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Abstract. 3D generative shape modeling is a fundamental research area
in computer vision and interactive computer graphics, with many real-
world applications. This paper investigates the novel problem of gener-
ating a 3D point cloud geometry for a shape from a symbolic part tree
representation. In order to learn such a conditional shape generation pro-
cedure in an end-to-end fashion, we propose a conditional GAN “part
tree”-to-“point cloud” model (PT2PC ) that disentangles the structural
and geometric factors. The proposed model incorporates the part tree
condition into the architecture design by passing messages top-down and
bottom-up along the part tree hierarchy. Experimental results and user
study demonstrate the strengths of our method in generating perceptu-
ally plausible and diverse 3D point clouds, given the part tree condition.
We also propose a novel structural measure for evaluating if the generated
shape point clouds satisfy the part tree conditions. Code and data are
released on the webpage: https://cs.stanford.edu/~kaichun/pt2pc.

Keywords: part-tree to point-cloud, conditional generative adversarial
network, part-based and structure-aware point cloud generation.

1 Introduction

3D shape generation is a central topic in computer vision and graphics. Recent
works (e.g . [9,11,19]) have been focusing on generating the entire shape geometry
without explicitly considering part semantics and shape structures. Such holistic
shape generation pipelines, though successfully learning to model simple 3D
shapes, usually have a difficult time modeling complicated shape structures and
delicate shape parts. In computer-aided design (CAD), constructing a whole
shape geometry from scratch is an extremely laborious and time-consuming task.
If the designer only needs to give a sentence “a chair with 1 seat, 4 legs and a back
with 3 bars” and the system can directly generate multiple shape candidates for
her to select and edit from, it will save a big amount of time. Disentangling shape
structure and geometry factors in shape generation also encourages more fine-
grained and controllable 3D shape generation – thus supporting many real-world
applications, including structure-conditioned shape design [41,39] and structure-
aware shape re-synthesis [13].

In this paper, we formulate a new task of generating 3D point cloud shapes
with geometric variations conditioned on structural shape descriptions. Figure 1

https://cs.stanford.edu/~kaichun/pt2pc
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Fig. 1. We formulate the problem of “part tree”-to-“point cloud” (PT2PC ) synthesis
as a conditional generation task which takes in a symbolic part tree as condition and
generates multiple diverse point clouds satisfying the structure defined by the part tree.

illustrates our task input and output with an example. More specifically, we
represent each 3D shape as a hierarchy of parts, following PartNet [41], where
each part node has an associated semantic label and the part hierarchy includes
parts at different segmentation granularities. Abstracting away the concrete part
geometry, the shape structure can be defined by a symbolic part tree with only
part semantics and their relationships (Figure 1, left). Given such symbolic part
tree conditions, we propose a conditional-GAN PT2PC to generate diverse 3D
point cloud shapes that satisfy the structural conditions (Figure 1, right).

The symbolic part tree conditions are central to the architecture designs for
both PT2PC generator and discriminator. Our generator first encodes the part
tree template feature using semantic and structural information for each part
node in a bottom-up fashion along the tree hierarchy. Then, given a random noise
vector capturing the global geometry information at the root node, we recursively
propagate such geometric information to each part node in a top-down fashion
along the part tree. The final point clouds are generated by aggregating the point
clouds decoded at each leaf node representing its corresponding fine-grained
semantic part. Our discriminator first computes per-part features at the leaf
level, propagates the information in a bottom-up fashion along the tree hierarchy
until the root node and finally produces a score judging if the generated shape
geometry looks realistic and the shape structure satisfies the input condition.

We evaluate the proposed model on four major semantic classes from the
PartNet dataset. To justify the merits of our tree-structure architecture for both
the generator and discriminator, we compare with two conditional GAN base-
lines. Both quantitative and qualitative results demonstrate clear advantages of
our design in terms of global shape quality, part shape quality, and shape diver-
sity, under both seen and unseen templates as the condition. Results on human
evaluation agree with our observations in the experiments and further strengthen
our claims. Additionally, we propose a novel hierarchical part instance segmen-
tation method that is able to segment an input point cloud without any part
labels into a symbolic part tree. This provides us a metric to evaluate how well
our generated shape geometry satisfies the part tree conditions.
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In summary, our contributions are:

– we formulate the novel task of part-tree conditioned point cloud generation;
– we propose a conditional GAN method, PT2PC, that generates realistic and

diverse point cloud shapes given symbolic part tree conditions;
– we demonstrate superior performance both quantitatively and qualitatively

under standard GAN metrics and a user study, comparing against two base-
line conditional-GAN methods;

– we propose a novel point cloud structural evaluation metric for evaluating if
the generated point clouds satisfy the part tree conditions.

2 Related Works

We review related works on 3D generative shape modeling, part-based shape
modeling and structure-conditioned content generation.

3D Generative Shape Modeling. Reconstructing and synthesizing 3D shapes is
a popular research topic in computer vision and graphics. Recently, tremendous
progresses have been made in generating 3D voxel grids [9,18,66,67,70,74,49],
point clouds [1,11,14,76,75], and surface meshes [53,21,19,37] using deep neural
networks. Point clouds representation is a collection of unordered points irregu-
larly distributed in the 3D space, which makes the minimax optimization very
challenging [33,1]. Achlioptas et al . [1] proposed a latent-GAN approach that
conducts minimax optimization on the shape feature space which outperforms
the raw-GAN operating on the raw point clouds. To better capture the local
geometric structure of point clouds, Valsesia et al . [60] proposed a graph-based
generator that dynamically builds the graph based on distance in feature space.
Shu et al . [52] proposed Tree-GAN with a tree-structured graph convolutional
neural network as the generator. Recently, Wang et al . [63] proposed a new
discriminator, PointNet-Mix, that improves the sampling uniformity of the gen-
erated point clouds. Unlike these shape point cloud GAN works that generate
shapes without explicit part semantic and structural constraints, we learn to
generate diverse point cloud shapes satisfying symbolic part tree conditions.

Part-based Shape Modeling. There is a line of research on understanding shapes
by their semantic parts and structures. Previous works study part segmenta-
tion [7,30,78,28,45,79,64,41,10], box abstraction [59,85,43,54], shape template fit-
ting [32,15,17,44], generating shapes by parts [29,35,55,62,69,57,39,68,16,51,34],
or editing shape by parts [12,82,40]. We refer to the survey papers [72,38] for
more related works. Shape parts have hierarchical structures [65,61,41]. Yi et
al . [77] learns consistent part hierarchy from noisy online tagged shape parts.
GRASS [35] propose binary part trees to generate novel shapes. A follow-up
work [81] learns to segment shapes into the binary part hierarchy. PartNet [41]
proposes a large-scale 3D model dataset with hierarchical part segmentation. Us-
ing PartNet, recent works such as StructureNet [39] and StructEdit [40] learns to
generate and edit shapes explicitly following the pre-defined part hierarchy. We
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use the tree hierarchy defined in PartNet [41] and propose a new task PT2PC
that learns to generate point cloud shapes given symbolic part tree conditions.

Conditional Content Generation. Understanding the 3D visual world, parsing
the geometric and structural properties of 3D primitives (e.g . objects in the
scene or parts of an object) and their relationships is at the core of computer
vision [23,71,27,58]. Many works learn to synthesize high-quality images from
text descriptions [31,48,47,83,80,36,56], semantic attributes [73,8], scene-graph
representations [27,3], and rough object layouts [26,25,84,42]. There are also
works to generate 3D content with certain input conditions. Chang et al . [5,4]
learns to generate 3D scenes from text. Chen et al . [6] studied how to generate
3D voxel shapes from a sentence condition. StructEdit [40] learns to generate
structural shape variations conditioned on an input source shape. Our work
introduces a conditional Generative Adversarial Network that generates shape
point clouds conditioned on an input symbolic part tree structure.

3 Method

In this work, we propose PT2PC , a conditional GAN (c-GAN) that learns a
mapping from a given symbolic part tree T and a random noise vector z to a
3D shape point cloud X composed of part point clouds for the leaf nodes of
the conditional part tree. We propose novel part-based conditional point cloud
generator G(z, T ) and discriminator D(X, T ) conditioned on the symbolic part
tree input T . Different from holistic point cloud GANs [1,60,52] that produce a
shape point cloud as a whole, our proposed PT2PC generate a hierarchy of part
point clouds along with part semantics and shape structures.

3.1 Symbolic Part Tree Representation
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Fig. 2. An example PartNet hier-
archical part segmentation.

We follow the semantic part hierarchy de-
fined in PartNet [41]. Every PartNet shape in-
stance (e.g . a chair) is annotated with a hier-
archical part segmentation that provides both
coarse-level parts (e.g . chair base, chair back)
and parts at fine-grained levels (e.g . chair leg,
chair back bar). Figure 2 shows the ground-
truth part hierarchy of an exemplar chair.

A symbolic part tree T is defined as T =
(TV , TE), where TV = {P j |P j = (sj ,dj)}j
represents a set of part instances and TE rep-
resents an directed edge set of the part parent-
children relationships TE = {(j, k)}. In TV ,
each part instance P j is composed of two com-
ponents: a semantic label sj (e.g . chair seat,
chair back), and a part instance identifier dj
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Fig. 3. Our c-GAN PT2PC architecture. Our part-tree conditioned generator first
extracts the subtree features by traversing the input symbolic part tree in a bottom-up
fashion, and then recursively decodes part features in a top-down way until leaf nodes,
where part point clouds are finally generated. Our part-tree conditioned geometry
discriminator recursively consumes the generated part tree with leaf node geometry in
a bottom-up fashion to generate the final score. The solid arrow indicates a network
module while a dashed arrow means to copy the content. As defined in Sec 3, the brown,
red and orange nodes represent the encoded symbolic part feature t, the decoded part
geometry feature f and the encoded part geometry feature h respectively.

(e.g . the first leg, the second leg), both of which are represented as one-hot vec-
tors. The set of part semantic labels are pre-defined in PartNet and consistent
within one object category. In TE , each edge (j, k) indicates P j is the parent
node of P k. The set Cj = {k|(j, k) ∈ TE} defines all children part instances of a
node P j . We denote a special part node P root to be the root node of the part tree
T , with the semantic label sroot and the instance identifier droot. The leaf node
of the symbolic part tree has no children, namely, Tleaf =

{
P j | |Cj | = 0

}
( TV .

3.2 Part-tree Conditioned Generator

Our conditional generatorG(z, T ) takes a random Gaussian variable z ∼ N (·|µ =
0, σ = 1) and a symbolic part tree condition T = (TV , TE) as inputs and outputs
a set of part point clouds X = {xj | P j ∈ Tleaf} where xj ∈ RM×3 is a part
point cloud in the shape space representing the leaf node part P j . Namely,

X = G(z, T ) (1)

The generator is composed of three network modules: a symbolic part tree
encoder Genc, a part tree feature decoder Gdec and a part point cloud decoder
Gpc. First, the symbolic part tree encoder Genc embeds the nodes of T into com-
pact features tj hierarchically from the leaf nodes to the root node for every node
P j . Then, taking in both the random variable z and the hierarchy of symbolic
part features {tj}j , the part tree feature decoder Gdec hierarchically decodes the
part features in the top-down manner, from the root node to the leaf nodes, and
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finally produces part feature f j for every leaf node P j ∈ Tleaf. Finally, the part
point cloud decoder Gpc transforms the leaf node features

{
f j | P j ∈ Tleaf

}
into

3D part point clouds
{
xj | P j ∈ Tleaf

}
in the shape space.

At each step of the part feature decoding, the parent node needs to know
the global structural context in order to propagate coherent signals to all of
its children so that the generated part point clouds can form a valid shape
in a compatible way. This is the reason why we introduce the symbolic part
tree encoder Genc as a bottom-up module to summarize the part tree structural
context for each decoding step. Our part tree decoder Gdec is then conditioned
on the symbolic structural context and recursively propagates the random noise
z from the root node to the leaf nodes in a top-down fashion.

Symbolic part tree encoder Genc. For a given symbolic part tree T , we encode the
nodes of the part tree starting from the leaf nodes and propagate the messages
to the parent node of the encoded nodes until the root node gets encoded. The
message propagation is performed in a bottom-up fashion. As shown in Eq. 2, each
node P j takes the node feature tk, the semantic label sk and the part instance
identifier dk from all its children

{
P k|k ∈ Cj

}
, aggregates the information and

computes its node feature tj using a learned function genc. Then, it further
propagates a message to its parent node. We initialize tj = 0 for every leaf node
P j ∈ Tleaf.

tj = 0, ∀P j ∈ Tleaf

tj = genc

({
[tk; sk;dk] | k ∈ Cj

})
, ∀P j ∈ TV − Tleaf (2)

where [·; ·] means a concatenation of the inputs. genc is implemented as a small
PointNet[45], treating each children-node feature as a high dimensional point,
to enforce the permutation invariance between children nodes. We first use a
fully-connected layer to embed each [tk; sk;dk] into a 256-dim feature, then
perform a max-pooling over K = |Cj | features over all children nodes to obtain
an aggregated feature, and finally push the aggregated feature through another
fully-connected layer to obtain the final parent node feature tj . We use leaky
ReLU as the activation functions in our fully-connected layers.

Part tree feature decoder Gdec. Taking in the random variable z and encoded
node features {tj}j , we hierarchically decode the part features {f j}j from the
root node to the leaf nodes in a top-down fashion along the given part tree
structure T . As shown in Eq. 3, for every part P j , we learn a shared function gdec
transforming the concatenation of its own features (tj , sj ,dj) and the decoded
feature fp from its parent node P p into part feature fj . For the root node, we
use random noise z to replace parent node feature.

froot = gdec
(
[z; troot; sroot;droot]

)
,

fj = gdec
(
[fp; tj ; sj ;dj ]

)
, ∀(p, j) ∈ TE (3)

We implement gdec as a two-layer MLP with leaky ReLU as the activation func-
tions. The output feature size is 256.
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Part point cloud decoder Gpc. Given the part features of all the leaf nodes{
fj | P j ∈ Tleaf

}
, our point cloud decoder Gpc transforms each individual fea-

ture fj into a 3D part point cloud xj in the shape space for every P j ∈ Tleaf, as
shown in Eq. 4. To get the final shape point cloud, we down-sample the union of
all part point clouds

{
xj | P j ∈ Tleaf

}
. We generate the same number M points

for all the parts.

xj = gpc(f
j),∀P j ∈ Tleaf

x = DownSample
(
∪
{
xj | P j ∈ Tleaf

})
(4)

gpc is designed to deform a fixed surface point cloud of a unit cube xcube into
our target part point cloud based on its input f, inspired by the shape decoder
introduced in Groueix et al . [20]. We uniformly sample a 1000-size point cloud
from the surface of a unit cube to form xcube ∈ R1000×3. Then, for each point
in xcube, we concatenate its XYZ coordinate with the feature f , push it through
a MLP (256 + 3, 1024, 1024, 3) using leaky ReLU, and finally obtain an XYZ
coordinate for a point on our target point cloud. Finally, we use Furthest Point
Sampling (FPS) for our Downsample operation to obtain shape point cloud x.

Compared to existing works [1,60,52] that generate shape point clouds as a
whole, the key difference here is that our point cloud decoder generates part
point clouds for every leaf node in the part tree T separately, but in a manner
aware of the inter-part structure and relationships. Another big advantage is that
we get the semantic label of each generated part point cloud. Furthermore, we
observe that the holistic point cloud generators usually suffer from non-uniform
point distribution. The generators tend to allocate way more points to bulky
parts (e.g ., chair back and chair seat) while only generating sparse points for
small parts with thin geometry (e.g ., chair wheel, chair back bar). Since our
Gpc generates the same number of points for each part and then performs global
down-sampling, we can generate shape point clouds with fine structures and
appropriate point density for all the parts.

3.3 Part-tree Conditioned Discriminator

Our conditional discriminator D(X, T ) receives a generated sample or a true
data sample, composed of a set of part point clouds X =

{
xj ∈ RM×3|P j ∈ Tleaf

}
,

and outputs a scalar y ∈ R based on the tree condition T . Following the WGAN-
gp [2,22], D is learned to be a 1-Lipschitz function of X and its output y depicts
the realness of the sample.

Since the input X always contains part point clouds for every leaf node part
instances in the symbolic part tree T , our discriminator mainly focus on judging
the geometry of each part point clouds along with the whole shape point clouds
assembled from the parts. This is to say, the discriminator should tell if each part
point cloud is realistic and plausible regarding its part semantics; in addition,
the discriminator needs to look at the spatial arrangement of the part point
clouds, judge whether it follows a realistic structure specified by the part tree
T , e.g . connected parts need to contact each other and some parts may exhibit
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certain kind of symmetry; finally, the discriminator should judge whether the
generated part point clouds form a realistic shape point cloud.

To address the requirements above, our discriminator leverages two modules:
a structure-aware part point cloud discriminator Dstruct(X, T ), and a holis-
tic shape point cloud discriminator Dwhole(x), where x = DownSample (∪X).
Dstruct(X, T ) takes as input the part tree condition T and the generated set
of part point clouds X and outputs a scalar ystruct ∈ R regarding the tree-
conditioned generation quality. Dwhole(x) ∈ R only takes the down-sampled
shape point cloud x as input and outputs a scalar ywhole regarding the uncondi-
tioned shape quality. As shown in Eq.5, the final output of our discriminator D
is the sum of the two discriminators.

y =ystruct + ywhole

ystruct =Dstruct(X, T )

ywhole =Dwhole(x) (5)

For the structure-aware part point cloud discriminator Dstruct(X, T ), we
constitute it using three network components: a part point cloud encoderDstruct

pc ,
a tree-based feature encoder Dstruct

tree , and a scoring network Dstruct
score . First, the

point cloud encoder Dstruct
pc encodes the part point cloud xj into a part feature

hj for each leaf node P j ∈ Tleaf. Then, taking in the part features at leaf level{
hj | P j ∈ Tleaf

}
, the tree-based feature encoder Dstruct

tree recursively propagates
the part features h along with the part semantics s to the parent nodes starting
from the leaf nodes and finally reaching the root node, in a bottom-up fashion.
Finally, a scoring function Dstruct

score outputs a score ystruct ∈ R for the shape
generation quality. For the holistic shape point cloud discriminator Dwhole, it is
simply composed of a PointNet encoder Dwhole

pc and a scoring network Dwhole
score

which outputs a scalar ywhole ∈ R.

Point cloud encoder Dstruct
pc and Dwhole

pc . Both Dstruct
pc and Dwhole

pc use vanilla
PointNet [45] architecture without spatial transformer layers or batch normal-
ization layers. For Dstruct

pc , we learn a function dstructpc to extract a part geometry

feature hj for each part point cloud xj .

hj = dstructpc (xj),∀P j ∈ Tleaf (6)

dstructpc is implemented as a four-layer MLP (3, 64, 128, 128, 1024) to process each
point individually followed by a max-pooling. Similarly, Dwhole

pc takes a shape
point cloud x as input and outputs a global shape feature hshape.

hshape = Dwhole
pc (x) (7)

Tree feature encoder Dstruct
tree . Similar to the symbolic part tree encoder Gdec

in the generator, Dstruct
tree learns an aggregation function dstructtree that transforms

features from children nodes into parent node features, as shown in Eq. 8. By
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leveraging the tree structure specified by T in its architecture, the module en-
forces the structure-awareness of Dstruct. In a bottom-up fashion, the features
propagate from the leaf level finally to the root yielding hroot, according to Eq.8.

hj =dstructtree

({
[hk; sk] | k ∈ Cj

})
,∀P j ∈ TV − Tleaf (8)

To implement Dstruct
tree , we extract a latent 256-dim feature after applying a fully-

connected layer over each input [hk; sk], perform max-pooling over all children
nodes and finally push it through another fully-connected layer to obtain hj . We
use the leaky ReLU activation functions for both layers.

Note that the key difference between Dstruct
tree and Genc is that Dstruct

tree no
longer requires the part instance identifiers dk since the children part features
{hk}k for each parent node P j already encode the part geometry information
that are naturally different even for part instances of the same part semantics.

Scoring functions D
part
score and Dwhole

score. After obtaining the structure-aware root
feature hroot and the holistic PointNet feature hshape, we compute

ystruct = Dstruct
score (hroot)

ywhole = Dwhole
score

(
hshape

)
(9)

Both scoring functions are implemented as a simple fully-connected layer with
no activation function.

3.4 Training

We follow WGAN-gp [2,22] for training our PT2PC conditional generator
G(·, T ) and discriminator D(·, T ). The objective function is defined in Eq. 10.

L = Ez∼Z [D(G(z, T ), T )]− EX∼R[D(X, T )] + λgpEX̂

[
(‖∇X̂D(X̂, T )‖2 − 1)2

]
(10)

where we interpolate each pair of corresponding part point clouds from a real

set Xreal =
{
xj
real|P j ∈ Tleaf

}
and a fake set Xfake =

{
xj
fake|P j ∈ Tleaf

}
to

get X̂ =
{
x̂j |P j ∈ Tleaf

}
, as shown in below:

x̂j = α · xj
real + (1− α) · xj

fake,∀P j ∈ Tleaf, (11)

where α ∈ (0, 1) is a random interpolation coefficient always remaining same for
all parts. We iteratively train the generator and discriminator with ncritic = 10.
We choose λgp = 1, N = 2, 048 and M = 1, 000 in our experiments. And, we
assume the maximal children per parent node to be 10.

4 Experiments

We evaluate our proposed PT2PC on the PartNet [41] dataset and compare
to two baseline c-GAN methods. We show superior performance on all standard
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point cloud GAN metrics. Besides, we propose a new structural metric evaluating
how well the generated point clouds satisfy the input part tree conditions, based
on a novel hierarchical instance-level shape part segmentation algorithm. We
also conduct a user study which confirms our strengths over baseline methods.

4.1 Dataset

Table 1. Dataset Statistics. We summa-
rize the number of shapes and symbolic part
trees in the train and test splits for each ob-
ject category.

Category
#Shapes #Part Trees

Total Train Test Total Train Test

Chair 4871 3848 1023 2197 1648 549
Table 5099 4146 953 1267 925 342

Cabinet 846 606 240 619 470 149
Lamp 802 569 233 302 224 78

We use the PartNet [41] dataset as
our main testbed. PartNet contains
fine-grained and hierarchical instance-
level semantic part annotations in-
cluding 573,585 part instances over
26,671 3D models covering 24 cat-
egories. In this paper, we use the
four largest categories that contain di-
verse part structures: chairs, tables,
cabinets and lamps. Following Struc-
tureNet [39], we assume there are at
maximum 10 children for every parent
node and remove the shapes contain-
ing unlabeled parts for the canonical
sets of part semantics in PartNet [41].
Table 1 summarizes data statistics and the train/test splits. We split by part
trees with a ratio 75%:25%. See Table 1 for more details. We observe that most
part trees (e.g . 1,787 out of 2,197 for chairs) have only one real data point in
PartNet, which posts challenges to generate shapes with geometry variations.

4.2 Baselines

We compare to two vanilla versions of conditional GAN methods as baselines.

– Whole-shape Vanilla c-GAN (B-Whole): the method uses a Multiple-
layer Perception (MLP) Gbaseline(z, T ) as the generator and the holistic
shape point cloud discriminator Dwhole

baseline(x, T );
– Part-based Vanilla c-GAN (B-Part): the method uses exactly the same

proposed generator G(z, T ) as in our method and a holistic shape point
cloud discriminator Dwhole

baseline(x, T ).

One can think B-Part as an ablated version of our proposed method, without the
structural discriminator Dstruct(X). The B-Whole method further removes our
part-based generator and generates whole shape point clouds in one shot, similar
to previous works [1,60,52]. We implement Dwhole

baseline(x, T ) similar to Dwhole(x)
used as part of our discriminator. It uses a vanilla PointNet [45] to extract global
geometry features for input point clouds. Additionally, to make it be aware of the
input part tree condition T , we re-purpose the proposed part tree feature encoder
network Genc in our generator to recursively compute a root node feature sum-
marizing the entire part tree structural information. We make Dwhole

baseline(x, T )
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Fig. 4. Qualitative Comparisons. We show two examples for each of the four cate-
gories: chair, table, cabinet and lamp. The leftmost two columns show the real examples
illustrating the conditional part tree input (see Figure 11 for the input part tree visu-
alization). We show three random real examples unless there are only one or two in
the dataset. For our method and B-Part we show both the generated part point clouds
with colors and the down-sampled shape point clouds, to fairly compare with B-Whole

that only produces shape point clouds.

conditional on the extracted root node feature. For Gbaseline(z, T ), we follow
Achlioptas et al . [1] and design a five-layer MLP with sizes 512, 512, 512, 1024,
2048 × 3 that finally produces a point cloud of size 2048 × 3. We use leaky
ReLU as activation functions except for the final output layer. We also condition
Gbaseline(z, T ) on the root feature extracted from the template feature encoder.

4.3 Metrics

We report standard point cloud GAN metrics, including coverage, diversity [1],
and Frechét Point-cloud Distance (FPD) [52]. Note that coverage and diversity
originally measure the distance between shape point clouds, which is, more or
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less, structure-unaware. We introduce two structure-aware metrics, part coverage
and part diversity adopting the original ones by evaluating the average distance
between corresponding parts of the two shapes. In addition, we devise a novel
perceptual structure-aware metric HierInsSeg that measures the part tree edit
distance leveraging deep neural networks.

Coverage Scores. Conditioned on every part tree T , the coverage score measures

the average distance from each of the real shapes Xi,real =
{
Xj

i | P j ∈ Tleaf
}

to the closest generated sample in
{
Xj,gen

}
j
.

Coverage Score(T ) =
1

|XT |
∑

Xi,real∈XT

(
min
j

Dist
(
Xi,real, Xj,gen

))
(12)

where XT includes all real data samples {Xi,real}i that satisfies T . We randomly

generate 100 point cloud shapes
{
Xj,gen

}100
j=1

.

We introduce two variants of function Dist to measure the distance between
two sets of part point clouds Xi1 and Xi2 .

Distpart (Xi1 ,Xi2) =
1

|Tleaf|
∑

(j1,j2)∈M

EMD
(
xj1
i1
,xj2

i2

)
Distshape (Xi1 ,Xi2) =EMD (DownSample(Xi1), DownSample(Xi2)) (13)

where EMD denotes the Earth Mover Distance [50,11] between two point clouds
and DownSample is Furthest Point Sampling (FPS). Here, M is the solution
to a linear sum assignment we compute over two sets of part point clouds{
xj
i1
| P j ∈ Tleaf

}
and

{
xj
i2
| P j ∈ Tleaf

}
according to the part tree and part

geometry.

We measure part coverage score and shape coverage score using Distpart

and Distshape respectively for every part tree condition T , and finally average
over all part trees to obtain the final coverage scores. The shape coverage score
measures the holistic shape distance which is less structure-aware, while the
part coverage score treats all parts equally and is more suitable to evaluate our
part-tree conditioned generation task.

Diversity Scores. A good point cloud GAN should generate shapes with vari-
ations. We generate 10 point clouds for each part tree condition and compute
diversity scores under both distance functions Distpart and Distshape. Finally,
we report the average part diversity score and shape diversity score across all
part tree conditions.

Diversity Score(T ) =
1

100

10∑
i,j=1

(
Dist

(
Xi,gen, Xj,gen

))
(14)
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Frechét Point-cloud Distance. Shu et al . [52] introduced Frechét Point-cloud
Distance (FPD) for evaluating the point cloud generation quality, inspired by the
Frechét Inception Distance (FID) [24] commonly used for evaluating 2D image
generation quality. A PointNet [45] is trained on ModelNet40 [70] for 3D shape
classification and then FPD computes the real and fake feature distribution
distance using the extracted point cloud global features from PointNet.

FPD jointly evaluates the generation quality, diversity and coverage. It is
defined as

Frechet Distance = ||µr − µg||2 + Tr(Σr +Σg − 2 (ΣrΣg)
1/2

). (15)

where µ and Σ are the mean vector and the covariance matrix of the features
for the real data distribution r and the generated one g. The notation Tr refers
to the matrix trace.

As most of the part trees in PartNet have only one or few real shapes, we
cannot easily compute a stable real data mean µr and covariance matrix Σr

for each part tree, which usually requires hundreds or thousands of data points
to compute. Thus, we have to compute FPD over all part tree conditions by
randomly sampling a part tree condition from the dataset and generating one
shape point cloud conditioned on it. In this paper, we generate 10,000 shapes
for each evaluation.

HierInsSeg Score. We propose a novel HierInsSeg score, which is a structural
metric that measures how well the generated shape point clouds satisfy the sym-
bolic part tree conditions. The HierInsSeg algorithm Seg(x) performs hierarchi-
cal part instance segmentation on the input shape point cloud x and outputs a
symbolic part tree depicting its part structure. Then we compute a tree-editing
distance between this part tree prediction and the part tree used as the gen-
eration condition. We perform a hierarchical Hungarian matching over the two
symbolic part trees that matches according to the part semantics and the part
subtree structures in a hierarchical top-down fashion. Any node mismatch in
this procedure contributes to the tree difference score and the final tree-editing
distance is computed by further divided by the total node count of the input
part tree condition.

For each part tree, we conditionally generate 100 shape point clouds and
compute the mean tree-editing distance. To get the HierInsSeg score, we simply
average the mean tree-editing distances from all part trees.

Mo et al . [41] proposed a part instance segmentation method that takes as
input a point cloud shape and outputs a variable number of disjoint part masks
over the point cloud input, each of which represents a part instance. The method
uses PointNet++ [46] as a backbone network that extracts per-point features
over the input point cloud and then performs a 200-way classification for each
point with a SoftMax layer that encourages every point belongs to one mask
in the final outputs. Each of the 200 predicted masks is also associated with a
score within [0, 1] indicating its existence. The existing and non-empty masks
correspond to the final part segmentation. We refer to [41] for more details.
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B-Whole
(Generated Shape)

B-Whole
(HierInsSeg Output)

B-Part
(Generated Shape)

B-Part
(HierInsSeg Output)

Ours
(Generated Shape)

Ours
(HierInsSeg Output)

Fig. 5. HierInsSeg Qualitative Results. We show the input generated shape point
clouds and the HierInsSeg results at the leaf level.

We propose our HierInsSeg algorithm Seg(x) by adapting [41] to a hierar-
chical setting. First, we compute the statistics over all training data to obtain
the maximal number of parts for each part semantics in the canonical part se-
mantic hierarchy. Then, we define a maximal instance-level part tree template
T template = (T template

V , T template
E ) that covers all possible part trees in the train-

ing data. We adapt the same instance segmentation pipeline [41] but change the

maximal number of output masks from 200 to
∣∣∣T template

V

∣∣∣. Finally, to make sure

all children part masks sum up to the parent mask in the part tree template, we
define

Mj =
∑

(j,k)∈T template

E

Mk,∀j (16)

To implement this, for each parent part mask, we perform one SoftMax operation
over all children part masks. The root node always has Mroot = 1.

In Table 2 (the GT rows), we present the HierInsSeg scores operating on
the real shape point clouds to provide a upper bound for the performance. In
Figure 5, we also show qualitative results for performing the proposed hierarchi-
cal instance-level part segmentation over some example generated shapes. Both
quantitative and qualitative results show that the proposed HierInsSeg algo-
rithm is effective on judging if the generated shape point cloud satisfies the part
tree condition.

4.4 Results and Analysis

We train our proposed PT2PC method and the two vanilla c-GAN baselines on
the training splits of the four PartNet categories. The part trees in the test splits
are unseen during the training time. Table 2 summarizes the quantitative evalu-
ations. Our HierInsSeg scores are always the best as we explicitly generate part
point clouds and hence render clearer part structures. Moreover, we win most
of the FPD scores, showing that our method can generate realistic point cloud
shapes. Finally, we find that our part-based generative model usually provides
higher shape diversity as a result of part compositionality.
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Table 2. Quantitative Evaluations. We report the quantitative metric scores for our
PT2PC framework and the two vanilla c-GAN baselines. S and P are short for Shape
and Part. Cov, Div, HIS are short for coverage score, diversity score and HierInsSeg
score. Since the baseline B-Whole does not predict part point clouds, so part coverage
score and part diversity score cannot be defined. We also report the ground-truth
HierInsSeg scores for each category. The last two rows show the ablation study on
chair, where Ours-W is ours without Dwhole.

Method
Train Test

S-Cov↓ P-Cov↓ S-Div↑ P-Div↑ FPD↓ HIS↓ S-Cov P-Cov S-Div P-Div FPD HIS

Chair

B-Whole 0.13 – 0.14 – 7.32 0.57 0.13 – 0.13 – 10.88 0.57
B-Part 0.14 0.41 0.14 0.06 7.17 0.58 0.15 0.41 0.14 0.06 11.10 0.58
Ours 0.13 0.06 0.18 0.07 6.64 0.48 0.14 0.07 0.18 0.07 10.69 0.48
GT 0.30 0.31

Table

B-Whole 0.19 – 0.14 – 13.02 1.04 0.21 – 0.14 – 20.63 1.02
B-Part 0.20 0.60 0.15 0.09 6.45 1.02 0.21 0.60 0.15 0.09 16.92 0.99
Ours 0.21 0.11 0.18 0.09 5.58 0.93 0.23 0.17 0.17 0.09 15.33 0.89
GT 0.62 0.64

Cabinet

B-Whole 0.15 – 0.09 – 16.38 0.90 0.17 – 0.08 – 22.90 0.86
B-Part 0.30 0.84 0.03 0.01 3.25 0.64 0.43 0.84 0.03 0.01 24.29 0.81
Ours 0.13 0.08 0.13 0.02 4.13 0.52 0.24 0.18 0.05 0.02 17.73 0.57
GT 0.32 0.35

Lamp

B-Whole 0.38 – 0.08 – 17.87 1.00 0.38 – 0.09 – 86.96 0.96
B-Part 0.28 0.73 0.09 0.03 6.52 0.78 0.43 0.70 0.09 0.03 94.66 0.88
Ours 0.32 0.04 0.11 0.05 5.71 0.68 0.41 0.19 0.12 0.05 80.55 0.83
GT 0.51 0.57

Chair Ours-W 0.14 0.07 0.22 0.08 10.60 0.51 0.15 0.07 0.21 0.08 13.52 0.49
Abla. Ours 0.13 0.06 0.18 0.07 6.64 0.48 0.14 0.07 0.18 0.07 10.69 0.48

Figure 4 shows qualitative comparisons of our method to the two baseline
methods. One can clearly observe that B-Whole produces holistically reasonable
shape geometry but with unclear part structures, which explains why it achieves
decent shape coverage scores but fails to match our method under FPD and
HIS. For B-Part, it fails severely for chair, table and cabinet examples that it
does not assign clear roles for the parts and the generated part point clouds
are overlaid with each other, which explains the high part coverage scores in
Table 2. Obviously, our method generates shapes with clearer part structures
and boundaries. We also see a reasonable amount of generation diversity even
for part trees with only one real data in PartNet, thanks to the knowledge
sharing among similar part tree and sub-tree structures when training a unified
and conditional network. We also conduct an ablation study on chairs where we
remove the holistic discriminator Dwhole.

4.5 User Study

Although we provide both Euclidean metrics (i.e. coverage and diversity scores)
and perceptual metrics (i.e. FPD and the proposed HierInsSeg scores) for evalu-
ating generation quality in Table 2, the true measure of success is human judge-
ment of the generated shapes. For this reason we perform a user study to evaluate
the generation quality on chair class. For each trial, we show users a part tree
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Table 3. User Study Results on Chair Generation. Here we show the average
ranking of the three methods. The ranking ranges from 1 (the best) to 3 (the worst).
The results on train templates are calculated based on 267 trials while the results on
test templates are from the rest 269 trials.

Train Test
Structure Geometry Overall Structure Geometry Overall

B-Whole 2.39 2.07 2.22 2.40 2.10 2.21
B-Part 2.33 2.41 2.38 2.36 2.47 2.46
Ours 1.29 1.51 1.40 1.24 1.43 1.33

as the condition, 5 ground truth shapes as references, and 5 randomly gener-
ated shape point clouds for each of the three methods. We ask users to rank
the methods regarding the following three aspects: 1) structure similarity to the
given part tree; 2) geometry plausibility; 3) overall generation quality. For fair
comparison, we randomize the order between the methods in all trials and only
show the shape point clouds without part labels. In total, we collected 536 valid
records from 54 users. In Table 3, we report the average ranking of the three
methods. Our method significantly outperforms the other two baseline methods
on all of the three aspects and on both train and test templates. Please refer to
Appendix Sec. A for the user interface and more details.

4.6 Decoupling Geometry and Structure for PC-GAN

Structure Interpolation

G
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Fig. 6. Our approach enables dis-
entanglement of geometry and
structure factors in point cloud
generation. Each row shares the
same Gaussian noise z and every
column is conditioned on the same
part tree input.

Our proposed PT2PC framework enables dis-
entanglement of shape structure and geometry
generation factors. We demonstrate the capa-
bility of exploring structure-preserving geom-
etry variation and geometry-preserving struc-
ture variation using our method. Conditioned
on the same symbolic part tree, our net-
work is able to generate shape point clouds
with geometric variations by simply chang-
ing the Gaussian random noise z. On the
other hand, if we fix the same noise z, con-
ditioned on different input part trees, we ob-
serve that PT2PC is able to produce geo-
metrically similar but structurally different
shapes. Figure 6 shows the generated shape
point clouds {xi,j = G (zi, Tj)} from a set of
Gaussian noises {zi}i and a set of part trees
{Tj}j . Each row shows shape structural in-
terpolation results while sharing similar shape
geometry, and every column presents geomet-
ric interpolation results conditioned on the
same part tree structure.
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5 Conclusion

We have proposed PT2PC, a conditional generative adversarial network (c-GAN)
that generates point cloud shapes given a symbolic part-tree condition. The part
tree input specifies a hierarchy of semantic part instances with their parent-
children relationships. Extensive experiments and user study show our superior
performance compared to two baseline c-GAN methods. We also propose a novel
metric HierInsSeg to evaluate if the generated shape point clouds satisfy the part
tree conditions. Future works may study incorporating more part relationships
and extrapolating our method to unseen categories.
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Appendix

A. More Details on the User Study

We show our user study interface in Figure 9. We ask the users to rank three
algorithms from three aspects: part structure, geometry, overall.

B. More Qualitative Results

We present more qualitative results in Figure 10. Given the symbolic part trees
as conditions, we show multiple diverse point clouds generated by our method.

C. Mesh Generation Results

Since our method deforms a point cloud sampled from a unit cube mesh for each
leaf-node part geometry, we naturally obtain the mesh generation results as well.
Figure 7 shows some results. Since the goal of this work is primarily for point
cloud generation, we do not explicitly optimize for the mesh generation results.
However, we observe reasonable mesh generation results learned by our method.

D. Failure Cases and Future Works

Figure 8 presents common failure cases we observe. For the chair example, the
back slats are not well aligned with each other and are unevenly distributed
spatially. For the table example, the connecting parts between legs and surface
extrude outside the table surface. In the cabinet example, the four drawers over-
lap with each other as the network does not assign clear roles for them. The
lamp example has the disconnection problem between the rope and the base on
the ceiling. All these cases indicate that future works should study how to better
model part relationships and physical constraints.

E. Part Tree Visualization for Figure 4

Figure 11 shows the eight part tree conditional inputs used for generating the
point cloud shapes in Figure 4.
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Fig. 7. Mesh Generation Results. The top rows show the generated shape point
clouds and the bottom rows show the corresponding generated mesh results.

Fig. 8. failure cases. The top row shows the real shapes and the bottom row presents
our generated point clouds.
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Thank you for doing this user study! You will be asked to do 10 questions in this section (should be in 10 minutes). Thank you for
help!
Current Progress: 0/10
Here are five ground-truth chairs (NO ORDER) satisfying a similar part-structure. Different parts are shown in different colors.
Sometimes, the five examples can be identical. Don't penalize if the set of generated shapes contain plausible chair variations.

Please rank the following three sets of generated shape results A/B/C if they match the ground-truth shapes and if they are
realistic (e.g. A>B>C means A is better than B and C is the worst). Each line shows five generated shapes (NO ORDER) from
one algorithm.

Algorithm A: five generated shapes (NO ORDER)

Algorithm B: five generated shapes (NO ORDER)

Algorithm C: five generated shapes (NO ORDER)

Please rank algorithms A/B/C under THREE criterion:
1) Rank Shape-Part-Structure: Please consider if the generated set of shapes contain clear part structures and if they match the
ground-truth part-structure?

Not Answered!

2) Rank Shape-Geometry: Regardless of the part/structures, how do you like the shape geometry? Lower your ranking if results
contain visual artifacts, such as unevenly distributed points, disconnected parts, etc.

Not Answered!

3) Give an Overall Ranking: Considering all the factors, give a final ranking for how the results agree to the kind of ground-truth
chairs while being realistic.

Not Answered!

Next

Fig. 9. User Study Interface.
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Fig. 10. Additional qualitative results. We show six more results for each of the
four categories. For each block, the top row shows the real shapes and the bottom row
shows our generated results.
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Fig. 11. Visualization for the Part Tree Conditions for Figure 4. Here we
show the eight part tree conditional inputs used for generating the point cloud shapes
in Figure 4.
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