
Poster Abstract: TINX – A Tiny Index Design for Flash
 Memory on Wireless Sensor Devices

Ajay Mani Manjunath Rajashekhar Philip Levis
Stanford University, Department of Computer Science

{ajaym, manj, pal}@cs.stanford.edu

Categories and Subject Descriptors: H.3.1
[Information Storage and Retrieval]: Indexing methods.

General Terms: Algorithms, Design, Experimentation.

Keywords: Sensor Networks, Storage, Flash memory,
Wear-leveling, Energy Efficiency, Indexing.

1. MOTIVATION
Flash memory is a cheap, viable storage alternative for

the low power, energy constrained sensor nodes. It is still
not clear however, what storage abstractions are best suited
to Sensornet applications. Many authors have proposed a
file-system based approach [1, 5] to storage on sensor
devices. File systems, however, were originally designed to
be a flexible and user-friendly naming interface to storage.
In contrast, sensor applications often know their storage
requirements in advance and do not have a human operator.

The primary purpose of sensor networks is to sense
and process readings from the environment. Given this
usage model, once a sensor node acquires a reading, it
could transmit out the readings to the base-station
immediately, or it could log it onto a flash device for later
processing. For many application scenarios, [6] shows that
logging data into flash memory is much cheaper than
transmitting it over the communication network. In other
situations, in-network query processing performance could
be enhanced by locally archiving, processing and indexing.
Sensor devices thus need an efficient way to retrieve data
from storage in order to satisfy queries.

The peculiar read, write and erase characteristics of flash
memory [2], imply that index data structures and other
storage management techniques developed for disks, which
often depend on in-place modification, may not be
appropriate for flash. This motivates us to explore
sophisticated data structures and algorithms that work around
the constraints and limitations of flash memory to provide an
efficient indexing mechanism.

2. PROBLEM STATEMENT
A sensor node is capable of sensing many different

attributes that are either periodically sampled or event-
driven data. We would like to build an index over the

logged sensor readings which would support value-based
range queries, time-based range queries, hybrid queries
(combination of value-based and time-based range queries
with && and || operators) and aggregation queries (like
COUNT, MIN, MAX and AVERAGE). The indexing scheme
should also maximize wear-leveling, minimize erases and
writes, minimize RAM structures and maintain the index
and data on flash to facilitate easy block reclamation.

3. DESIGN

3.1 Organization
Segments: TINX divides flash memory into logical units
of contiguous blocks called Segments. TINX uses segments
as a circular log. Each segment is a self contained unit that
contains data and the index structure over that set of data.
Addressing within a segment is relative, and the segments
are ordered in time. This logical division forms an
automatic second level index. Because applications are
typically interested in data or events that have occurred in
recent history, it also ensures that searches are restricted to
only a subset of segments and not over a monolithic index,
hence reducing the number of pages read for satisfying a
query. Reclaiming of data blocks also becomes easy, as
erasing an entire segment will not lead to any
reorganization or impact on the rest of the data or index.

Page: Segments are composed of two classes of pages: data
and index. Pages are consumed in increasing addressing
order in a segment, and there is no special partitioning of
the segment demarked. This scheme helps ensures wear
leveling of the pages in the flash.

Data Pages: The data page holds the data records. When a
data page is full, a new data page is allocated, and is linked
to the previous data page.

Index Pages: An index page consists of entries that are a key
of the tuple and a pointer to the data record. The index page
header contains pointers to other index pages, as well as the
max and min values that this index page covers.

3.2 The Indexing Mechanism
TINX supports having multiple indexes. Each index

page stores part of one index and is organized in a special
tree fashion. An index page covers a range of values, and
the two pointers in the header point to two index pages
(children) that cover a finer range. Notice in Figure 1 that

Copyright is held by the author/owner(s).
SenSys’06, November 1–3, 2006, Boulder, Colorado, USA.
ACM 1-59593-343-3/06/0011.

the first level of the index cover a pre-divided range of
values, and each of the two children cover half of the range
of its parents. TINX maintains a secondary RAM index of
the segment which it is currently writing to. This index is
heavily used during the growing phase of the flash
memory. We are investigating into adding this onto the
flash hierarchy to help the search algorithm and reduce the
burden on RAM.

3.3 Algorithm
Growth: TINX buffers sensed readings to a RAM page
and flushes the data to flash only when the page is full.
When it flushes data, TINX sorts its index values and
appends references to the records in respective index pages.
A cached second level index helps point to the appropriate
index pages to retrieve for editing. All changes to the index
pages are restricted to appends. When an index page is full,
new children that correspond to the split ranges of their
parents are created and the new data record is inserted into
one of their children.
Search: Given a value to search for, TINX walks the index
tree for that value for the relevant segment. At each pass in
a segment, TINX generates a bitmap of the data pages that
contain matches. It then looks up the records in these
pages. This bitmapped manner of searching also helps in
reducing the data pages read for hybrid queries; where
bitmaps from different indexes are combined logically to
retrieve pointers to data pages that match the query. As the
records are already sorted on time in the chained data
pages, time based searches are just a modification of binary
search.

4. EVALUATION
We simulated TINX in C, and used the dataset from

[3, 4] to test its performance and overhead.

Energy and Space Overhead: The space overhead due to
index pages acts as an indicator of energy consumed in
maintaining the index. In our simulation, for an 8-byte
index and records greater than 40 bytes, space overhead
was within 15% of the total record size.

Search Performance: An appropriate index reduces the
number of data pages which have to be read to satisfy a
search query. In our simulation, an equi-valued search reads
at most 2500 pages for 0.6 million data records placed in
150,000 data pages.

5. RELATED WORK
As far as we know, MicroHash [7] is the only other

paper to look into the problem of building index structures
over flash devices keeping in mind sensor devices. TINX
provides a richer feature set than MicroHash which does not
address range queries over value based searches. TINX also
supports complex queries. Other systems [8, 9] that build B-
Tree index structures over flash use address translation tables
and have very large memory footprints (order of 2-3MB).

6. CONCLUSION AND FUTURE WORK
TINX organizes data and index to reduce search latency

and maximize wear-leveling. We have started the initial
process of porting the code into TOSSIM and TinyOS and
are building a storage board to explore NAND/NOR
tradeoffs and explore multi-role flash based systems. We are
looking forward to identify the various tradeoffs in data-size,
index structures and schemes, and also come up with a user
API to build a stable, usable and search optimized data store
for sensor devices.

7. REFERENCES
[1] H. Dai, M. Neufeld, and R. Han, ELF: Efficient Log-

Structured Flash File System for Wireless Micro Sensor
Nodes. SenSys 2004

[2] E Gal, S Toledo: Algorithms and data structures for
flash memories. ACM Comp. Surv. 37(2): 138-163 (05)

[3] http://berkeley.intel-research.net/labdata/

[4] http://robotics.usc.edu/~namos/data.html

[5] http://tinyos.net/tinyos-1.x/doc/matchbox-design.pdf

[6] G. Mathur, P. Desnoyers, D. Ganesan, P. J. Shenoy:
Ultra-low power data storage for sensor networks. IPSN
2006: 374-381

[7] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, W. A.
Najjar, D. Gunopulos: MicroHash: An Efficient Index
Structure for Flash-Based Sensor Devices. FAST 05

[8] Wu C-H., Chang L-P., Kuo T-W., An Efficient BTree
Layer for Flash Memory Storage Systems, In RTCSA,
New Orleans, pp. 17-24, 2003.

[9] Wu C-H., Chang L-P., Kuo T-W., An Efficient Rtree
Implementation Over Flash-Memory Storage, In
RTCSA, Taiwan, pp. 409-430, 2003

�������
��������	
���������

�
����
���	�
�

����

��

�������
����

 �������

���

�������

��	����
����

�����

�����

�������
����

����������

���
������������
	���������

����	�������
�����������
	�����

�

��	�� ������	��������	��
������� ����
�����!����
��	
���

Figure 1 – Logical Organization of index and data blocks

�������
���
�����	���

 �������
���	���������

 �������
���������	���

�������
���	�������"�

