCS,
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Figure 3. ANCSH network leverages two PointNet++ [21]

modules to predict the ANCSH representation, including part

segmentation, NPCS coordinates, transformations (1D scaling and

3D translation) from each NPCS to the NAOCS, and joint param-

eters in the NAOCS. This figure illustrates the eyeglasses case

with only revolute joints, but the network structure also applies

to objects with revolute and prismatic joints.

transformations from each NPCS to NAOCS, and joint

parameters in NAOCS, correspondingly. The network is

based on two modules adapted from the PointNet++ [21]

segmentation architecture.

The part segmentation head predicts a per-point proba-

bility distribution among the M rigid parts. The NPCS head

predicts M coordinates {c
(j)
i ∈ R

3| j = 1, ...,M} for each

point pi. We use the predicted part label to select the corre-

sponding NPCS. This design helps to inject the geometry

prior of each part into the network and hence specializes

the networks on part-specific predictions. We design the

segmentation network and the NPCS regression network to

share the same PointNet++ backbone and only branch at the

last fully-connected layers.

The NAOCS head predicts the transformations {G(j)}
from each NPCS to the NAOCS, and computes the coordi-

nates in NAOCS using the predicted transformations. Since

part orientations are the same between NPCS and NAOCS,

the network only needs to estimate a 3D translation G
(j)
t

and a 1D scaling G
(j)
s for the NPCS of the part S(j).

Similar to NPCS head, the head here predicts for each

point pi dense transformations with G
(j)
t,i and G

(j)
s,i for each

NPCS of the parts S(j). We use the predicted segmen-

tation label to select per-point translation Gt,i and scaling

Gs,i. Then the NAOCS coordinates can be represented as

{gi| gi = Gs,ici +Gt,i}. Finally, we compute G
(j)
s and

G
(j)
t by averaging over points {pi ∈ S(j)}.

The last head infers joint parameters {φ′

k} for each joint

Jk in the NAOCS space (we use “ ′ ” here to distinguish the

NAOCS parameters from camera-space parameters.) We

consider the following two types of joints: 1D revolute joint

whose parameters include the rotation axis direction and the

pivot point position, namely φ′

k = (u
(r)′
k ,q′

k); 1D prismatic

joint whose parameters is the translation axis direction

φ′

k = (u
(t)′
k ). We adopt a voting scheme to accurately

predict joint parameters, in which we first associate points

to each joint via a labeling scheme and then let the points

vote for the parameters of its associated joint.

We define a per-point joint association {ai | ai ∈
{0, 1, ...,K}}, where label k means the point pi is

associated to the joint Jk and label 0 means no association

to any joint. We use the following heuristics to provide the

ground truth joint association: for a revolute joint Jk, if a

point pi belongs to its two connecting parts and is within

a distance σ from its rotation axis, then we set ai = k; for

a prismatic joint, we associate it with all the points on its

corresponding moving part. We empirically find σ = 0.2
leads to a non-overlapping joint association on our data.

In addition to predicting joint association, the joint

parameter head performs dense regression on the associated

joint parameters. To be more specific, for each point pi, the

head regresses a 7D vector vi ∈ R
7. The first three dimen-

sions of vi is a unit vector, which either represents u(r)′ for

a revolute joint or u(t)′ for a prismatic joint. The rest four

dimensions are dedicated to the pivot point q′ in case the

point is associated to a revolute joint. Since the pivot point

of a 1D revolute joint is not uniquely defined (it can move

arbitrarily along the rotation axis), we instead predict the

projection of pi to the rotation axis of its associated revolute

joint by regressing a 3D unit vector for the projection

direction and a scalar for the projection distance. For

training, we only supervise the matched dimensions of vi

for points pi with ai 6= 0. We use the ground truth joint

parameters φ′

ai
associated with joint Jai

as the supervision.

During inference, we use the predicted joint association

to interpret vi. We perform a voting step to get the final

joint parameter prediction φ′

k, where we simply average the

predictions from points associated with each joint Jk. Note

that the NAOCS head and the joint parameter head share the

second PointNet++ as their backbone since they all predict

attributes in the NAOCS.

Loss functions: We use relaxed IoU loss [32] Lseg for

part segmentation as well as for joint association Lassociation.

We use mean-square loss LNPCS for NPCS coordinate

regression. We use mean-square loss LNAOCS for NAOCS

to supervise per-point translation {G
(j)
t,i }i,j and scaling

{G
(j)
s,i}i,j . We again use mean-square loss Ljoint for joint

parameter predictions. Our total loss is given by L =
λ1Lseg + λ2LNPCS + λ3LNAOCS + λ4Lassociation + λ5Ljoint,

where the loss weights are set to [1, 10, 1, 1, 1].
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4.3. Pose Optimization with Kinematic Constraints

Given the output of our ANCSH network, including part

segmentation, {ci} for each point pi, {G
(j)
t , G

(j)
s } for each

part S(j), and {φ′

k} for each joint Jk, we now estimate the

6D poses and sizes {R(j), t(j), s(j)} for each part S(j).

Considering a part S(j), for the points {pi ∈ S(j)}, we

have their corresponding NPCS predictions {ci|pi ∈ S(j)}.

We could follow [28] to perform pose fitting, where the

Umeyama algorithm [26] is adopted within a RANSAC

[10] framework to robustly estimate the 6D pose and size

of a single rigid object. However, without leveraging

joint constraints, naively applying this approach to each

individual part in our setting would easily lead to physically

impossible part poses. To cope with this issue, we propose

the following optimization scheme leveraging kinematic

constraints for estimating the part poses. Without the

kinematic constraints, the energy function Evanilla regarding

all part poses can be written as Evanilla =
∑

j ej , where

ej =
1

|S(j)|

∑

pi∈S(j)

||pi − (s(j)R(j)ci + t(j))||2

We then introduce the kinematic constraints by adding

an energy term ek for each joint to the energy function.

In concrete terms, our modified energy function is

Econstrained =
∑

j ej + λ
∑

k ek, where ek is defined differ-

ently for each type of joint. For a revolute joint Jk with

parameters φ′

k = (u
(r)′
k , q′

k) in the NAOCS, assuming it

connects part S(j1) and part S(j2), we define ek as:

ek = ||R(j1)u
(r)′
k −R(j2)u

(r)′
k ||2

For a prismatic joint Jk with parameters φ′

k = (u
(t)′
k ) in

the NAOCS, again assuming it connects part S(j1) and part

S(j2), we define ek as:

ek = µ||R(j1)R(j2) T − I||2 +
∑

j=j1,j2

||[R(j)u
(t)′
k ]×δj1,j2 ||

2

where [·]× converts a vector into a matrix for conducting

cross product with other vectors, and δj1,j2 is defined as:

δj1,j2 = t(j2) − t(j1) + s(j1)R(j1)G
(j1)
t − s(j2)R(j2)G

(j2)
t

To minimize our energy function Econstrained, we can

no longer separately solve different part poses using the

Umeyama algorithm. Instead, we first minimize Evanilla

using the Umeyama algorithm to initialize our estimation

of the part poses. Then we fix {s(j)} and adopt a non-linear

least-squares solver to further optimize {R(j), t(j)}, as is

commonly done for bundle adjustment [2]. Similar to [28],

we also use RANSAC for outlier removal.

Finally, for each part S(j), we use the fitted

R(j), t(j), s(j) and the NPCS {ci|pi ∈ S(j)} to compute

an amodal bounding box, the same as in [28].

4.4. Camera­Space Joint Parameters and Joint
States Estimation

Knowing {R(j), t(j), s(j), G
(j)
t , G

(j)
s } of each part, we

can compute the joint states {θk} and deduce joint param-

eters {φk} in the camera space from NAOCS joint param-

eters {φ′

k}. For a revolute joint Jk connecting parts S(j1)

and S(j2), we compute its parameters φk = (u
(r)
k , qk) in

the camera space as:

u
(r)
k =

(R(j1) +R(j2))u
(r)′
k

||(R(j1) +R(j2))u
(r)′
k ||

qk =
1

2

∑

j=j1,j2

R(j)s(j)

G
(j)
s

(

q′

k −G
(j)
t

)

+ t(j)

The joint state θk can be computed as:

θk = arccos((trace(R(j2)(R(j1))T )− 1)/2)

For a prismatic joint Jk connecting parts S(k1) and S(k2),

we compute its parameters φk = (u
(t)
k ) in the camera space

similar to computing u
(r)
k for revolute joints and and its state

θk is simply ||δk1,k2||.

5. Evaluation

5.1. Experimental Setup

Evaluation Metrics. We use the following metrics to

evaluate our method.

· Part-based metrics. For each part, we evaluate

rotation error measured in degrees, translation error,

and 3D intersection over union (IoU) [22] of the

predicted amodal bounding box.

· Joint states. For each revolute joint, we evaluate joint

angle error in degrees. For each prismatic joint, we

evaluate the error of relative translation amounts.

· Joint parameters. For each revolute joint, we evaluate

the orientation error of the rotation axis in degrees,

and the position error using the minimum line-to-line

distance. For each prismatic joint, we compute the

orientation error of the translation axis.

Datasets. We have evaluated our algorithm using both

synthetic and real-word datasets. To generate the synthetic

data, we mainly use object CAD models from [29] along

with drawer models from [30]. Following the same

rendering pipeline with random camera viewpoints, we use

PyBullet[8] to generate on average 3000 testing images of

unseen object instances for each object category that do

not overlap with our training data. For the real data, we

evaluated our algorithm on the dataset provided by Michel

et al. [18], which contains depth images for 4 different

objects captured using the Kinect.
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Category Method
Part-based Metrics Joint States Joint Parameters

Rotation Error ↓ Translation Error ↓ 3D IoU % ↑ Error ↓ Angle error ↓ Distance error ↓

Eye-
NPCS 4.0◦, 7.7◦, 7.2◦ 0.044, 0.080, 0.071 86.9, 40.5, 41.4 8.8◦ , 8.4◦ - -

NAOCS 4.2◦, 12.1◦, 13.5◦ 0.157, 0.252, 0.168 - 13.7◦, 15.1◦ - -

glasses ANCSH 3.7◦, 5.1◦, 3.7◦ 0.035, 0.051, 0.057 87.4, 43.6, 44.5 4.3◦ , 4.5◦ 2.2◦ , 2.3◦ 0.019 , 0.014

Oven

NPCS 1.3◦, 3.5◦ 0.032, 0.049 75.8 , 88.5 4.0◦ - -

NAOCS 1.7◦, 4.7◦ 0.036 , 0.090 - 5.1◦ - -

ANCSH 1.1◦, 2.2◦ 0.030, 0.046 75.9 , 89.0 2.1◦ 0.8◦ 0.024

Washing
NPCS 1.1◦, 2.0◦ 0.043 , 0.056 86.9 , 88.0 2.3 ◦ - -

NAOCS 1.1◦ , 3.3◦ 0.072 , 0.119 - 3.1 ◦ - -

Machine ANCSH 1.0◦ , 1.4◦ 0.042, 0.053 87.0 , 88.3 1.00 ◦ 0.7◦ 0.008

Laptop

NPCS 11.6◦, 4.4◦ 0.098, 0.044 35.7, 93.6 14.4 ◦ - -

NAOCS 12.4◦, 4.9◦ 0.110, 0.049 - 15.2 ◦ - -

ANCSH 6.7◦, 4.3◦ 0.062, 0.044 41.1, 93.0 9.7 ◦ 0.5◦ 0.017

Drawer

NPCS 1.9◦, 3.5◦, 2.4◦, 1.8◦ 0.032, 0.038, 0.024, 0.025 82.8, 71.2, 71.5, 79.3 0.026, 0.031, 0.046 - -

NAOCS 1.5◦, 2.5◦, 2.5◦, 2.0◦ 0.044, 0.045, 0.073, 0.054 - 0.043, 0.066, 0.048 - -

ANCSH 1.0◦, 1.1◦, 1.2◦, 1.5◦ 0.024, 0.021, 0.021, 0.033 84.0,72.1, 71.7, 78.6 0.011, 0.020, 0.030 0.8◦, 0.8◦, 0.8◦ -

Table 1. Performance comparison on unseen object instances. The categories eyeglasses, oven, washing machine, and laptop contain

only revolute joints and the drawer category contains three prismatic joints.

Baselines. There are no existing methods for category-

level articulated object pose estimation. We therefore use

ablated versions of our system for baseline comparison.

· NPCS. This algorithm predicts part segmentation and

NPCS for each part (without the joint parameters).

The prediction allows the algorithm to infer part pose,

amodal bounding box for each part, and joint state for

revolute joint by treating each part as an independent

rigid body. However, it is not able to perform a

combined optimization with the kinematic constraints.

· NAOCS. This algorithm predicts part segmentation

and NAOCS representation for the whole object

instance. The prediction allows the algorithm to infer

part pose and joint state, but not the amodal bounding

boxes for each part since the amodal bounding boxes

are not defined in the NAOCS alone. Note the part pose

here is defined from the NAOCS to the camera space,

different from the one we defined based upon NPCS.

We measure the error in the observed object scale so

that it is comparable with our method.

· Direct joint voting. This algorithm directly votes for

joint-associated parameters in camera space, including

offset vectors and orientation for each joint from the

point cloud using PointNet++ segmentation network.

Our final algorithm predicts the full ANCSH representation

that includes NPCS, joint parameters, and per-point global

scaling and translation value that can be used together with

the NPCS prediction for computing NAOCS.

5.2. Experimental Results

Figure 4 presents some qualitative results. Tables 1

summarizes the quantitative results. Following paragraphs

provide our analysis and discussion of the results.

Effect of combined optimization. First, we want to

examine how combined optimization would influence the

accuracy of articulated object pose estimation, using both

predicted joint parameters and predicted part poses. To

see this, we compare the algorithm performance between

NPCS and ANCSH, where NPCS performs a per-part pose

estimation and ANCSH performs a combined optimization

using the full kinematic chain to constrain the result. The

results in Table 1 show that the combined optimization of

joint parameters and part pose consistently improves the

predict results for almost all object categories and on almost

all evaluation metrics. The improvement is particularly

salient for thin object parts such as the two temples of

eyeglasses (the parts that extend over the ears), where the

per-part based method produces large pose errors due to

limited number of visible points and shape ambiguity. This

result demonstrates that the joint parameters predicted in the

NAOCS can regularize the part poses based on kinematic

chain constraints during the combined pose optimization

step and improve the pose estimation accuracy.

Joint parameters estimation. Predicting the location and

the orientation of joints in camera space directly with all

degrees of freedom is challenging. Our approach predicts

the joint parameters in NAOCS since it provides a canonical

representation where the joint axes usually have a strong

orientation prior. We further use a voting-based scheme

to reduce the prediction noise. Given joint axis predic-

tions in NAOCS, we leverage the transformation between

NAOCS and NPCS to compute corresponding joint param-

eters in NPCS. Based on the high-quality prediction of

part poses, we will transform the joint parameters into the

camera coordinate. Comparing to a direct voting baseline

using PointNet++, our approach significantly improves the

joint axis prediction for unseen instances (Table 2).
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Figure 4. Qualitative Results. Top tow rows show test results on unseen object instances from the Shape2Motion dataset [29] and SAPIEN

dataset[30] (for only drawer category). Bottom two rows show test result on seen instances in the real-world dataset [18]. Here we visualize

the predicted amodal bounding box for each parts. Color images are for visualization only.

Category Methods Angle error Distance error

Eye- PointNet++ 2.9◦, 15.7◦ 0.140, 0.197

glass ANCSH 2.2◦, 2.3◦ 0.019, 0.014

Oven
PointNet++ 27.0◦ 0.024

ANCSH 0.8◦ 0.024

Washing PointNet++ 8.7◦ 0.010

Machine ANCSH 0.7◦ 0.008

Laptop
PointNet++ 29.5◦ 0.007

ANCSH 0.5◦ 0.017

Drawer
PointNet++ 4.9◦,5.0◦,5.1◦ -

ANCSH 0.8◦,0.8◦,0.8◦ -

Table 2. A comparison of joint parameters estimation. Here

PointNet++ denotes the direct joint voting baseline.

Generalization to real depth images. We have also

tested our algorithm’s ability to generalize to real-world

depth images on the dataset provided in [18]. The dataset

contains video sequences captured with Kinect for four

different object instances. Following the same training

protocol, we train the algorithm with synthetically rendered

depth images of the provided object instances. Then we

test the pose estimation accuracy on the real world depth

images. We adopt the same evaluation metric in [18],

which uses 10% of the object part diameter as the threshold

to compute Averaged Distance (AD) accuracy, and test

the performance on each sequence separately. Although

our algorithm is not specifically designed for instance-

level pose estimation and the network has never been

trained using any real-world depth images, our algorithm

achieves strong performance on par with or even better

than state-of-the-art. On average our algorithm achieves

96.25%, 92.3%, 96.9%, 79.8% AD accuracy on the whole

kinematic chain of object instance laptop, cabinet, cupboard

and toy train. For detailed results on each part in all the test

sequences, as well as more visualizations, please refer to the

supplementary material.

6. Conclusion

This paper has presented an approach for category-

level pose estimation of articulated objects from a single

depth image. To accommodate unseen object instances

with large intra-category variations, we introduce a

novel object representation, namely Articulation-aware

Normalized Coordinate Space Hierarchy (ANCSH). We

further devise a deep neural network capable of predicting

ANCSH from a single depth point cloud. We then formulate

articulated pose fitting from the ANCSH predictions as

a combined optimization problem, taking both part pose

errors and joint constraints into consideration. Our exper-

iments demonstrate that the ANCSH representation and the

combined optimization scheme significantly improve the

accuracy for both part pose prediction and joint parameters

estimation.
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