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Figure 1: Symmetry detection on a sculpted model. From left to right: Original model, detected partial and approximate symmetries,
color-coded deviations from perfect symmetry as a fraction of the bounding box diagonal.

Abstract

“Symmetry is a complexity-reducing concept [...]; seek it every-
where.” - Alan J. Perlis

Many natural and man-made objects exhibit significant symmetries
or contain repeated substructures. This paper presents a new al-
gorithm that processes geometric models and efficiently discovers
and extracts a compact representation of their Euclidean symme-
tries. These symmetries can be partial, approximate, or both. The
method is based on matching simple local shape signatures in pairs
and using these matches to accumulate evidence for symmetries in
an appropriate transformation space. A clustering stage extracts
potential significant symmetries of the object, followed by a veri-
fication step. Based on a statistical sampling analysis, we provide
theoretical guarantees on the success rate of our algorithm. The
extracted symmetry graph representation captures important high-
level information about the structure of a geometric model which in
turn enables a large set of further processing operations, including
shape compression, segmentation, consistent editing, symmetriza-
tion, indexing for retrieval, etc.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling.

Keywords: geometric modeling, shape analysis, symmetry detec-
tion, shape descriptor, sampling guarantees.

1 Introduction

Symmetry is an essential and ubiquitous concept in nature, science,
and art. For example, in geometry, the Erlanger program of Felix
Klein [1893] has fueled for over a century mathematicians’ inter-
est in invariance under certain group actions as a key principle for

understanding geometric spaces. Numerous biological, physical, or
man-made structures exhibit symmetries as a fundamental design
principle or as an essential aspect of their function. Whether by
evolution or design, symmetry implies certain economies and effi-
ciencies of structure that make it universally appealing. Symmetry
also plays an important role in human visual perception and aes-
thetics. Arguably much of the understanding of the world around
us is based on the perception and recognition of shared or repeated
structures, and so is our sense of beauty [Thompson 1961].

In this paper we present a novel method for detecting meaningful
symmetries in digital 3D shapes. We understand symmetry as the
invariance under a set of transformations — in our case translation,
rotation, reflection, and uniform scaling, the common generators
of the Euclidean group. The figure below shows a 2D illustration.
As can be seen in this example, symmetries or congruences that
are quite apparent to us can be approximate and occur at differ-
ent scales. Our goal is to define an algorithm that extracts (partial)
symmetries at all scales, including approximate or imperfect sym-
metries of varying degree. This allows the user to select the subset
of symmetries that are most meaningful for a specific application.
Examples include scan registration and alignment, shape matching,
segmentation and skeleton extraction, compression, advanced mod-
eling and editing, and shape database retrieval.
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To achieve this goal, we separate the symmetry computation into
two phases: In the first step, we compute simple local shape de-
scriptors at a selected set of points on the shape. These descriptors
are chosen so that they are invariant under the group actions of in-
terest. We use these local descriptors to pair up points that could be
mapped to each other under a candidate symmetry action. We think
of each such pair as depositing mass, or voting, for a specific sym-
metry in the transformation space of interest. In this space, pairs
with similar transformations form clusters that provide evidence for
the corresponding symmetry relation.



In the second step we use a stochastic clustering algorithm to ex-
tract the significant modes of this mass distribution. Since the map-
ping to transformation space does not preserve the spatial coher-
ence or structure of samples on the input shape, we verify whether
a meaningful symmetry has been found by checking the spatial
consistency of the extracted subparts of the surface. Our cluster-
ing method provides the necessary surface correspondences, since
every point mass in transformation space corresponds to a candi-
date pair of points in the spatial domain. Thus only a small set
of candidates samples needs to be considered when detecting and
extracting symmetric surface patches, avoiding a costly quadratic
spatial search over the whole input data set.

This separation into two stages is crucial for the effectiveness of
our algorithm. The underlying observation is the following: given
a proposed symmetry relation, it is simple and efficient to verify
whether this specific symmetry is present in the model; we just need
to apply the symmetry transform and check whether the model is
mapped onto itself, or a sub-part of the model is mapped to a corre-
sponding sub-part. However, the number of all potential mappings
is by far too large to do an exhaustive search. Therefore, we first
accumulate statistical evidence for which symmetries are present
via our clustering in transformation space. Only if this evidence
is sufficient do we perform spatial verification to check whether a
specific symmetry is actually valid. Thus the complexity of symme-
try extraction depends primarily on the number and size of relevant
symmetries present in the model and not on the complexity of the
model itself or that of the underlying symmetry group. As part of
our approach, we can provide a quantitative measure on the “exact-
ness”, or saliency, of a symmetry relation, which allows the user
to control the degree of perfection in the extracted symmetries. In
addition, by specifying the size of the set of local shape descriptors,
the user can trade accuracy for computational efficiency. While
fewer samples are sufficient for detecting large global symmetries,
small partial symmetries require a significantly denser sampling.

The final output of our algorithm is a “symmetry graph” of the ob-
ject, which encodes the significant symmetries of the object, each
described by a patch pair and the corresponding transformation be-
tween them. For objects that contain regular repeated structures,
like windows or doors in architectural models, we can recover the
symmetries of the repetition pattern through a basis reduction algo-
rithm. This in effect leads to a sparser and more informative sym-
metry graph that contains only fundamental symmetry generators
and avoids encoding separately symmetries that are just products of
already recorded symmetries. This kind of repeated pattern discov-
ery can be useful in consistent mesh editing applications.

1.1 Contributions

We propose a new algorithm for pairing sample points on 3D shapes
with compatible local descriptors to generate a distribution in trans-
formation space whose peaks capture relevant symmetries of the
object. We show how a stochastic clustering algorithm over this dis-
tribution detects potential symmetry candidates, and provide a sur-
face patching method that extracts a reduced symmetry graph from
the extracted clusters. Our algorithms can be applied to 3D mod-
els of different shape characteristics and representations. Memory
requirements are minimal and the computation is output-sensitive
in the sense that its complexity depends mainly on the number and
extent of symmetries actually present in the object. In addition, we
provide theoretical bounds on the success rate of our algorithm as a
function of the number of initial samples selected. These results in-
dicate that the algorithm can be effective even for very large models
that cannot fit in main memory.

1.2 Related work

The problem of symmetry detection has been extensively studied
in numerous fields including visual perception, computer vision,
robotics, and computational geometry. Early methods concentrated
on finding perfect symmetries in 2D or 3D planar point sets [Atallah
1985], [Wolter et al. 1985]. Since the restriction to exact symme-
tries limits the use of these methods for real-world objects, Alt et
al.[1988] introduced a method for computing approximate global
symmetries in 3D point sets, but the complexity of the algorithm
makes it impractical for large data sets. Zabrodsky et al. [1995] for-
malized the notion of approximate symmetry by expressing sym-
metry as a continuous feature. Sun et al. [1997] proposed to exam-
ine the correlation of the Gaussian image to recover global reflec-
tive and rotational symmetries. Kazhdan and co-workers [2002] in-
troduced a shape descriptor that concisely encodes global reflective
symmetries. Later they extended this work to rotational symmetries
and used it for shape retrieval for database matching in [Kazhdan
et al. 2004].

Our method bears some similarity to the Hough transform, a
popular feature extraction method mainly used in image process-
ing [Hough 1959]. Starting from a set of sample points obtained
using edge detection, the method repeatedly selects small subsets
of these samples to estimate the parameters of the feature curve.
Analogous to our approach, votes cast by all of these estimates are
accumulated and the final feature curve is extracted based on the
majority of votes. Recently ideas based on the Hough transform
have been used by [Loy and Eklundh 2006] to detect reflective and
rotational symmetries in images.

The RANdom SAmple Consensus (RANSAC) method proposed
by Fischler and Bolles [1981] is an algorithm for robust model
fitting for data containing many outliers. In the context of shape
matching the basic idea is to choose a random set of corresponding
samples on the query and target shapes, apply the global transfor-
mation induced by these samples, and evaluate the matching error
between the two shapes. If sufficiently many transformations are
explored in this way, the relevant symmetries can eventually be de-
termined. Since the evaluation of the matching error requires costly
spatial proximity tests, geometric hashing [Lamdan and Wolfson
1988] pre-computes all possible alignments by densely sampling
the space of transformations and storing the resulting shape distri-
bution in a hash grid. Gal and Cohen-Or [2006] recently presented
an effective method for shape matching based on this idea. Their al-
gorithm computes local shape descriptors that are grouped to form
salient shape features. Using an empirical saliency measure, shape
features are then used to pre-compute a geometric hash table that
allows efficient partial matching.

While sharing some similarities, our method is fundamentally dif-
ferent from both RANSAC and geometric hashing. We avoid the
costly exhaustive search of the former by computing the match-
ing error of a transformation onlyafter we accumulate sufficient
evidence for a symmetry. At the same time our method requires
minimal storage, in contrast to geometric hashing, where hash ta-
bles of up to 3.5 GBytes have been reported for complex geometric
shapes [Gal and Cohen-Or 2006].

1.3 Overview

We first give some intuition for our method by looking at the 2D
example shown in Figure 3, where the goal is to detect reflective
symmetries of the butterfly. Any pair of points(p,q) on the bound-
ary of the model defines a unique reflection with respect to the bi-
sector line through(p + q)/2 with normal directionp−q. Hence
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Figure 2: The symmetry extraction pipeline. Sampling yields a setP of surface points. For eachpi ∈ P a local signature is computed. Points
pi ,p j with similar signatures are paired and a point in transformation spaceΓ is computed mapping the local frame ofpi to the one atp j .
Clustering inΓ yields subsets ofP that remain invariant under a certain transformation, which can be extracted using spatial region growing.

such a pair can be understood as evidence for the existence of this
specific reflective symmetry. By looking at all such pairs we can
accumulate this evidence and extract the relevant symmetry rela-
tion(s). Only if many point pairs agree on (roughly) the same re-
flection line, do we have reason to believe that the corresponding
symmetry is truly present in the model. Thus we can detect po-
tential symmetries by looking at clusters of points in the space of
transformationsΓ, where each point corresponds to a specific re-
flection line. However, as shown in the illustration, the evidence of
a single point pair is only reliable if the local geometry around the
points is faithfully mirrored by the reflective transformation. This
observation will allow us to significantly prune the set of all point
pairs and avoid an exhaustive computation on a quadratic number
of point pairs.

Since the mapping toΓ does not incorporate the spatial position
of surface samples, pairs from unrelated parts of the object can be
mapped to the same point in transformation space. Thus in a second
phase we extract spatially coherent components of the model that
are invariant under the extracted symmetry transformations. Us-
ing the point pair correspondences present in the cluster, we per-
form an incremental region growing algorithm to verify a specific
symmetry. Figure 2 gives a high-level overview of our symmetry
extraction pipeline. The following sections will elaborate on the
individual stages and provide details of our approach.

φ

d

transformation space

Γ

Figure 3: Illustration of symmetry detection for reflections. Every
pair of points defines a symmetry linel that can be described by a
distanced and an angleφ . Multiple points clustered in a small re-
gion in transformation space provide evidence of a symmetry. The
pair on the top left is discarded due to normal inconsistency.

2 Signatures and Transformations

We consider the Euclidean transformation group generated by
translations, rotations, reflections, and uniform scalings. Our goal
is to find parts of a given 3D shape that are invariant under trans-
formations in this symmetry group or some lower-dimensional sub-
group.

In order to apply the ideas sketched above, we need to compute the
transformationT i j that maps a pointpi on the surface of the model
to another pointp j . While point positions are sufficient for defin-
ing a unique plane of reflection as in the example above, we cannot
determine all degrees of freedom of a general Euclidean transform
from the spatial positions alone. We therefore compute geometry
signatures at each sample pointpi based on the concept of normal
cycles [Cohen-Steiner and Morvan 2003]. We apply the algorithm
proposed in [Alliez et al. 2003] to approximate the curvature tensor
at pi within a sphere of radiusr and compute integrated principal
curvaturesκi,1 ≤ κi,2 and principal directionsci,1 andci,2. The ra-
diusr should be on the order of the local sample spacing to achieve
sufficient averaging when computing the curvature tensor and avoid
a strong dependence on the specific location of the sample points.
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The principal directions define a local frame(ci,1,ci,2,ni), with nor-
mal vectorni = ci,1× ci,2. We orient this frame as a right-handed
coordinate frame that aligns with the outward pointing surface nor-
mal by flipping signs of the appropriate vectors if necessary. In
order to obtain a canonical rotational componentRi j of the transfor-
mationT i j we first align the two normals along their common plane
and then pick the smaller of the two rotations around the normal
that aligns to one of the two possible choices of orientation in tan-
gent space. The uniform scale component ofT i j is estimated from
the ratio of principal curvatures assi j = (κi,1/κ j,1 + κi,2/κ j,2)/2,
the translation is computed ast i j = p j − si j Ri j pi . For a given
pair (pi ,p j ) we thus obtain a point in 7-dimensional transforma-
tion spaceΓ asT i j = (si j ,Rx
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T . In order
to handle reflections, we also compute the transformation obtained
when reflecting the model about an arbitrary but fixed plane.

2.1 Point Pruning

A differential surface patch at umbilic points, i.e., those for which
κi,1 = κi,2, is invariant under rotations around the surface normal.
Pairs involving such points and their signatures do not define a
unique transformation, but trace out curves in transformation space,
which may quickly camouflage meaningful symmetry clusters. To
avoid clutter in transformation space, we discard these points from
the sample set, i.e., we only consider points on the surface with
distinct principal curvatures (and hence stable principal directions),



which give rise to a unique transformation when paired with an-
other compatible point. Apart from making the symmetry clus-
tering more robust, point pruning has the additional advantage of
reducing computation time. We obtain the adaptive sample set by
applying a thresholdγ < 1 on the ratio of curvatures:pi ∈ P, if
|κi,1/κi,2|< γ. We useγ = 0.75 for all examples in this paper.

2.2 Pairing

Given the reduced set of surface samplesP and their signatures,
we can now compute transformations for pairs of points inP. We
select a random subsetP′ ⊂ P and find all pairs(p′,p) with p′ ∈
P′ and p ∈ P that provide evidence for a symmetry relation. In
the Appendix we give theoretical bounds on the size ofP andP′

required to successfully find symmetries of a certain size.

As indicated above, the evidence of a selected point pair for a spe-
cific symmetry relation is only reliable, if a local surface patch
around each point is invariant under a transformation from the con-
sidered symmetry groupG. In the 2D illustration of Figure 3, for
example, we can reject a pair, if the curvature estimates at both
points differ too much, since curvature is invariant under reflection.
To obtain an efficient pairing algorithm we map all samples to a
signature spaceΩ and use the metric of that space to estimate the
deviation from perfect invariance. Only point pairs that are close in
Ω are considered as suitable candidates for a local symmetry rela-
tion, which avoids an exhaustive computation of a quadratic number
of point pairs.

For the full 7-dimensional Euclidean group in 3D, the mapping
from P to Ω7 = IR is given asσ7(pi) = κi,1/κi,2, since uniform
scaling, rotation, and translation leave the ratio of principal curva-
tures unchanged. The sub-index 7 indicates the dimension of the
symmetry group. For purely rigid transforms, we defineσ6(pi) =
(κi,1,κi,2) with Ω6 = IR2. We can now for a given samplepi ∈ P′

determine all suitable partners inP by performing a range query
in Ω. Using standard spatial proximity data structures, e.g., akd-
tree, we can perform pairing inO(n′ logn) time, wheren = |P| and
n′ = |P′|. If only reflections and/or translations are considered, we
can additionally reject pairs based on the orientation of the local
frames, as illustrated in Figure 3.

Figure 4 shows that pruning not only reduces the complexity of
the clustering algorithm, but, even more importantly, avoids clutter
in transformation space. By focusing only on locally consistent
symmetry pairs, meaningful clusters are stably detected inΓ.

3 Clustering

The pairing computed in the previous stage provides us with a set
of transformations that map local surface patches onto each other.
Each pair thus provides evidence for a symmetry relation at the
level of the local sample spacing. To extract meaningful symme-
tries at larger scales we need to accumulate this local evidence, i.e.,
find groups of pairs with a similar transformation that correspond
to symmetric subsets of the model surface. This requires the defi-
nition of a distance metric inΓ, which is non-trivial, since scaling,
rotation, and translation need to be combined in a single metric. We
follow the approach of [Amato et al. 2000] and define the norm of a
transformationT = (s,Rx,Ry,Rz, tx, ty, tz) ∈ Γ as the weighted sum
‖T‖2 = β1s2 +β2(R2

x +R2
y +R2

z)+β3(t2
x + t2

y + t2
z ). The weightsβi

allow to adjust the relative influence of the individual components
of the transformation. In all our examples we set these weights so
that a rotation by 180 degrees corresponds to a displacement of half
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Figure 4: Pair pruning. 40 samples on the butterfly lead to
(40

2

)
=

780 points in transformation space. Pruning based on curvature re-
duces the set to 503 points, while additionally normal-based prun-
ing yields 138 points. The density plots show how the meaningful
symmetry clusters become significantly more pronounced.

the bounding box diagonal and a scaling factor of 10. A metric for
Γ can then be derived asd(T,T′) = ‖T−T′‖, where the subtrac-
tion is component-wise, see also [Hofer et al. 2004] for a detailed
discussion.

3.1 Mean-Shift

If the symmetries in the model are perfect (and the sampling in-
cludes point pairs that are perfectly symmetric), then all pairs of the
same (discrete) symmetry relation map to a single point inΓ. Many
real-world objects exhibit approximate symmetries, however, and
the sampling will not be precisely symmetric in general. We thus
need a method to find clusters in transformation space. When look-
ing at the distribution of points inΓ, we immediately see that stan-
dard parametric clustering methods, such ask-means clustering, are
not suitable for our purposes. In general we have no a priori knowl-
edge on the number of (partial) symmetries of the input model, i.e.,
selectingk would be difficult. Furthermore, clusters are not nec-
essarily isotropic, especially for approximate symmetries like the
ones shown in Figure 1. A more suitable clustering method ismean
shift clustering, a non-parametric method based on gradient ascent
on a density functionρ [Comaniciu and Meer 2002]1. This density
function is defined as a sum of kernel functionsK centered at each
pointT i in Γ as

ρ(T) = ∑
i

K(‖T−T i‖/h).

We use the radially symmetric Epanechnikov kernel with band-
width h as suggested in [Comaniciu and Meer 2002]. The signif-
icant modes ofρ are determined using gradient ascent. All points
that flow into a local maximum of sufficient height are considered
samples of a significant clusterCk. The corresponding symmetry
transformationTk is then defined by the cluster’s maximum. Essen-
tially, the algorithm can be understood as a voting scheme: Every
point pair votes for the symmetry relation that has been extracted

1Mean shift clustering has also been used in [James and Twigg 2005] for
skinning mesh animations and in [Tuzel et al. 2005] for 3D motion estima-
tion.



from its local frames. If many votes are cast for the same symme-
try, a local peak is created in the accumulated density function. For
more details on mean-shift clustering we refer to [Comaniciu and
Meer 2002].

4 Verification

A significant mode detected by the mean-shift clustering algorithm
does not necessarily correspond to a meaningful symmetry. Since
the spatial relation of sample points is lost during the mapping to
transformation space, sample pairs from uncorrelated parts of the
object can accumulate to form discernible clusters. The effective-
ness of our method is based on the observation that statistically such
spurious modes are rare (see also the analysis in the Appendix): It
is highly unlikely that many uncorrelated point pairs agree on the
same transformation, i.e., are mapped to the same point in 7D trans-
formation space. We can thus afford to perform a spatial verifica-
tion for each clusterCk by extracting the connected components of
the model that are invariant under the corresponding transformation
Tk. We compute these surface patches using an incremental patch
growing process, starting with a random point ofCk, which corre-
sponds to a pair(pi ,p j ) of points on the model surface. Now we
look at the one-ring neighbors ofpi , applyTk, and check whether
the distance of the transformed points to the surface aroundp j is
below a given error threshold. If so, we add them to the current
patch. We keep extending this patch along its boundary until no
more points can be added. During the growth process, we mark all
visited samples on the surface and remove points inCk that corre-
spond to these samples. This process is then repeated using the next
point inCk until all points have been considered.

Since the transformationTk at the cluster’s maximum does not nec-
essarily provide the best possible transformation for matching the
surface patches, we incrementally refineTk during the patch grow-
ing using the iterated closest points (ICP) algorithm [Rusinkiewicz
and Levoy 2001]. The normalized residual of the ICP matching
then provides a quantitative measure for the exactness of the sym-
metry [Mitra et al. 2004]. Other measures, such as the Hausdorff
distance can also be used. We end up with a collection of pairs of
patches on the model surface that are mapped onto each other by
the cluster’s transformationTk. This information can be encoded
in a weighted graph, where each node corresponds to a patch and
each edge denotes the transformation that maps two patches onto
each other, weighted by the matching error.

4.1 Compound Transforms

Many geometric objects exhibit symmetries in a structured or repet-
itive fashion resulting in a large number of clusters in transforma-
tion space [Liu et al. 2004]. Encoding all pair-wise symmetry re-
lations for such models leads to a complex and highly redundant
symmetry graph and thus a costly verification stage. In this sec-
tion we describe a simple basis reduction algorithm that computes
a compact set of generators for all detected symmetries in transfor-
mation space [Magnus et al. 2004]. This significantly reduces the
number of spatial consistency checks required for verification and
yields a more informative symmetry graph that supports advanced
editing operations and high level shape comparisons.

The algorithm shown below takes as input all extracted symmetry
transformationsT sorted in descending order of cluster height and
iteratively processes each transformationT i ∈ T. During execution
we maintain an alphabetA of generators and the languageL that
encodesT in terms of the alphabetA. A user parameterη controls
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Figure 5: Symmetry graph reduction for a model with structured
symmetries at two different scales. 60 significant modes have been
extracted in the clustering stage. The reduced basis contains 6 trans-
formations, as indicated by the arrows. The graph on the left shows
the number of detected symmetries as a function of random samples
in the subsetP′ ⊂ P.

the complexity of the algorithm by limiting the search to loops of
lengthη +1. The thresholdδ measures the allowed deviation from
the exact transformation.

Figure 5 shows an example of a reduced symmetry basis. Verifi-
cation can now be applied more efficiently on the setL of com-
pound transformations. For more details on basis reduction we refer
to [Magnus et al. 2004].

Algorithm 1 Symmetry basis reduction.

Input: T = {T1,T2, . . . ,Tn}
A←{I}
L← /0
for i = 1 ton do

if ∃ (A1, . . . ,Aη ) with A j ∈ A s.t. |T i −∏η

j=1A j | ≤ δ then
L← L∪{(A1, . . . ,Aη )}

else
A← A∪{T i ,T−1

i }
L← L∪{(T i)}

end if
end for

5 Results and Applications

We have implemented the pipeline sketched in Figure 2. An initial
sample set is created by uniformly sampling the input model. Af-
ter computing signatures using the method of [Alliez et al. 2003],
point pruning yields the reduced sample setP. We then select a
random subsetP′ ⊂ P, find all suitable pairs(p′ ∈ P′,p ∈ P) based
on the proximity in signature space, and compute the correspond-
ing transformations. We perform mean-shift clustering using the
method proposed in [Arya et al. 1998] to efficiently compute neigh-
borhoods in 7D transformation space. Basis reduction and verifica-
tion finally yield the symmetric patches. We show in the Appendix
that our method is guaranteed to find existing symmetry relations
provided the sampling is dense enough with respect to the size of
the symmetric patches. The following examples verify this claim
and demonstrate that practical results can be obtained even if the
theoretical sampling requirements are not met.
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Figure 6: The six most significant modes of the Sydney Opera with
the full 7-dimensional symmetries (1, 2, 3) and pure reflections (4,
5, 6). The graph shows the distribution of scaling factors.

Figure 1 shows partial and approximate symmetry detection on a
laser scan of a hand-sculpted model. The dragon has been sampled
with 2470 points out of which 800 have been randomly selected to
extract the five most significant modes. The deviations from perfect
symmetry are visualized as the signed distances to the closest point
on the perfectly symmetric patch. Since these displacements can be
compactly encoded, a compressed representation of the surface can
be computed based on the extracted symmetry graph.

Figure 6 shows an example using the full 7-dimensional symmetry
group composed of uniform scaling, rotation, reflection, and trans-
lation. All major symmetries are faithfully recovered from only 500
random samples, drawn from an initial sample set of 2000 points.

Figure 7 shows a complex architectural model with symmetries at
many different scales. The model has been sampled with 2254
points out of which 100 points (black spheres) and 500 points
(yellow spheres) where randomly chosen leading to 280 and 1262
points in Γ, respectively. For visualization purposes we project
the samples in transformation space to 2D using metric multi-
dimensional scaling [Cox and Cox 1994] as shown in (b). Note that
the elliptical structures are due to errors caused by this projection.
The two biggest modes map to the symmetries shown on the right,
where the perfect global symmetry is faithfully recovered from only
100 random samples. Automatic model reduction and instantiation
is shown in (c). Using the first eight significant modes, a reduction
to only 14% of the original model size is achieved by taking out
the corresponding symmetric patches. The resulting bounding box
hierarchy shown in the lower right corner supports efficient spatial
queries for applications such as ray-tracing or collision detection
directly from the reduced geometry and the corresponding symme-
try relations. In (d) we utilized the extracted symmetries to perform
advanced editing operations. The user can select a specific symme-
try relation and modify certain parts of the model. The system will
then automatically apply these modifications to all corresponding
patches to maintain the original symmetry.

Figure 8 illustrates an application of our method for segmentation.
Two poses of the horse have been sampled with 1000 points. We
then selected 500 random points on pose A and paired these with
samples from pose B, as shown in (d). The mapping to transforma-
tion space is thus restricted to only include pairs that contain one
sample from either pose. We can then extract the rigid segments of
the model as those parts that are invariant under a rigid transforma-
tion between the two poses (e). The projected density function is
shown in (b). The biggest modes on the left correspond to the torso
and head of the horse. The plot on the right is obtained after remov-
ing these parts from the model and adding 192 additional samples to
the set of random points. Note that in the 6D transformation space

14%

32%52%
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(b)

(c)

(d)

100 random samples

500 random samples

280 pairs 1262 pairs

Γ2DΓ2D

Figure 7: Chambord castle. (a) input model with random surface
samples drawn from a total of 2254 samples, (b) points in trans-
formation space projected to 2D and associated density plots; the
symmetries corresponding to the biggest two modes are shown on
the right, (c) successive reduction by taking out symmetric patches
and resulting bounding box hierarchy, (d) advanced editing using
the extracted symmetry relations.
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Figure 8: Segmentation and correspondence for the horse model in
two different poses. (a) sampling distribution on both poses, (b)
projected density plots, (c) extracted segments and verification ef-
fort, (d) sample pairing, (e) segmentation using our method, (f) seg-
mentation obtained with explicit, exact point correspondences.

clusters are significantly better separated than in the projected 2D
space. As shown in (c), only few clusters have to be discarded in the
verification stage. The image in (f) shows the result obtained when
using the explicit and perfect one-to-one correspondence available
for this specific example, i.e., each vertex is paired with exactly one
vertex on the other pose (c.f. [James and Twigg 2005]). This ex-
ample illustrates that our method can be used to compute a global
correspondence map for articulated modelswithout requiring any
user-specified marker points. Potential applications include partial
scan registration and skeleton extraction.

The performance data of Table 1 indicates how the computation
depends on the symmetries of the model. The castle has a sig-

Model # Vertices Sign. Pairing Cluster. Verif.

Dragon 160,947 3.44 49.24 13.63 7.45

Opera 9,376 0.96 0.02 0.03 0.86

Castle 172,606 5.61 117.81 159.73 5.63

Horse 8,431 0.92 0.01 0.01 1.63

Arch 16,921 0.08 5.86 26.89 2.42

Table 1: Timings in seconds for the different stages of the pipeline
on a 2.8 GHz Pentium IV with 2GBytes main memory.
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Figure 9: Reflective symmetries of a 2D lizard. Approximate re-
flective symmetry across the spline gets mapped to a curve in the
2D transformation space.

nificantly more complex symmetry structure as compared to the
dragon, hence computation times are substantially higher even
though the models have roughly the same size. Note that unlike
geometric hashing our method requires minimal additional storage,
in all our example less than 500 KBytes of additional main memory
were needed.

The set of symmetries extracted by our algorithm is limited todis-
cretesymmetries, i.e., ones that can be described by a discrete set
of points in transformation space. Continuous symmetries, such
as those found in rotational or helical surfaces, lead to smooth
curves in transformation space and are currently not detected by our
method. This is primarily a limitation of our clustering algorithm,
which is not well suited for extracting these types of continuous
structures. Figure 9 illustrates this limitation in a slightly different
context. The mean-shift algorithm finds two dominant modes that
correspond to the reflections of the feet as shown in the illustra-
tion. The global reflective symmetry across the spine of the lizard,
however, is obscured by the deformation of the specific pose of the
model and hence not extracted. As the density plot reveals, this
deformation is sufficiently small for the reflection planes to vary
smoothly from the head to the tail. We can extract the correspond-
ing curve in 2D transformation space using the method proposed
in [Arias-Castro et al. 2006], but have not yet extended the imple-
mentation to higher dimensions. Another limitation of our method
is inherent in the sample-based approach that we take. Although our
algorithm successfully detects the major symmetries of an object, it
may fail to identify small partial symmetries during the clustering
stage due to the presence of sampling noise. In such a situation, pre-
smoothing of the model is required, or the user has to manually tune
the patch radii used for curvature estimation (see Section 2), until
noise is sufficiently blurred out. Naturally, this leads to less distinct
curvature estimates, which might cause the subsequent clustering
algorithm to miss less pronounced symmetries.

6 Conclusion

We have demonstrated how matching local shape signatures fol-
lowed by clustering in transformation space leads to a provably ef-
ficient method for discovering and extracting partial and approxi-
mate symmetries of 3D geometric models. Our algorithms are easy
to implement, require minimal space and computation time, and
are applicable to a wide range of 3D shapes. Since our method
captures important global and local aspects of the shape it can be
exploited in a variety of geometry processing applications. An in-
teresting question for future work is how to automatically make
a given model more symmetric, e.g., undo a deformation that ob-
scures a symmetry as in the example of Figure 9. This would allow
pose-independent shape matching, which could lead to more effec-
tive database retrieval methods. We also want to explore the poten-
tial of our algorithm for unsupervised registration in the context of
partial scan alignment and protein docking.
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A Theoretical Analysis

In this section we provide probabilistic bounds on the sampling re-
quirements of our algorithm. More precisely, we define conditions
on the sample setP and the numbern′ = |P′| with P′ ⊂ P of ran-
dom samples required to find a symmetry of a certain size with high
probability.

Suppose we are given a smooth manifold surfaceO with a sym-
metric patchS⊆ O and a partial symmetry transformationT ∈ Γ,
such thatS′ = T(S) ⊆ O. For conciseness of the exposition, we
restrict the derivations to the group of rigid transformation, i.e., ig-
nore uniform scaling. The analysis extends in a natural way, how-
ever. AssumeP = {p1, . . . ,pn} is anε-sampling of the surfaceO,
i.e., for every pointx ∈ O there exists a samplep ∈ P such that
|pi−x|< ε f (x), wheref (x) denotes the local feature size atx, i.e.,
the smallest distance ofx to the medial axis ofO (see [Amenta and
Bern 1998]).

For a given samplepi ∈ P∩S, let q ∈ S′ be the symmetric point of
pi on the surface, i.e.,q = T(pi). In general, this point will not be
part of the sample set, i.e.,q /∈ P. However, we can show that there
exists a pointp j ∈ P such thatp j = T i j (pi) and||∆T||= ||T−T i j ||
is small.

Γ

T

L

2h
q

pj

pi

∆q

S

S’

O f(q)

medial axis

T

signature space

Ω
σ(p ) =i σ(q)

σ(p )j

∆σij

transformation space

Γ
T

Tij
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Let Fq = [nq cq,1 cq,2] denote the local frame atq spanned by the
normal and the principal curvature directions (see Section 2). Then
the transform mappingpi 7→ q can then be expressed as a rotation
R = FqF−1

pi
followed by a translationt = q−Rpi . SinceP is anε-

sampling ofO, ∃ p j ∈ P such that|p j −q| < ε f (q). Using results
from [Amenta and Bern 1998; Cohen-Steiner and Morvan 2003]
it follows that if ε < 0.08, ||Fq −Fp j || ≤ c1ε wherec1 is a con-
stant depending on the radius of the ball used for estimating the
curvature tensor. LetT i j = (R′, t′) denote the transform mapping
pi 7→ p j . Using the previous relations and the triangle inequality
one can show that

||∆T||2 = ||R−R′||2 +β ||t− t′||2 ≤ c2
2ε

2,

wherec2 is a constant depending onc1,β and the diameter ofO.

Due to the stability of local signatures on a smooth surface [Manay
et al. 2004], we can choose a small∆σ so that∆σi j = ‖σpi −σp j ‖<
∆σ when|p j −q|< ε f (q). In other words, the signatures ofpi and
p j are sufficiently similar for our pairing algorithm of Section 2.2 to
group these points and compute their transformationT i j as a sample
point in transformation spaceΓ. At the same time this transforma-
tion is close to the unknown transformationT, henceT i j provides
reliable evidence for the symmetry relation that we want to find.

Thus if we choose a clustering radiush larger thanc2ε it follows
that for any pointpi ∈ S, our algorithm will deposit at least one
point in Γ within distanceh of T. If m is the number of points in
P∩S, then for any random sample fromP we get a vote withinh of
T with probability p = m/n.

Using the Chernoff bound [Motwani and Raghavan 1995] we can
show that ifn′ points are independently and randomly chosen from
P, then with probability greater than 1−α there will be at leastk
points withinh of T in Γ, where

k =
(

1−
√
−2logα/n′p

)
n′p

andα ∈ (0,1). Until now we have shown that with high probability
a cluster of height at leastk that includes the transformationT will
appear inΓ. To complete the analysis, we now need to ensure that
this cluster is in fact a pronounced local maximum of the transfor-
mation density function and will thus be successfully retrieved by
the mean-shift clustering algorithm. We prove this claim using a
counting argument onΓ partitioned into a set of bins.

Suppose the average number of neighbors inΩ for a query radius
of ∆σ is µ. Thenn′ random samples results in roughlyM = µn′

points inΓ. Let the maximum extent along any dimension inΓ be
L. So partitioningΓ using a grid of size 2h results inN = (L/2h)d

bins, whered represents the dimension ofΓ. It is easy to see that if
there are more thank points withinh of T, at least one bin ofΓ will
contain at leastk/2d samples. Assuming that point pairs that are
not related by any meaningful symmetry relation map to a random
bin in Γ, we observe that our scenario is identical toM balls being
independently and uniformly thrown intoN urns. It is known that
the maximum number of balls in any urn with high probability is
given by [Gonnet 1981; Raab and Steger 1998]

E(n′,µ,∆σ) = logN/ log(N logN/M).

In order for the bin corresponding toT to stand above the noise
level, we selectn′ such that the following inequality holds:

E(n′,µ,∆σ) <
(

1−
√
−2logα/n′p

)
n′p/2d. (1)

Thus if we mark a bin inΓ as interesting only if its height is more
thank/2d then: (1) with probability 1−α a bin corresponding to
the desired transformationT is correctly marked, and (2) only a
few bins corresponding to spurious transforms are falsely marked.
These outlier bins are easily pruned away in the verification step.

Requiring anε-sampling withε < 0.08 for P is a fairly severe re-
striction. While algorithms exists for computing such a point set for
a given smooth surface [Boissonnat and Oudot 2003], the sampling
density would be prohibitively high. As commented in [Amenta
and Bern 1998], empirical evidence suggest that these bounds are
quite conservative. In practice, we successfully found the existing
symmetries using a much less restricted sampling. Consider the
example of Figure 7, whered = 6, L/h≈ 20, andµ = 10. If we
hypothetically assume our initial point setP satisfies the sampling
requirements stated above (which is clearly not the case since the
surface is not even smooth), then Equation 1 prescribesn′ ≈ 300
to detect a global symmetries wherep = 0.5 with probability more
than 95%. We found that even with only 100 samples we can re-
liably detect the global reflective symmetry of the castle (see Fig-
ure 7). Observe that as the size of the symmetric patch becomes
smaller, i.e.,p decreases, Equation 1 suggests higher values forn′.
Also note that while our analysis has been restricted to perfect sym-
metries, it can easily be extended to approximate symmetries by
increasingh and thereby decreasing the number of binsN.
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