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Abstract

We introduce a new method — the group
Dantzig selector — for high dimensional
sparse regression with group structure, which
has a convincing theory about why utilizing
the group structure can be beneficial. Un-
der a group restricted isometry condition, we
obtain a significantly improved nonasymp-
totic `2-norm bound over the basis pursuit or
the Dantzig selector which ignores the group
structure. To gain more insight, we also in-
troduce a surprisingly simple and intuitive
sparsity oracle condition to obtain a block `1-
norm bound, which is easily accessible to a
broad audience in machine learning commu-
nity. Encouraging numerical results are also
provided to support our theory.

1 INTRODUCTION

Grouped variables appear naturally in high dimen-
sional statistical learning problems. For example, in
data mining applications, categorical features are usu-
ally encoded via a set of dummy variables and as a
result such dummy variables form a group. Another
example is learning sparse additive models, where each
component function can be represented using basis ex-
pansions and thus can be treated as a group. For
such problems, it is more natural and suitable to select
groups of variables instead of individual ones when a
sparse model is preferred in statistical inference. These
problems motivate the introduction of the group Lasso
(Yuan and Lin, 2006), which extends the popular Lasso
method (Tibshirani, 1996; Chen et al., 1998) by replac-
ing the `1-norm regularization with a sum of `2-norm
(or, block `1-norm) regularization. Such a regular-
ization has the effect of “grouping” all the variables
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within each group so that their resulting estimates
tend to zeroes or nonzeroes simultaneously.

Some recent work has addressed certain statistical
properties of the group Lasso. Under a fixed group
size assumption, Bach (2008) provides both necessary
and sufficient conditions for variable selection consis-
tency using the random design. Meier et al. (2007)
provide a risk consistency result. Chesneau and Hebiri
(2008) provide a sparsity oracle inequality. Under fixed
design conditions, some asymptotic properties like es-
timation consistency and risk consistency have been
shown in (Ravikumar et al., 2007) and (Nardi and
Rinaldo, 2008). Liu and Zhang (2009) also provide
a fixed design analysis of the `2-norm consistency of
the group Lasso and apply it in fitting sparse additive
models. However, none of these work demonstrates
under what conditions the group Lasso can be superior
to the Lasso. A satisfactory answer to this question re-
cently appears in (Huang and Zhang, 2009). The key
observation is a phenomenon called group noise condi-
tion, which says that for the `2-norm of the projected
noise on the column span of variables within each
group, the concentration term does not increase with
the group size. Under a group sparse eigenvalue as-
sumption, they show that the group Lasso can achieve
a superior sample complexity and is more robust than
the Lasso when correct group structure is availabe.
Some related work also appear in the multi-task learn-
ing lietrature, see (Lounici et al., 2009; Obozinski and
Wainwright, 2008).

In this paper, we introduce a novel sparse learning
method which can also take advantage of the group
structure. Our method is called the group Dantzig se-
lector, which is an extension of the Dantzig selector
(Candes and Tao, 2007) such that the group informa-
tion can be explicitly encoded in a convex optimization
problem. We show that it achieves similar theoretical
performance as the group Lasso (Huang and Zhang,
2009) under a weaker and more understandable condi-
tion. Just like the Dantzig selector is a cousin of the
Lasso (Meinshausen et al., 2007), the group Dantzig
selector is a cousin of the group Lasso. The contri-
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butions of this paper include: (i) the formulation of a
novel convex optimization problem for sparse learning
with group structure, (ii) a convincing theory showing
why the group Dantzig selector can effectively utilize
the group information using the classical `2-norm as
evaluation metric. (iii) a simple and clean analytical
framework under which the effectiveness of the group
Dantzig selector can be demonstrated using the block
`1-norm as evaluation metric. In summary, our paper
presents a novel method with strong theoretical guar-
antees and the results are easily accessible to a wide
audience in machine learning community.

The rest of this paper is organized as follows. Section
2 introduces necessary notations and problem formu-
lations. Section 3 presents in detail the group Dantzig
selector. Section 4 studies the `2-theory. Section 5
studies the `1-theory. Section 6 reports empirical re-
sults of the group Dantzig selector and their compar-
isons with the Lasso and group Lasso. Section 7 pro-
vides some summary conclusions.

2 BACKGROUND

We start with some notations. Consider a n×p design
matrix X = (x1, . . . ,xp) where xj ∈ Rn for all j ∈
{1, . . . , p}. The response vector y = (y1, . . . , yn) ∈
Rn is assumed to be generated from the linear model
y = Xβ + ε with ε ∼ N(0, σ2I). Although we assume
ε is Gaussian, it should be clear from the analysis that
the result can be straightforwardly extended to the
sub-Gaussian family. We define the support of β to be
supp(β) = {j : βj 6= 0, j = 1, . . . , p}.

Given M ⊂ {1, . . . , p}, we denote βM to be the sub-
vector of β with elements indexed by M . Similarly,
XM is the n × |M | submatrix of X with columns in-
dexed by elments in M . Given a vector v ∈ Rn, let
1 < q < ∞, we denote ‖v‖q = (vq1 + . . .+ vqn)1/q, and
we use ‖v‖∞ = max1≤j≤n |vi| and ‖v‖0 = |supp(v)|.
Without loss of generality, we assume ‖xj‖2 = 1 in
this paper.

Two very popular methods for sparse learning are the
Lasso and the Dantzig selector, which are formulated
as the solutions of the following convex optimization
problems:

(Lasso) β̂L = arg min
β

‖β‖1 (1)

s.t. ‖y −Xβ‖2 ≤ η.
(Dantzig selector) β̂D = arg min

β
‖β‖1 (2)

s.t. ‖XT (y −Xβ) ‖∞ ≤ λ.

where η and λ are positive regularization parameters.

There are cases where we know a group structure

on β in advance, and the variables belonging to the
same group should be simultaneously included in or
excluded from the model. In this case, we assume
{1, . . . , p} = ∪dj=1Gj is partitioned into d nonoverlap
groups G1, . . . , Gd. Let M ⊂ {1, . . . , d} be an index set
of groups, we denote GM = ∪j∈MGj . We also denote
gsupp(β) = {j : ‖βGj‖2 6= 0, j = 1, . . . , d}. In this
paper, we always denote gsupp(β) = F . The Group
Lasso can be applied to solve the group sparse learning
problem:

(group Lasso) β̂gL = arg min
β

d∑
j=1

‖βGj‖2 (3)

s.t. ‖y −Xβ‖2 ≤ ηg.

where ηg is a positive regularization parameter.

In the sequel, to simplify notations and convey the key
message clear, we only consider the case when p, d �
n. We also assume that all the groups have equal size:
∀j ∈ {1, . . . , d}, |Gj | = k0. This is not a restriction
of our method, as our analysis can be easily extended
to handle the uneven group cases as in (Huang and
Zhang, 2009). A full treatment of uneven sized groups
will be reported in a longer technical report.

3 THE GROUP DANTZIG
SELECTOR

In this section, we first introduce a new estimator
called the group Dantzig selector as follows:
Definition 1. (The group Dantzig selector) For
sparse learning problems with given group structure,
the group Dantzig estimator β̂gDis a solution to the
following convex optimization problem

β̂gD = arg min
β

d∑
j=1

‖βj‖2 (4)

s.t. max
1≤j≤d

‖XT
Gj (y −Xβ) ‖2 ≤ λg,

where λg ≥ 0 is a regularization parameter.

The problem in (4) is convex, thus can be easily solved
by any off-the-shelf convex programming solver. In-
deed, our implementation of the group Dantzig selec-
tor is based on a variant of the spectral gradient projec-
tion method, which achieves a comparable speed and
scalability as the coordinate descent methods of the
group Lasso . Therefore, instead of emphasizing too
much on the computation, we mainly consider motiva-
tion and theoretical advantages of the group Dantzig
selector in the rest of this paper.

At the first sight of (4), people might wonder why we
adopt max1≤j≤d ‖XT

Gj
(y −Xβ) ‖2 ≤ λg as the con-

straint term instead of ‖XT (y − Xβ)‖∞, since the
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latter one also seems a natural candidate for what
is being called the “group” Dantzig selector since the
group information is already encoded in the block `1-
nrom objective function. To answer this question, we
first present a proposition which provides an equivalent
form of the group Lasso problem defined in (3). Since
the group Lasso becomes the Lasso when the group
size equals one, the result also illustrates an interest-
ing relationship between the Lasso and the Dantzig se-
lector. Based on this connection, by “mimicking” how
the Dantzig selector “modifies” the Lasso, we modify
the group Lasso to obtain the group Dantzig selector.
Proposition 1. β̂gL is a solution to the group Lasso
problem defined in (3) with the regularization parame-
ter ηg, if and only if there exists a nonnegative number
λg, such that it is also the solution of the following op-
timization problem:

β̂gL = arg min
β

‖Xβ‖2 (5)

s.t. max
1≤j≤d

‖XT
Gj (y −Xβ) ‖2 ≤ λg.

Proof. From the Lagrangian duality, for each ηg there
exists a nonnegative λg such that each β̂gL solves (3)
also solves the unconstrained optimization problem:

min
β
F (β) (6)

where F (β) =
1
2
‖y −Xβ‖22 + λg

d∑
j=1

‖βGj‖2.

It then suffices to show that (6) is equivalent to (5).
This follows by a standard variational duality argu-
ment. Define

H(β, v) =
1
2
‖Xβ‖22 − yTXβ + λ

d∑
j=1

vTGjβGj ,

it’s obvious that

F (β) = max
∀j,‖vGj ‖2≤1

H(β, v).

By strong duality, the desired result follows from the
chain

min
β
F (β) = min

β
sup

∀j,‖vGj ‖2≤1

H(β, v)

= sup
∀j,‖vGj ‖2≤1

min
β
H(β, v)

= sup
∀j,‖vGj ‖2≤1,vGj=

1
λg
XTGj

(y−Xβ)

min
β
H(β, v)

= sup
∀j,‖XTGj (y−Xβ)‖2≤λg

−1
2
‖Xβ‖22,

where the third equality utilizes the saddle point con-
ditions.

Given the above proposition, setting the group size to
be 1, i.e. k0 = 1, we see that β̂L is a solution to the
Lasso problem in (1) with the regularization parameter
η, if and only if there exists a nonnegative number λ,
such that

β̂L = arg min
β

‖Xβ‖2 s.t. ‖XT (y −Xβ) ‖∞ ≤ λ. (7)

Comparing (7) with (2), the Danzig selector simply
modifies an equivalent form of the Lasso by replacing
‖Xβ‖2 with ‖β‖1. Using the same strategy, if we want
a “group” version Dantzig selector, we need to change
the objective function ‖Xβ‖2 of the equivalent form
of the group Lasso in (5). The most natural candidate
would be the block `1-norm. Therefore the definition
in (4) naturally comes out.

Under certain conditions, the solution β̂D to the
dantzig selector in (2) can be shown to be identical to
the Lasso solution β̂L defined in (7) using the same reg-
ularization parameter λ (James et al., 2009). A similar
argument is also true for the group Dantzig selector.
A necessary and sufficient condition that characterizes
the equality of the group Lasso and the Dantzig selec-
tor will be reported in the full version. The next propo-
sition only considers the simplest orghogonal group de-
sign case, to shed light on the relationship between the
group Lasso and the group Dantzig selector. The proof
is omitted due to a space limit.

Proposition 2. Let β̂gD be the unique group Dantzig
selector solution in (4) and β̂gL be the unique group
Lasso solution in (5), both using the same regulariza-
tion parameter λg. If for all j, k ∈ {1, . . . , d}, j 6= k,

XT
GjXGj = Ik0 and XT

GjXGk = 0,

where Ik0 is the k0-dimensional identity matrix, then
β̂gD = β̂gL.

4 `2-THEORY

In this section, we study the theoretical property of
the group Dantzig selector using the `2-norm crite-
ria ‖β̂gD − β‖2. The first result of this paper is that
the group Dantzig selector can be much more accu-
rate than the Lasso or Dantzig selector when suitable
group structure is available. Our analysis is based on a
technique in a recent Lasso and Dantzig selector anal-
ysis in Cai et al. (2009) and extends the framework of
the Restricted Isometry Property (RIP) introduced by
Candes and Tao (2005) to the group version. Two key
quantities are needed to establish the conditions:

Definition 2. (m-group restricted isometry coeffi-
cient) : For 1 ≤ m ≤ d, the m-group restricted isome-
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try coefficient δm for X is defined as

δm = inf
δ≥0

δ (8)

s.t.
√

1− δ‖γ‖2 ≤ ‖Xγ‖2 ≤
√

1 + δ‖γ‖2
for all γ ∈ Rp, |gsupp(γ)| ≤ m.

Definition 3. (m,m′-group restricted orthogonality
coefficient): For 1 ≤ m,m′ ≤ d, the m,m′-group re-
stricted orthogonality coefficient θm,m′ of X is defined
as the smallest number that satisfies

|γTXTXγ′| ≤ θm,m′‖γ‖2‖γ′‖2 (9)

where γ, γ′ ∈ Rp are arbitrary, satisfying |gsupp(γ)| ≤
m, |gsupp(γ′)| ≤ m′ with disjoint support.

From the above definitions, when there is no group
structure available, i.e. when k0 = 1, the definitions
of δm and θm,m′ exactly reduce to be the classical re-
stricted isometry coefficient and m,m′-restricted isom-
etry coefficient as in (Candes and Tao, 2005). So our
definitions is a natural extension of theirs by incorpo-
rating the group structure. In general, we prefer δ and
θ to be small. It is easy to see that when group struc-
ture is available, both δm and θm,m′ will be smaller
than their corresponding non-group versions. In other
words, this illustrates that utilizing group structure
can be helpful in weakening assumptions (Huang and
Zhang, 2009).

Theorem 1 provides a sharp non-asymptotic bound for
the estimation error ‖β̂gD−β‖2. It also illustrates the
striking advantage of the group Dantzig selector over
the Lasso or the Dantzig selector when group struc-
ture is available. We start with an assumption which
requires the largest eigenvalue of XGj to be bounded
from above. This is not a restriction in many cases
since we often have control over the choice of XGj .
Assumption 1. For ∀j ∈ {1, . . . , d}, XGj is full rank
and the largest eigenvalues of all XGj are uniformly
bounded from above by 1/√ρk0 .

Theorem 1. (`2-bound) Let β̂gD be a solution to (4)
with

λg =
σ
√
ρk0

(√
k0 +

√
2
√

log d+ log n
)
.

Let |F | = s, without loss of generality, we assume s/4
is an integer. Under Assumption 1 and

δ1.25s + θs,1.25s < 1, (10)

then we have with probability larger than 1− 1/n

‖β̂gD − β‖2 ≤ C · (
√
sk0 +

√
2
√
s (log d+ log n)), (11)

where

C =
√

20σ
(1− δ1.25s − θs,1.25s)

√
ρk0

.

Proof. In the following, we suppress the superscript of
β̂gD and simply denote it as β̂. We start with several
simple technical lemmas. Lemma 1 purely depends
on the objective function of the optimization problem,
and this is the only place where the optimization for-
mulation plays a role.

Lemma 1. Let β̂ be a solution to (4), then we have∑
j∈F c ‖β̂Gj‖2 ≤

∑
j∈F ‖β̂Gj − βGj‖2.

Proof. Since β̂ is the minimizer of the objective func-
tion in (4) and βF c = 0, we have∑
j∈F
‖βGj‖2 ≥

∑
j∈F
‖β̂Gj‖2 +

∑
j∈F c

‖β̂Gj‖2

≥
∑
j∈F
‖βGj‖2 −

∑
j∈F
‖β̂Gj − βGj‖2 +

∑
j∈F c

‖β̂Gj‖2.

We obtain the desired result after canceling the term∑
j∈F ‖βGj‖2 on both sides.

Lemma 2. Let M ⊂ {1, . . . , d}. With probability
larger than 1− 1/n, we have

max
j∈M
‖XT

GjX(β̂ − β)‖2

≤ 2σ
√
ρk0

(√
k0 +

√
2
√

log(|M |) + log n
)
. (12)

Proof. For all j ∈ {1, . . . , d} we have

‖XT
GjX(β̂−β)‖2 ≤ ‖XT

Gj (Xβ̂−y)‖2+‖XT
Gj (y−Xβ)‖2.

Since ‖XT
Gj

(Xβ̂−y)‖2 ≤ λg and by Assumption 1, we
have

∀j ∈ {1, . . . , d}, ‖XT
Gj (y −Xβ)‖2 (13)

≤ 1
√
ρk0

∥∥∥∥(XT
GjXGj

)−0.5

XT
Gj (y −Xβ)

∥∥∥∥
2

.

The result follows from a direct application of Propo-
sition 4.1 in (Huang and Zhang, 2009), coupled with a
union bound over the group index set M .

Without loss of generality, we assume F = {1, . . . , s}.
After some rearrangement, we also assume

‖β̂Gs+1 − βGs+1‖2
≥ ‖β̂Gs+2 − βGs+2‖2 ≥ · · · ≥ ‖β̂Gd − βGd‖2.

Then, denote F ∗ = {s + 1, . . . , 1.25s} and for all i ≥
1, Fi = {1.25s+ (i− 1)s+ 1, . . . , 1.25s+ is} with the
last subset of size less than or equal to s. Also, for each
Fi (i ≥ 1), we denote Fi1 be the subset containing the
first 0.75s elements and Fi2 be the subset contains the
remaining.
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The next technical lemma is obtained from (Cai et al.,
2009): for a non-decreasing sequence of nonnegative
numbers, the `2-norm of the last 4/5 proportion can
be bounded by the `1-norm of the first 4/5 proportion
over a large constant factor.

Lemma 3. Given any descending chain of real num-
bers a1 ≥ a2 ≥ · · · ≥ a0.25s ≥ b1 ≥ · · · ≥ b0.75s ≥ c1 ≥
· · · ≥ c0.25s ≥ 0, we have√√√√0.75s∑

i=1

b2i +
0.25s∑
i=1

c2i ≤
∑0.25s
i=1 ai +

∑0.75s
i=1 bi√

s
. (14)

Proof. Follows by a direct application of Lemma 2 in
(Cai et al., 2009).

Given Lemma 3, we obtain the following key lemma:

Lemma 4. Given F, F ∗, Fi, we have∑
i≥1

√∑
j∈Fi

‖β̂Gj‖22 ≤
√ ∑
j∈F∪F∗

‖β̂Gj − βGj‖22.

Proof. By (14) in Lemma 3, we directly obtain

√
s
∑
i≥1

√∑
j∈Fi

‖β̂Gj − βGj‖22

≤
∑

j∈∪i≥1Fi

‖β̂Gj − βGj‖2 +
∑
j∈F∗

‖β̂Gj − βGj‖2

=
∑
j∈F c

‖β̂Gj‖2.

Lemma 1 further implies that
∑
j∈F c ‖β̂Gj‖2 ≤∑

j∈F ‖β̂Gj − βGj‖2. The desired result fol-
lows from the fact

∑
j∈F ‖β̂Gj − βGj‖2 ≤

√
s
√∑

j∈F∪F∗ ‖β̂Gj − βGj‖22.

To finalize Theorem 1, we consider a pivotal quantity
|〈X(β̂ − β),

∑
j∈F∪F∗ XGj (β̂Gj − βGj )〉|. Let

K(β̂, F, F ∗) =
√ ∑
j∈F∪F∗

‖β̂Gj − βGj‖22 (15)

It is obvious that, with probability larger than 1− 1
n ,

|〈X(β̂ − β),
∑

j∈F∪F∗
XGj (β̂Gj − βGj )〉| (16)

≤
∑

j∈F∪F∗
|〈XT

GjX(β̂ − β), β̂Gj − βGj 〉|

≤
√

1.25s max
1≤j≤d

‖XT
GjX(β̂ − β)‖2K(β̂, F, F ∗)

≤ σ

√
5s
ρk0

(
√
k0 +

√
2
√

log d+ log n)K(β̂, F, F ∗).

where we apply the Cauchy-Schwartz inequality twice
in the second inequality and the third inequality fol-
lows from Lemma 2.

On the other hand, we have

|〈X(β̂ − β),
∑

j∈F∪F∗
XGj (β̂Gj − βGj )〉|

≥ ‖
∑

j∈F∪F∗
XGj (β̂Gj − βGj )‖22

−
∑
i≥1

|〈
∑
j∈Fi

XGj (β̂Gj − βGj ),
∑

j∈F∪F∗
XGj (β̂Gj − βGj )〉|

≥ (1− δ1.25s)
∑

j∈F∪F∗
‖β̂Gj − βGj‖22

− θs,1.25sK(β̂, F, F ∗)
(∑
i≥1

√∑
j∈Fi

‖β̂Gj‖22
)

≥ (1− δ1.25s − θs,1.25s)
∑

j∈F∪F∗
‖β̂Gj − βGj‖22,

where in the last inequality we apply Lemma 4. Com-
bining this lower bound with the upper bound in (16),
we have√ ∑

j∈F∪F∗
‖β̂Gj − βGj‖22

≤ c1

(√
sk0 +

√
2
√
s (log d+ log n)

)
.

where

c1 = σ

√
5

(1− δ1.25s − θs,1.25s)2ρk0
. (17)

The result of Theorem 1 then follows by applying
Lemma 4 again.

We can identify the benefit of our group Dantzig se-
lector by comparing the result of Theorem 2 to the `2-
norm of the Lasso and the Dantzig selector estimation
error given in Cai et al. (2009). In particular, there are
two advantages of utilizing the group structure. First,
our condition in equation (10) is much more relaxed
since δm and θm,m′ defined in definition 2 and 3 are
smaller than the non-group version because they only
need to be satisfied for group compatible vectors γ and
γ′. Second, the upper bound we obtained for the group
Dantzig selector is O(

√
sk0 +

√
s(log d+ log n)). Re-

call that for the Lasso or the Dantzig selector, such a
bound is O(

√
sk0(log d+ log k0)). If there exists some

c > 0, k0 ≥ c log d, the bound for the group Dantzig
selector becomes O(

√
sk0). In contrast, the bound for

the Lasso becomes O(
√
sk0 log d). When d � n, this

log d factor difference can be striking in applications.
This observation is also confirmed by our numerical
experiments.
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5 `1-THEORY

In this section, we study the theoretical property of
the group Dantzig selector using block `1-norm, which
is complementary to the `2-analysis in Section 4. For
sparse learning problems, sometimes `1-norm can be
a more suitable error metric than the usual `2-norm.
For example, we assume that the true signal β ∈ Rp

is a zero vector and consider two estimators β1 and β2

given by β1 = (1, 0, . . . , 0) and β2 = (1/
√
p, . . . , 1/

√
p).

We see ‖β1 − β‖2 = ‖β2 − β‖2 = 1, in contrast,
‖β1−β‖1 = 1� √p = ‖β2−β‖1. In this case, `1-norm
is more consistent with the intuition since when con-
sidering the sparseness issue, β1 is a better estimator
than β2 for the true signal β. By a similar argument,
the block `1-norm could be more suitable than the `2-
norm for certain sparse learning problems when group
structure is available.

In the following, we introduce a remarkably simple an-
alytical framework for block `1-norm bound based on a
new condition defined by group relevant isometry co-
efficient and group mutual orthogonality coefficient,
which is easily accessible to a broad audience in the
machine learning community;
Definition 4. Let |F | = s, the group relevant isome-
try coefficient δ̄F of X is defined as

δ̄F = inf
δ≥0

δ

s.t.
√

1− δ
∑
j∈F
‖γGj‖2 ≤

√
s‖XGF γGF ‖2

for all γGF ∈ R|GF |.

Definition 5. Let |F | = s and 1 ≤ m ≤ |F c|, the
group mutual orthogonality coefficient θ̄F,m of X is
defined as the smallest number that satisfies, for all
M ⊂ F c,

|γGF TXT
GFXGMγ

′
GM |

≤ θ̄F,m√
s|M |

(
∑
k∈M

‖γ′Gk‖2)(
∑
j∈F
‖γGj‖2),

where γGF ∈ R|GF |, γ′GM ∈ R|GM | are arbitrary and
|gsupp(γ′GM )| ≤ m, gsupp(γGF ) ⊂ F .

Comparing the definitions of δ̄F and θ̄F,m with δk and
θk,k′ as in Definitions 2 and 3, a significant difference
is that δ̄F and θ̄F,m are defined based on F , which is
the unknown sparse index set for nonzero groups. To
derive a sharp block `1-bound, we need a condition
called sparsity oracle condition, which requires δ̄F +
θ̄F,|F | < 1. The following is the main theorem.

Theorem 2. (block `1-bound) Let β̂gD defined in (4)
with

λg =
σ
√
ρk0

(√
k0 +

√
2
√

log d+ log n
)
.

Let |F | = s, under Assumption 1 and

δ̄F + θ̄F,s < 1,

we have, with probability larger than 1− 1/n

d∑
j=1

‖β̂gDGj − βGj‖2 ≤ C2 ·
(√

k0 +
√

2
√

log d+ log n
)
,

where
C2 =

4σs
(1− δ̄F − θ̄F,s)

√
ρk0

.

Proof. Again we suppress the superscript of β̂gD and
simply denote it as β̂. Since d � n ≥ s, follow by a
simple argument, we can assume that the smallest s
elements of β̂ are all zeros, therefore, without loss of
generality, we can assume |F c|/s is an integer. Con-
sider the pivotal quantity

|〈X(β̂ − β), XGF (β̂GF − βGF )〉|.

Similar to the proof in Theorem 1, with probability
larger than 1− 1/n,

|〈X(β̂ − β), XGF (β̂GF − βGF )〉|
≤

∑
j∈F
|〈XT

GjX(β̂ − β), β̂Gj − βGj 〉|

≤ max
1≤j≤d

‖XT
GjX(β̂ − β)‖2

∑
j∈F
‖β̂Gj − βGj‖2

≤ 2λg
∑
j∈F
‖β̂Gj − βGj‖2, (18)

where the last inequality follows from Lemma 2. On
the other hand, by the definitions of δ̄F , θ̄F,s,

|〈X(β̂ − β), XGF (β̂GF − βGF )〉|
≥ ‖XGF (β̂GF − βGF )‖22
−|〈XGFc β̂GFc , XGF (β̂GF − βGF )〉|

≥ 1− δ̄F
s

(
∑
j∈F
‖β̂Gj − βGj‖2)2

− θ̄F,s
s

(
∑
j∈F
‖β̂Gj − βGj‖2)(

∑
j∈F c

‖β̂Gj − βGj‖2)

≥ 1− δ̄F − θ̄F,s
s

(
∑
j∈F
‖β̂Gj − βGj‖2)2. (19)

Where the last inequality utilizes Lemma 1. Combin-
ing (19) and (18), we obtain

d∑
j=1

‖β̂Gj − βGj‖2 ≤ 2
∑
j∈F
‖β̂Gj − βGj‖2

≤ 4sλg
1− δ̄F − θ̄F,s

,



         467

Han Liu, Jian Zhang, Xiaoye Jiang, Jun Liu

where we apply Lemma 1 again. By plugging in λg,
we obtain the desired result.

It would be interesting to compare the group sparsity
oracle condition used in Theorem 2 with the group
restricted isometry condition used in Theorem 1. By
the Cauchy-Schwartz inequality, it’s easy to see that
δ̄F ≤ δ1.25s. To compare θ̄F,s with δs,1.25s, it’s worthy
to point out that θ̄F,s is a much more refined quantity,
since it only involves calculating the “ structured mu-
tual correlation” between the relevant variables and
irrelevant variables. For example, the correlation be-
tween irrelevant variables can be arbitrary large, in
this case, it’s obvious that the group restricted isome-
try condition in Theorem 1 will be violated, however,
the group sparsity oracle condition in Theorem 2 may
still holds.

6 NUMERICAL RESULTS

In this section, we report numerical results on both
simulated and real datasets. They provide empirical
evidences on why the group Dantzig selector is supe-
rior to the Lasso when the correct group structure is
available. More experiments on uneven sized groups
will be reported elsewhere. In summary, our results are
consistent with those obtained in (Huang and Zhang,
2009).

6.1 The benefit of group sparsity

We compare the group Dantzig selector and the Lasso
in high dimensional problems. We use a similar set-
ting as in (Zhao and Yu, 2007) by taking different
(n, p, k0, s) combinations with s denotes the number
of nonzero groups. For each (n, p, k0, s) combina-
tion, we sample 1000 times the covariance matrix Σ
from a Wishart distribution Wishart(p, Ip) and the true
parameter vector βGj for the j-th nonzero group is
(8 · (0.5)j−1, . . . , 8 · (0.5)j−1). For each Σ we sample a
design matrix X from the multivariate normal distri-
bution N(0,Σ). The response vector y = Xβ + ε is
then calculated using

ε ∼ N(0, (
√

0.6)2In).

The noise level σ2 is set to 0.6 to manifest the asymp-
totic characterizations. For both methods, the tuning
parameters η and λg are chosen optimally over the full
solution paths to optimize the true loss ‖β̂ − β‖2 or∑d
j=1 ‖β̂Gj − βGj‖2. Since β is unknown in real appli-

cations, this is not a practical model selection method.
But for our purpose, the advantage of using such “or-
acle scores” is that the simulation results will only de-
pend on the methods themselves, but not on the model

selection procedures. The results are reported in Ta-
ble 1 and Table 2. We see that the performance of the
group Dantzig selector (GDS) is much better than the
Lasso for both `2-norm and block `1-norm losses. The
only case the Lasso is better is the no group structure
case, in this case, our method becomes the Dantzig
selector, but since we only use 16 tuning parameters
to build the path, the performance is slightly worse.

Table 1: Comparison of the `2-performance of the
Lasso and the group Dantzig selector

(n, p, k0, s) Lasso(`2−loss) GDS(`2−loss))

(100, 480, 16, 3) 26.558 (3.2045) 4.8352 (1.4258)

(100, 200, 1, 20) 0.0499 (0.0100) 0.3461 (0.0705)

(100, 480, 12, 5) 19.229 (3.1682) 12.820 (2.9661)

(100, 480, 40, 1) 43.493 (2.7088) 1.7806 (0.0048)

(100, 480, 4, 12) 1.2234 (0.6394) 1.5318 (0.2392)

Table 2: Comparison of the block `1-performance of
the Lasso and the group Dantzig selector

(n, p, k0, s) Lasso(`1−loss) GDS(`1−loss))

(100, 480, 16, 3) 54.817 (2.1804) 9.3408 (3.5994)

(100, 200, 1, 20) 0.2132 (0.0482) 1.0909 (0.1661)

(100, 480, 12, 5) 51.546 (2.2146) 5.1714 (0.9811)

(100, 480, 40, 1) 43.493 (2.7088) 1.7806 (0.0048)

(100, 480, 4, 12) 5.9667 (2.8910) 4.6063 (0.5976)

6.2 Boston Housing Data

We apply the group Dantzig selector to the corrected
Boston Housing data in (Ravikumar et al., 2007). The
dataset contains 506 records about housing prices in
suburbs of Boston. Each record has 10 continuous
features which might be useful in describing housing
price, and the response variable is the median house
price. We consider a sparse additive model and use
exactly the same experimental protocol as in (Raviku-
mar et al., 2007) , but replace their method with the
group Dantzig selector and the group Lasso. For this,
we expand each variable using 5 polynomial basis.
Thus cast the problem to be a parametric regression
with equally-sized group structure. The regulariza-
tion paths of the two methods are shown in figure 1.
Though these two paths look similar, there are subtle
difference. The top 6 variables selected by the group
Lasso are: lstat, rm, dis, nox, crim and ptratio; while for
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the group Dantzig selector, the order of nox and ptratio
are exchanged. Interestingly, nox is the one treated as
a borderline variable in (Ravikumar et al., 2007).
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Figure 1: The regularization paths for (Upper) the group
Dantzig selector and (Lower) the Group Lasso.

7 Conclusions

We present a novel method called the group Dantzig
selector for sparse learning problems with group struc-
tures. The method has a convex formulation and
good theoretical properties. Under the classical `2-
framework, we provide a convincing theory to show
that the group Dantzig selector is superior to the
Lasso or the Dantzig selector for learning problems
with grouped variables. To gain more insights and to
make the results more accessible to a wide audience
in the machine learning community, we also provide a
new and remarkably simple `1-framework. We believe
that the group Dantizg selector can be another useful
tool for high dimensional sparse learning with group
structure.
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