Topic Modeling for Personalized
Recommendation of Volatile Items

Maks Ovsjanikov! and Ye Chen?

! Stanford University, maks@stanford.edu
2 Microsoft Corporation, yec@microsoft.com

Abstract. One of the major strengths of probabilistic topic modeling
is the ability to reveal hidden relations via the analysis of co-occurrence
patterns on dyadic observations, such as document-term pairs. However,
in many practical settings, the extreme sparsity and volatility of co-
occurrence patterns within the data, when the majority of terms appear
in a single document, limits the applicability of topic models. In this
paper, we propose an efficient topic modeling framework in the presence
of volatile dyadic observations when direct topic modeling is infeasible.
We show both theoretically and empirically that often-available unstruc-
tured and semantically-rich meta-data can serve as a link between dyadic
sets, and can allow accurate and efficient inference. Our approach is gen-
eral and can work with most latent variable models, which rely on stable
dyadic data, such as pLSI, LDA, and GaP. Using transactional data from
a major e-commerce site, we demonstrate the effectiveness as well as the
applicability of our method in a personalized recommendation system for
volatile items. Our experiments show that the proposed learning method
outperforms the traditional LDA by capturing more persistent relations
between dyadic sets of wide and practical significance.

1 Introduction

Probabilistic topic models have emerged as a natural, statistically sound method
for inferring hidden semantic relations between terms in large collections of docu-
ments, e.g., [AT2J11]. Most topic-based models start by assuming that each term
in a given document is generated from a hidden topic, and a document can be
characterized as a probability distribution over the set of topics. Thus, learning
high level semantic relations between documents and terms can be reduced to
learning the topic models from a large corpus of documents. At the core of many
learning methods for topic-based models lies the idea that terms that often occur
together are likely to be explained by the same topic. This is a powerful idea
that has been successfully applied in a wide range of fields including computer
vision, e.g., [9], and shape retrieval [14].

One of the limitations of direct topic modeling, however, is that co-occurrence
patterns can be very sparse and are often volatile. For example, terms cannot
be readily substituted by images and documents by websites in the LDA model,
since the vast majority of images will only occur in a single website. Nevertheless,
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it is often possible to obtain large amounts of unstructured meta-data, annotat-
ing the input. In this paper, we show that accurate topic modeling can still
be performed in these settings, and occurrence probabilities can be computed
despite extreme sparsity of the input data.

Our motivating application is a personalized recommendation system of volatile
items, which aims to exploit past behavior of users to estimate their preferences
for a large collection of items. Our data consists of eBay buyers and their be-
havioral history. The set of items at eBay is large, constantly evolving (over 9
million items added every day as of August 2009), and each item is only loosely
categorized by eBay sellers, while obtaining an accurate catalog for all items is
a very difficult task. Therefore, the overlap between purchase and even browsing
history of individual users is minimal, which greatly complicates obtaining an
accurate topic model for users and items [6].

In this paper we address these challenges by leveraging the unstructured
meta-data that accompanies the user-item interactions. Specifically, we map both
users and items to a common latent topic space by analyzing the search queries
issued by users, and then obtain user and item profiles using statistical inference
on the latent model in real time. Thus, the search queries act as a link between
users and items, and, remarkably, allow us to build a useful latent model without
considering direct user-item interaction. We also show how to use this decom-
position to efficiently update occurrence probabilities when new items or users
arrive.

2 Related Work

Our work lies on the crossroads between probabilistic topic modeling and per-
sonalized recommendation (see e.g., [17] and [I] for surveys of these two fields).
The primary objective of probabilistic topic models [@[T2/T1] and their variants,
is to capture latent topical information from a large collection of discrete, often
textual, data. These methods are very popular due to their relative simplicity,
efficiency and the results which are often easy to interpret. However, most topic
models require a relatively stable vocabulary and a significant overlap of terms
across documents, which is often difficult to enforce in practice.

Personalized recommendation systems aim to recommend relevant items to
users based primarily on their observed behavior, e.g., search personalization [15],
Google News personalization [§], and Yahoo! behavioral targeting [7] among oth-
ers. Most personalization techniques are supervised or semi-supervised, and fit
the model parameters to some known user preference values. More recently, sev-
eral techniques have been proposed to leverage available meta-data to build topic
models, which are then used for recommendation, e.g., [2[18]. In most cases, how-
ever, users and items are coupled during topic modeling. In our setting, this can
lead to overfitting in the presence of sparse data and inefficiencies if the model
parameters need to be recomputed whenever a new user or item enter the sys-
tem. Our method overcomes these issues by decoupling users and items when
building the topic model. This not only allows us to obtain more stable topic
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models, but much more importantly allows us to model new users and items in
real time.

Finally, our personalized recommendation system is similar, in spirit, to re-
cently proposed Polylingual Topic Models [16], that aim to learn a consistent
topic model for a set of related documents in different languages. In this work,
the lack of overlap of terms across documents in different languages is countered
by the fact that similar documents will have similar topic distributions, and thus
the topic model can be inferred consistently across languages. This technique,
however, requires pre-clustering of documents into similar sets, whereas our goal
is to infer personalized topic models for a set of independent users without a
clear cluster structure.

3 Topic Models with Triadic Observations

Although our approach is general, for clarity of exposition we concentrate on
inferring unobserved user preferences for a large set of highly volatile items. In
this section we describe the setting in detail, and give an overview of our method.

3.1 Motivation & Overview

Our primary goal is to infer the probability that a user u is interested in some
item 7. In the text setting, this is similar to obtaining the probability that a
document will contain a given term. However, the set of items is extremely large
and volatile, implying that the overlap between individual users’ item browsing
or purchasing histories is minimal. This prohibits standard user modeling as
well as collaborative filtering techniques based either on finding similar users or
factorizing the user-item matrix. Note, however, that in addition to the direct
user-item interactions, in the majority of cases, users issue search queries to
arrive at the desired items. This means that a single user-item observation can
be augmented to a user-query-item triple. This augmentation only exacerbates
the sparsity issue, however, since the set of triples is at least as sparse as the
original user-item matrix. Therefore, we project this tensor onto the subspace of
users and queries. In this space, topic modeling can be performed using standard
techniques. Furthermore, since each item is equipped with the set of queries that
were used to retrieve it, we use statistical inference on the set of item-query
pairs to learn the probability that a given item is characterized by each latent
topic. Finally, since the users and items are now modeled in a common reduced
latent topic space, the user-item preferences can be obtained by combining the
user and item distributions over the latent topics. Intuitively, the search queries
serve as a link, which allows us to model both users and items in a common
latent topic space. Our approach is therefore applicable whenever there exist
meta-data drawn from a relatively stable vocabulary which allows linking two
possibly heterogeneous and ephemerally coupled sets.

Note that our approach can work with most state-of-the-art latent variable
models (e.g., pLSI [12], LDA [] or GaP [f]). We describe it using the structure
of LDA, since it is a fully generative model, natural for our extension.
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Fig. 1. Graphical representation of our Generative Model.

3.2 Generative Model

Our generative model starts by assuming a hidden set of user intentions that
are responsible for generating both queries and items. In other words, a user
searching for an item is guided by a certain interest, characterized by the latent
topic, which results in a search query and an observed item. Formally, let i, q, u
and k represent an item, query, user, and latent topic respectively, then P(q,i|u)
is the probability of user u observing a query-item pair (g, 7). The simplest way
to capture this probability is by assuming conditional independence of items and
queries given the underlying latent topic:

P(q,ilu) =) P(qlk,i,u)P(k,ilu)
k

1
= P(qlk)P(ilk) P(klu). (1)
k

Following LDA, we assume that P(k|u) is a multinomial probability distri-
bution @, over a fixed set of K topics. We interpret each element k of 6, as
the interest of user w in topic k. We also assume that P(¢|k) is a multinomial
distribution over the set of V distinct search queries, which can be represented
by a vector @;. Note that unlike the standard unigram model in LDA, a search
query can contain multiple words or special characters. This is crucial in our
setting since in a web commerce site, queries often contain brand names, having
multiple words with conceptually different meanings (e.g. “Banana Republic”).
On the other hand, due to high specialization of the web commerce domain the
size of the vocabulary of queries is comparable with the size as individual terms.
Thus dealing with queries directly avoids the otherwise lossy n-gram extraction.
Similarly to LDA, we introduce Dirichlet priors on @, and @, with specified
symmetric hyperparameters o and § respectively. See Figure [1| for a graphical
representation of our generative model.
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Given this generative model, the marginal probability of a user u generating
a particular query gq is:

Plau) =3 P(ku)P(alk) = 3 €.(k) 2 (o) @)
k k

Thus, similarly to LDA, our generative model assumes that each search query
Qu,; by user u corresponds to a latent topic z,_ ;, sampled independently according
to P(zy,; = k) = Ou(k). Then, the search query is drawn according to Py, i.e.,
P(qu; = qlzu; = k) = Pr(q).

In the following, we interpret P(g|u) as the user’s preference for a query q.
Ultimately, we are interested in the user’s preference for an item P(i|u). Note
that a straightforward extension of LDA would entail learning the topic prob-
abilities over items P(i|k), and using them to estimate P(i|u). This, however,
would require jointly modeling user and item topic models. Instead, we integrate,
over all users, the topic model with triadic observations as in Eq. :

Plg,i) = / S Pqlk) Pk, i) P(u)du
O

(3)
=" P(qlk)P(k|i)P(i),
k

where the probability P(k|i) can be interpreted as the probability that the latent
topic k is responsible for generating an instance of item i. We encode these
probabilities by a multinomial distribution over the set of topics, or a vector
¥; € R*. Following LDA, we impose a Dirichlet prior v on ¥;.

We stress that modeling P(k|i) rather than P(i|k) is crucial in allowing
our method to decouple user and item behavior as well as to efficiently learn
the model parameters for new users and items without recomputing the topic
model. This decoupling is only made possible by the presence of textual meta-
data (search queries) that links the users and items.

Estimating the model parameters from a corpus of queries generated by a
population of users can then be regarded as a Bayesian approach to collaborative
filtering, since it leverages co-occurrence information from multiple users to learn
user preferences for unseen data. We also discuss the relation of our method to
traditional collaborative filtering in the next section.

4 Personalized Recommendation

Recall that the motivating application of our proposed learning method was to
derive a statistical formulation for recommendation of volatile items. In this sec-
tion, we carry out the derivation using the generative model described above.
We also establish a theoretical connection between our method and matrix fac-
torization methods in collaborative filtering.
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Intuitively, a generative model is well-suited for a recommendation system
since it allows mimicking the user behavior after learning the model parameters.
In other words, once the model parameters have been learned, one can generate
queries as well as items for a particular user automatically by simply following
the generative process. The key property that translates this observation into a
recommendation system, is that probabilistic topic models allow to assign mean-
ingful probabilities to unobserved pairs, through the hidden layer of topics. Thus,
a recommendation system based on latent topic modeling is unlikely to result in
the same item that the user has already observed. However, the recommended
query and item will have a high probability of belonging to the latent topic that
the user has shown preference for in the past.

4.1 Query Recommendation

Given the user preference vector for latent topics @, and the latent topic distri-
butions @, k € 1..K, we recommend search queries to the user v by simulating
the generative process described in Section Namely, to generate a query g,
first sample a latent topic z with P(z = k) = ©,(k), and then pick a query ¢
from &,, s.t. P(q = t) = @,(t). Note that unlike traditional recommendation
systems, which suggest queries or items that the user is most likely interested in,
this process is randomized. This stochastic delivery mechanism allows us to di-
versify the recommendations while maintaining relevancy to the user, and yield
a 100% recall of the entire inventory in an asymptotic sense.

4.2 TItem Recommendation

Note that the process described above also allows us to recommend items to
users. To do this, we issue the recommended queries to the search engine and
use the retrieved results as the recommended items. In this way, the queries used
for recommendation will correspond to likely queries in the latent topic k, for
which the user has shown interest. This means, in particular, that the queries
used for recommendation will rarely come from the set of queries issued by the
user in question. Instead, they will be the most representative queries in the
user’s topics of interest. Note that this recommendation step is possible only
because we perform topic modeling on full search queries, rather than individual
terms, since reconstructing a query from a set of possibly unrelated search terms
is a difficult task.

In real time to recommend N items, we can generate N distinct search
queries, by first picking IV latent topics from @, without replacement, and use
the top item provided by the search engine for each of these queries. This allows
us to significantly diversify the recommended set while keeping it relevant to the
user.

The preference P(i|u) of user u for item ¢ is given by:

P(ilu) = P(ilk)P(klu) =) ]f((l?)P(m)P(mu)
k

k
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Note that a symmetric Dirichlet prior, with parameters o; = «a; V 1,7, is
invariant to permutations of the variables. In other words: p(©) = p(II©), for
any permutation matrix I7. Moreover, if @' = ITO, the Jacobian determinant of
this transformation is always 1, so d©’ = d©, and the marginal:

/@kp )6 = | /()8 = P() ¥ kg

Thus, under symmetric Dirichlet prior on ©,,, the marginal distribution P(k)
of latent topics is uniform and can be factored out, meaning P(ilu) oc P(i)O1%;,
where P(4) is the likelihood of item 4.

4.3 Relation to Latent Factor Models

We also point out that the generative model presented above is similar in spirit,
to latent factor models in collaborative filtering, e.g., [I313]. These methods map
each user and each item to points in a common Euclidean space, where the
prediction for user u’s preference for item i is approximated by: #,; = pZ ¢;, with
a possible addition of a baseline predictor [13].

Note that in our model, #,; o P(i )QT%, and therefore, traditional latent
factor models can be thought of imposing a uniform prior on the space of items.
Also note that unlike standard latent factor models, our topic model is derived
via the relations between users and search queries, and is independent of user-
item interactions. As we show in the next section, this allows us to efficiently
infer model parameters for new users and items and perform recommendation.

5 Learning and Inference

In this section we describe the learning and inference procedures for our gener-
ative model. As mentioned earlier, our emphasis is on decoupling user and item
interactions. Moreover, since the number of items exceeds the number of users
by orders of magnitude, we aim to first learn the latent topic parameters by
considering user behavior, and then adopt a fast inference procedure to obtain
the topic distributions for each item.

5.1 Model Fitting

The marginal distribution of users and search queries described in Section [3.2]
mirrors the generative model for documents and terms in LDA. Therefore, esti-
mating & from data, can be done in a similar way as for LDA. Here, we adopt
the Gibbs sampling approach [I1], which has been shown to yield accurate results
efficiently in practice.

The input to our user-based model estimation is a set of users, with a list of
search queries that each user issued in a fixed period of time, where repetitions
are naturally allowed. The goal of the Gibbs sampler is to determine for each
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query in the dataset the latent topic that this query was generated by. Then, the
model parameters @, can be computed as statistics on these topic assignments.
The main idea of Gibbs sampling for LDA is to derive the distribution:

Pk = P(zu,] =k | zﬁu,jauaq)7 (4)

where 2, ; is the topic responsible for generating query j of user u, z-, ; are
topic assignments for all other queries, while w and g are users and queries
respectively. Once this distribution is established, we run the Gibbs sampler
with a random initialization of z until convergence. In our model, as in LDA:

P(z,u,q)
Pk =%
P(z—'u7j7ua q) (5)
_ Pl P(zlu)
P(Qu,j>P(qﬂu,j zﬂu,j) P(Z—'u,j|u)

Both P(q|z) and P(z|u) can easily be derived by integrating over the pa-
rameter space, since e.g.:

P(qlz) = L P(q|z. ®)P(®|5)dD
| PRI v
~ 53 ’

where 2% (q) is the number of times query ¢ is assigned to topic & in the topic as-
signment vector z and B is the multivariate beta function. The final distribution
for the Gibbs sampler is:

zﬁu,j(qu,j) + z’iu,j (u) +
% K ) (7)
5 (@) +8) X () + )

j=

Pr X

where Zliu,j (g) is the number of times query ¢ is assigned to topic k in z—,, ;, and
z’iuyj(u) is the number of times topic k is assigned to a query by user u. Once

the Gibbs sampler converges to a stationary distribution, the model parameters
can be computed as:

z*(q) + 8
% .
Zw:l zk(w) + ﬂ
We approximate P(i) by measuring the fraction of times that item i was
observed in the corpus of user-item pairs.

Di(q) =

(®)

5.2 Inference

Once the model parameters @, have been estimated, the inferential task consists
of learning ©,, and ¥;, for a user w or item 3.
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First, suppose the data set consists of a single user u with all the search
queries issued by this user in a fixed time period, and our goal is to estimate the
user preference vector @,. The Gibbs sampling procedure described above allows
us to perform inference in a straightforward fashion. Again, for every query g ;
in the new dataset, we aim to determine which latent topic z is responsible for
generating this query. For this, we run the Gibbs sampler in the same fashion as
above, while only iterating over queries of user u. The probability distribution
for the Gibbs sampler is nearly identical to Eq. @:

e n*(quy) + 2505 (qug) + 8
Sy (n*(qug) + 25, ;(a) + B)
‘ 2, i(w) +a
Y5 (2l (@) +a)’

where z is the assignment of latent topics to queries only of user u, while n* (qu,5)
is the number of times query ¢, ; was assigned to topic k in the model fitting
step. Note that n is the only part of the distribution that depends on the model
fitting, and can be seen as a precomputed sparse V' x K matrix of counts. After
convergence, the user preference vector @, is:

9)

k
Oulk) = ot (10)
> =12 (u) +a

To derive the inferential procedure for topic probability vector ¥;, given an
item 4, we assume that the data consists of all queries used by all users to arrive
at item 4. Then, our goal is to determine z; ;: the latent topic responsible for
generating query j used to arrive at item i. Note that in this case, Eq. can

be written as:

pe =P(zij = klz—i j,1,q)
__ Plqli, 2)P(2]i) P(i)
P(q|i, z-i,j) P(z-i;]1) P(4) (11)
__ Plalz)P(z]7)
P(q|z-ij)P(z-il8)

where the third equality follows from the conditional independence of items ¢
and queries g given z assumed in our generative model. Note that the final
expression for pi has the same form as Eq. . In addition, the Dirichlet prior
~ assumed on ¥;, where ¥;(k) = P(k|i), forces the distribution of topics given
an item to have the same form as the distribution of topics given a user. Thus,
we can run the Gibbs sampler in the identical way as for @,, to get ¥;.

Note that if the user u issued N search queries (or the item i was observed
through N search queries), one sampling iteration of the Gibbs sampler will
require only IV topic assignments. Convergence is usually achieved after several
Gibbs iterations, and inference is very fast. Therefore, learning model parameters
6., and ¥; for new users and items through inference is very efficient and does not
require extensive computations, unlike conventional matrix factorization models.
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Fig. 2. (a) Number of items purchased by users (b) Number of subcategories of CSA
explored by users.

6 Experiments

Our dataset consists of the search queries entered by the eBay users over a two-
month period in 2009. We only consider queries, for which the search engine
returned at least one item in the “Clothing, Shoes & Accessories” (CSA) meta-
category. Furthermore, during the model fitting step we remove casual users,
who did not purchase any items in this time period. This greatly reduces the
data set, and leaves 2.6M users, with an average of 2.5 queries per user per day.
We also limit the vocabulary of queries to those entered by at least 30 users
to reduce the complexity of the Gibbs sampler. This reduces the data by an
additional 8 percent, so that our final vocabulary consists of approximately 50K
search queries.

Figures 2(a)] and R(b)| show two trends observed in the data. In particular,
Figure 2(a)|shows that over 50 percent of the users who bought items in the CSA
meta-category of eBay during two months, only bought one item in this meta-
category (while the average number of purchased items is 3, which is explained
by the heavy tailed nature of the distribution). On the other hand, Figure
shows that the median number of subcategories (as defined by the current eBay
taxonomy) that individual users looked at is 5, with the mean 10.7. This shows
that users at eBay are willing to explore products in a variety of categories.
In particular, this means that recommendations based purely on purchasing
behavior may not be able to capture the wide range of interests that users have.

6.1 Choice of Dirichlet Priors o and 3

One of the principal advantages of the LDA model over pLSI [12] is the flexibility
of prior parameters a and (. Indeed, pLSI is a mazimum a posteriori LDA
model estimated with a uniform Dirichlet prior o = 1 [10]. To demonstrate the
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Fig. 3. (a): Influence of o, at 8 = 0.1, (b): influence of 8, at & = 0.5

importance of this distinction, which holds even for a large dataset, we considered
a sample of queries issued by 400K users, and estimated the model for 100 topics
and various values of o and . Figures and show the dependencies of
the average number of topics per user and the average number of queries per
topic on the priors o and (. For each user u we consider the median of ©@,: the
minimum number of topics, with cumulative distribution in @, at least 0.5, and
similarly, for each topic k, we consider the median of @.

Note that as « approaches 1, the average number of topics per user grows,
which means that on average, users’ interests become diffused over more topics.
However, as a result of this, fewer queries are necessary to explain each topic,
and @}, becomes more and more concentrated. The effect of 3 is less pronounced
on the average number of topics per user, whereas the median number of queries
per topic grows. This is consistent with the intuition that £ controls how con-
centrated each topic is. Since our ultimate goal is to recommend items to users,
we would like to have highly concentrated topics with the most relevant queries
having a high probability. Furthermore, since the majority of users only explore
a small number of subcategories, we expect each user to be interested in a small
number of latent topics. Therefore, we use 8 = 0.1, a = 0.05, so that on average,
the median of @, is 5.

6.2 Personalized versus Global Models

To evaluate the quality of our method, we compute the log-likelihood of unseen
data given the model. For this, we first compute the model parameters @5 and 6,
for the two-month data described above. This allows us to predict the preference
P(q|u) of user u for a particular query ¢ using Eq. . The log-likelihood of a set
of queries for a user is given simply as ), log (P(g;|u)). Thus, to evaluate the
quality of our approach to personalized recommendation, we evaluate the log-
likelihood of the search queries issued by the same users for which the model was
estimated, but in the four days following the training period. A better predictive
model would result in a smaller absolute value of the log-likelihood.

As a baseline predictor we use a global model, which is oblivious to individual
user’s preferences. This corresponds to setting the number of topics to 1, since
in this case, under uniform Dirichlet priors, the probability P(g|u) is simply the
fraction of times this query was used in the training data independent of w. In
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Query Pi(q)| [Query Pr(q)| [Query Pr(q) | [Query Pk (q)
golf 0.2975| [sunglasses 0.3168| |oakley 0.3337| |[gucci 0.2616
golf+shoes 0.0684| |ray+ban 0.1390| |oakley+sunglasses 0.2075| |prada 0.1685
nike+golf 0.0652| |ray+ban+sunglasses 0.0888| |oakley-+juliet 0.0561| |armani 0.1207
tiger+woods 0.0571| |mens+sunglasses 0.0459| |oakley+gascan 0.0469| |dolce+&-+gabbana 0.0707
callaway 0.0527| |mephisto 0.0388| |oakley+half+jacket 0.0405| |versace 0.0663
golf+shirts 0.0477| |fishing 0.0364| |oakley+m+frame 0.0387| |ferragamo 0.0651
scotty+cameron 0.0375 rayban 0.0341 oakley+radar 0.0342| |dolce 0.0444
greg+norman  0.0369| |aviator+sunglasses 0.0336| |oakley+frogskins 0.0293| |dolce+gabbana 0.0366
adidas+golf 0.0351| |polarized+sunglasses 0.0331| |oakley+flak+jacket 0.0281| |cavalli 0.0331
nike+golf+shirt 0.0339| |ray+ban+aviator 0.0303| |oakley+rare 0.0206| |d&g 0.0171
golf+shirt 0.0334| |[sun+glasses 0.0268| |oakley+display 0.0205| |roberto+-cavalli 0.0169
puma-+golf 0.0329| |eyeglasses 0.0251| |oakley+oil4rig 0.0197| |bally 0.0155
footjoy+classics 0.0299| |rayban-+sunglasses 0.0245| |oakley+romeo 0.0170| |dior 0.0142
(a) (b) (c) (d)

Fig. 4. Sample topics inferred using o = 0.05, 8 = 0.1, and K = 100 along with queries
having maximum probabilities @x(q).

other words, each query is characterized by its overall popularity in the training
data. Figure shows the dependence of the absolute log-likelihood of the
testing data on the number of topics K. Note that the global user-oblivious
model with 1 topic results in 36% higher absolute log-likelihood than the model
with 500 topics and 31% higher than the model with 200 topics. Interestingly, we
do not observe any over-saturation phenomena, and the absolute log-likelihood
decreases as far as 500 latent topics. However, the rate of the decrease slows
down beyond 200 topics. Figure [5(b)|shows that the improvement over the global
model is significantly more pronounced for the users who issued many queries
(in the training set). Thus, we achieve over 50 percent improvement in absolute
log-likelihood using a model with 200 topics for users who entered over 400
search queries. This shows, not only that topical preferences are learned more
accurately for users who have a longer search history, but also that the topics
themselves represent persistent structure in the data.

Figure [] shows a few sample topics inferred using K = 100 together with
queries having maximum probabilities @, (q). Note the highly specific nature of
each topic, which will allow us to achieve personalized recommendations. Thus,
a user whose history contains many queries related to e.g. golf will be presented
with a recommendation that corresponds to a likely query-item pair within this
category (Figure . Moreover, remark the flexibility provided by the topic
modeling framework, where an individual topic can correspond to an activity
(Figure [A(a)), a product (Figure brand (Figure [4(c)), or even a set of
conceptually related brands (Figure [4(d))). Finally, note that individual queries
often contain multiple terms, and performing topic modeling on the query rather
than term level is essential for accurate personalized recommendation.

6.3 Triadic versus Dyadic Models

Finally, we compare our method with standard LDA, to validate the advantage
of capturing the hidden structure from a relatively persistent yet often-available
intermediate layer, e.g., search queries in our case. Given a set of training data
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Fig. 5. Absolute log-likelihood of the test data for different choices of K (a) and for
users with different search history sizes (b).

in the form of triadic observations user-query-item, where each example triple
means that a user issues a query and then conducts some transactions (click,
watch, bid or purchase event) on an item, we first trained a topic model with
triadic observations as described in Section [3] To leverage the semantically-rich
query layer, the training set of triples was projected to a user-item matrix,
while the item dimension uses queries (converting to corresponding items) as
descriptors. In other words, the vocabulary consists of converting queries. On
the other hand, a standard LDA was trained on a direct projection of user-item
matrix by ignoring the query layer, where the vocabulary consists of all unique
item ids. Now the difference in volatility between queries and item ids shall be
appreciated, and this setting applies to many practical domains such as web
images, graphic ads, and page URLs.

Let word w denote query q or item i for triadic and dyadic models respectively.
After training and inference of both models, we have the posterior Dirichlet
parameter given each user P(k|u), and word multinomials conditioned on each
topic P(w|k). Given a test data set in the same triple form and collected after the
training period, we then can compare the log likelihoods of user-item conversions
under both models:

=YY" "log (Z P(w|k)p(k|u)> . (12)
U w k

It is important to note that although w denotes different objects for different
models, the log likelihood reflects the prediction quality against a same ground
truth, which is the user-item conversions in future. Personalization is achieved by
using different posterior per-user topical mixture P(k|u) for each user. Online
prediction can easily follow. Under triadic topic models, to predict and rank
a candidate set of items, one needs to augment items with their historically
converting queries.
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o
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Fig. 6. Daily perplexity on one-week test data. Triadic model outperforms standard

LDA, with the gap widening as the testing day is further away from the training day.

We trained both models using one-day worth of user-query-item conversion
data, and evaluated both models against the following one-week test data on a
daily basis. The training data contains 5.3M triples from 500K users, which gives
a vocabulary size V= 539,092 queries for the triadic model and V= 2,186,472
item ids for the standard LDA. We set o = 0.05, 8 = 0.1, and K = 100 as sepa-
rately tuned in Section [6.1] For a normalized comparison, we report perplexity
(two to the power of minus per-word test-set log likelihood in our case), as plot-
ted in Figure [6] The results show that our proposed topic model with triadic
observations consistently outperforms the standard LDA with dyadic observa-
tions, with the edge widening as testing day farther away from the training day.
On day one right after the training date, the per-word log likelihood of the triadic
model is -15.88, while a LDA yields -10.68. The over 30% log likelihood improve-
ment translates to over 30 folds decrease in perplexity, with PPdt;i;‘iiC = 1.6K and

PP(E; ; = 60K. As the testing day moves farther away from the training day, the
prediction performance of our approach stays stable, while that of a standard
LDA deteriorates drastically. On day seven the perplexity gain of our approach
over the conventional LDA becomes over 60 times, with PP&S;‘?C = 1.7K and

PPé‘,ii‘, - = 112K. This observation exactly shows the volatility of items and the
persistency of queries, thus motivating the idea of modeling ephemeral relations
through a persistent layer. The purpose of comparing our approach with the
standard LDA exposed to a sparse dyadic setting is not to claim a better statis-
tical method, but rather to propose a general framework that can help realize

the full potential of topic modeling.

7 Conclusion and Future Work

In this paper, we presented a method for building reliable topic models by us-
ing unstructured meta-data when direct topic modeling is infeasible due to the
sparsity and volatility of co-occurrence patterns. We show both how to use the
meta-data to densify the original input and to build a better topic model. Fur-
thermore, we show how to efficiently estimate the model parameters in practice
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by decoupling the interactions between the two original input sets. Most notably,
this allows us to efficiently compute model parameters in the presence of new
data without recomputing all model parameters. We demonstrate the useful-
ness of our method by deriving a statistical formulation of a novel personalized
recommendation system for volatile items. Our data is challenging due to ex-
treme sparsity of the input which prohibits the use of standard topic modeling
and collaborative filtering techniques. We show that by using the search queries,
we can still build a reliable topic model, which can then be used for efficient
recommendation.

In the future, we would like to add a temporal aspect to our method to re-
flect the evolution of the latent topics and user preferences. This could include
modeling short-term effects, such as topics that become prominent because of
external events (e.g., Super Bowl), cyclic topic shifts that arise in certain sea-
sons, as well as long term topic changes that appear, e.g., from new products
introduced in the market. Moreover, we are planning to compare the efficiency
and effectiveness of the various item recommendation methods. Finally, it is de-
sired to benchmark our approach with standard LDA with a larger scale data
set, e.g., three-month training data and one-month daily evaluation. We expect
to further strengthen the advantages of our method.
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