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Interactions play a key role in understanding objects and scenes for both,
virtual and real world agents. We introduce a new general representation
for proximal interactions among physical objects that is agnostic to the type
of objects or interaction involved. The representation is based on tracking
particles on one of the participating objects and then observing them with
sensors appropriately placed in the interaction volume or on the interaction
surfaces. We show how to factorize these interaction descriptors and project
them into a particular participating object so as to obtain a new functional
descriptor for that object, its interaction landscape, capturing its observed use
in a spatio-temporal framework. Interaction landscapes are independent of
the particular interaction and capture subtle dynamic e�ects in how objects
move and behave when in functional use. Our method relates objects based
on their function, establishes correspondences between shapes based on
functional key points and regions, and retrieves peer and partner objects
with respect to an interaction.
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1 INTRODUCTION
The goal of this work is to de�ne a descriptor to explore interactions
among rigid physical objects (animate or inanimate), such as a
human sitting on a chair, grasping a cup, as well as water pouring
into a glass, air �owing past a driving car, etc. Such interactions
usually involve pairs or multiple objects in relative proximity or
contact. Current representations of interactions are polarized at two
extremes. On the one hand, there are very high level interaction
descriptions like those in natural language ("John grasped his mug
and poured co�ee into it"); computer vision has expended a lot of
e�ort on mapping images and videos to such descriptions (action
recognition). On the other hand, there are the detailed simulations
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performed in computer graphics requiring full representation of the
geometry of the environment, e.g., a CAD model of a mug, �nite
element models for deformable objects like human �ngers grasping
the mug, as well as material properties such as viscosity for the �uid
(co�ee) �owing into the mug.

In our work we aim for an intermediate-level representation cap-
turing more information about the geometry and physics of the
interaction than just a natural language description, yet abstracted
away from all the details tied to the speci�c geometry and physics
discretizations used in the simulation. Our motivation is to com-
pare and understand the similarity between the actions of a human
sitting on a chair or on a bed, while being able to distinguish the
actions of a human hand grasping a mug from its handle, as opposed
to from its rim.

We believe that the types of actions that an object participates in
can provide insight into the semantic identity of the object. We want
to understand in a more computational form the old notion that form
and function are deeply inter-correlated. We study how to project
actions and interactions onto each of the participating objects or
media, so that an object’s interactions become a new signature
for the object in a way that captures the essential spatio-temporal
aspects or patterns of the interaction from the point of view of the
object. Our goal is, given an object, to summarize the interactions
it has experienced into a mathematical descriptor, and to use such
interaction landscapes to retrieve similar objects, to recover partner
objects that �t a particular interaction (given a screw model, �nd the
appropriate screwdriver), or to infer functionality of a new object.

Understanding shape functionality remains one of the key chal-
lenges in shape analysis and geometric modeling. Researchers have
not only studied the perception of shapes [5, 49], but have also
analyzed their structure, form, and similarity with a wide variety
of computational models and representations [8, 32]. It has been
recognized that shape modeling is a fundamental problem that must
include a high-level understanding of the semantic meaning of a
shape — one of the key observations of previous studies is that
a shape is not purely described by its form but also by its func-
tion [21, 22]. Embedding a shape in its interaction space enables a
more thorough understanding of its functionality, a key requirement
in many application areas, e.g., shape correspondence and similarity,
reconstruction and content creation.

Some of the previous approaches formulate the problem of under-
standing shapes by looking at human-centric interactions to learn
shape a�ordances [25]. Moreover, capturing real humans allows
us to learn the function of an environment and to infer possible
interactions for unobserved scenes [42]. Others analyze shapes by
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Fig. 1. Di�erent interaction landscapes representing the interactions of a motion driver with a static object. We capture the motion trajectories (red) and
encode their signatures into a descriptor that can be used to compare interactions. From le� to right: a cloth simulation interacting with a support structure, a
human model walking on a floor, a wind simulation interacting with a car, and a robotic hand grasping a cup.

de�ning functionality models or by using distinct labels for classify-
ing interactions [26, 47]. More recently, it has also been recognized
that spatial relations can infer a context-aware signature of object-
object interactions [22] that even allow the analysis of shapes [21].
The diversity of these contributions illustrates the breadth of the
interaction modeling area.

We introduce a descriptor that captures the spatio-temporal mo-
tions of interactions. We look at the trajectories of motion particles
sampled from a partner object, as they move in the vicinity of the
object of interest. We call this partner object the motion driver, as
it generates these particle motions. In our co�ee mug example, we
look at particles on the human hand grasping the mug, or particles
in the co�ee �uid pouring into the mug. To observe the partner
motion particle trajectories, we establish a set of sensors on or near
the object of interest, each of which is tracking particle motions in
a region of free space near it. The sensors then build a descriptor
of the trajectories observed in the part of space each is responsible
for — and altogether these local descriptors form our interaction
signature.

We perform a number of experiments to demonstrate the rele-
vance of our interaction descriptor for analyzing the functionality
of shapes. In particular, we show that it is well-suited for shape
correspondence and classi�cation tasks. Additionally, we show that
our approach can capture and encode multiple functions of an ob-
ject, i.e., a cup can be grasped at the top for carrying it, while it can
also be grasped from the side for drinking. Fig. 1 shows examples
of four interaction landscapes, each representing the interaction
of a motion driver with a static object. We capture the motion tra-
jectories (shown in red) and encode their signatures with a novel
interaction encoding method. In summary, we claim the following
contributions:

• We introduce a novel representation for proximal interac-
tions between physical objects and a �exible framework
that allows an exploration of the interaction dynamics
driven by input data from various sources, e.g., simulations,
animations, motion capture, and RGB-D scans.

• We show how to factorize interactions into descriptors for
each of the participating objects and how to compare such
descriptors. The resulting interaction landscapes establish
correspondences between shapes based on functionally-
de�ned keypoints or regions.

• We evaluate our method against state-of-the-art descriptors
such as the Light-�eld Descriptor (LFD), the Intersection
Bisector Surface (IBS) and the Interaction Context (ICON),
and show the relevance of our descriptor for applications,
such as shape retrieval and saliency estimation.

2 RELATED WORK
Shape completion and segmentation, similarity assessment of shapes,
and structure-aware modeling have been recognized as fundamen-
tal problems in a variety of application domains [32]. Traditionally,
many of the previous methods in these areas rely on geometric de-
scriptors to encode local features of shapes and forms. By employing
functions on the geometry, these methods provide more discrimina-
tive attributes for relating shapes, often formulated with the goal of
being robust or invariant against speci�c transformations [8]. Func-
tions on shapes have also been the basis for the functional formula-
tion of maps and correspondences between shapes [37]. More re-
cently, e�orts have shifted towards encoding the structural meaning
of shape parts and high-level semantic information. Structure-aware
modeling of shapes requires knowledge of symmetries [33, 48], sim-
ilarities of parts [45], variability [54] and the object’s embedding in
its context [22, 53].

Analyzing the uses and a�ordances of a model provides a deeper
understanding of shapes. While early attempts explicitly model the
functionality of shapes in the context of speci�c categories [47] or
decompose models into sets of volumetric functional shape primi-
tives [39], representing functionality allows the resolution of object-
functionality correspondences, even for high variance data sets.
Pechuk et al. [38] derive functionality labels by employing a multi-
level hierarchy for the automated classi�cation of parts. Laga et
al. [26] encode the context of a model as structural relationship.
Their approach models shapes as interconnected parts in order
to derive pairwise-correspondences of 3D shapes and to learn the
functionality of shape components through supervised classi�ca-
tion. Zhu et al. [55] propose an indirect learning approach of poses
through training a knowledge base.

Several approaches exist to explore interactions of human agents
with shapes or even entire scenes. Bar-Aviv et al. [6] and Liu et
al. [31] propose agent-centric systems that analyze the performance
of human avatars for classi�cation and interaction tasks. While
Grabner et al. [18] only concentrate on analyzing the functionality
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of chairs, Kim et al. [25] detect functional similarities by predicting
human poses based on a trained a�ordance model. The human agent
can also be observed from images [12] and videos [19]. Li et al. [30]
and Song et al. [46] explicitly limit themselves to investigating visual
grasp a�ordances from 2D measurements.

In SceneGrok, Savva et al. [42] observe the behavior of real hu-
mans interacting with an environment. They capture RGB-D data
to infer action maps and train a classi�er that allows the transport
of the interaction knowledge to other, unseen environments. In a
more recent work Savva et al. [43] show that it is possible to infer
higher level semantic meaning from observed human-centric inter-
actions. Knowledge about interactions can be employed as a means
for reconstructing objects and scenes. Fisher et al. [16] used virtual
agents to associate object arrangements with typical activities to
derive more plausible scene setups. Tzionas et al. [50] introduced
a 3D reconstruction pipeline based on how hands interact with a
target object, which even works for featureless or symmetric shapes.
Instead of focusing on the interaction of real humans with their en-
vironment, other works concentrate on encoding dynamic motions
of virtual humanoid agents for retargeting and motion adaptation
purposes [2, 20].

In contrast to the previous methods, we are interested in explor-
ing interaction partners — complementary shapes that accomplish a
function jointly with the given shape. This notion is similar to what
Cain [10] proposed as Motion Constraints; however, our method
focuses on capturing the dynamic nature of interactions of two or
more shapes and not just static relationships. Moreover, we show
that interactions can be factorized by analyzing their motion pat-
terns in an appropriate vector space [52]. Related mathematical
ideas based on “currents” for describing surfaces can also be found
in Durlemann [15].

Our approach is similar to the Shape Flow method proposed by
Jiang and Martin [23], who detect and encode �ow lines in videos
and the HON4D descriptor introduced by Oreifej and Liu [35] that
encodes interactions captured in RGB-D data. Unlike the previous
specialized approaches, we propose a more general framework that
allows us to encode a wide variety of di�erent interactions in 3D
setups. Additionally, we show that our signatures show similar char-
acteristics to the recently proposed ICON descriptor [22] for static
scenes, which makes them well suited for tasks such as estimating
shape correspondences and assessing shape similarity.

Finally, our novel particle-based representation has multiple ad-
vantages over prior interaction encodings. It is independent of the
speci�c geometric and physical model used to obtain the interaction
simulation. Moreover, trajectory collections are nice mathematical
objects on which a variety of analysis tools, such as vector �elds,
�ow analysis, etc., can be applied.

3 OVERVIEW

The objective of our work is to encode and abstract the dynamic
characteristics of interactions. More speci�cally, we focus on inter-
actions of one object in motion, which we refer to as motion driver,
with another static object (e.g., a chair or a cup) that is acting as the
action receiver. The motion driver can be any source of motion; to
explore the versatility of our approach, we have employed motions

Fig. 2. Overview of the pipeline for computing interaction landscapes. Given
an input mesh and a motion driver, we track the movement of motion
particles a�ached to the moving object in local sensor regions. In each
region, the sampled trajectories of the motion particles are converted into
vector fields that are analyzed for unique pa�erns in the motion flow. By
quantizing the vector space we derive a global signature that allows us to
embed objects in their interaction space and to relate them based on their
functionality.

from a variety of sources, such as simulators specialized for grasping
or �uids, character animations, physics-based motions, and motion
captured data.

The surface of the motion driver (see Fig. 2) is covered with
motion particles that we use to track the motion. For particle-based
simulations, such as Lagrangian �uids, we randomly select a subset
of the actual simulation particles to track. Depending on the type
of motion that causes the interaction, we provide the system with a
number of parameters, such as the location and orientation of an
emitter, the number of particles for a �uid �ow, or the number and
properties of transformations for animations and motion-capture
data sets.

Our approach is based on the observation that the interaction of
two shapes de�nes a unique pattern that characterizes their form
and function. To encode the dynamics of an interaction we examine
how a motion particle approaches an object. We sample the surface
of the input shape to distribute sensors that track motion particles
passing by, with each sensor measuring a region on or near the
surface. These regions span an interaction space that we refer to as
the interaction landscape. As it is not known where the interactions
are likely to happen beforehand, we spatially subdivide the potential
interaction space based on the input geometry. Every motion parti-
cle that enters one of the sensor regions creates a unique motion
trajectory that characterizes the occurring interaction.

We transform the captured trajectories into local vector �elds for
each of the sensors. Operating on vector �elds allows us to analyze
the properties of the observed interaction using powerful mathe-
matical tools. More speci�cally, we detect a number of attributes of
the vector �elds, such as the vector and tensor magnitude, dilation
and vorticity, as well as particle velocity and orientation. We build
histograms over these attributes to factorize the interaction and
capture the response of di�erent shapes to the same motion driver
by computing their relative distance over a set of histograms.
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(a) (b) (c) (d) (e) (f)

Fig. 3. A human model si�ing down on various chairs. Depending on the performed action, the motion trajectories, shown in red, can vary: compare (a) and
(d). We capture the trajectories by uniformly distributing motion particles on the surface of the motion driver (human model). We record the direction and
speed of the movement of each motion particle: (d), (e), and aggregate their trajectories into signatures.

4 INTERACTION LANDSCAPES
An interaction landscape is a 4-dimensional (three spatial and one
temporal) interaction space of two shapes participating in an in-
teraction. The input to our algorithm is a 2-dimensional surface
mesh M of the observed static shape that can even be a triangle
soup and a time variant motion driver D (the partner moving object
or medium), both embedded in IR3. The motion driver encodes the
source of movement that initiates the interaction; for our tests we
used moving surfaces and simulations. We de�ne an interaction
landscape by specifying a set of sensors S = {s1, ..., sn } distributed
in the interaction space of M and motion particles A = {a1, ...,am }
originating from D. The interaction space U is a �xed size bound-
ing box with manually added extra space around the object, large
enough to encompass all objects of a particular class. Depending
on the type of motion, motion particles are either stochastically
sampled on the surface (e.g., for animations), or directly advected
by the simulation (e.g., for �uids). Moreover, we expect shapes of
the same class to share a common orientation and require a canon-
ical arrangement of the interaction landscape with respect to the
observed shape.

4.1 Motion Drivers
Our method provides a more general means for exploring di�erent
types of interactions represented by the motions of a motion driver.
To capture the variance of motions of shape parts relative to each
other and against the observed shape, we compute a distribution of
motion particles on the surface of the motion driver that covers the
entire surface but with an emphasis on salient regions.

We ensure this distribution of samples on the surface of D by
employing a bilateral farthest point sampling strategy. Given a
motion driver D, we �rst initialize the particle set with a single
position entry P = {p1}, with p1 being stochastically sampled on D.
We iteratively add the farthest point s on D to P until a speci�ed
number of particles is distributed. To capture salient features of
D, we use a bilateral distance measure, that enlarges distances in
regions of the surface with �ner details and thereby emphasizes
the sampling in these regions [14]. We add new samples to P by

computing a density function ρ over all mesh vertices based on their
local feature sizes (lfs) and de�ne the distance measure d̄(s,p) as

d̄(s,p) = d(s,p) · ρ, ρ(p) = 1/lfs(p)2 (1)

for each existing samplep ∈ P , where s is a particle sample candidate,
d(s,p) the Euclidean distance between s and p in IR3, and lfs(p) the
inverse density function that measures the saliency of p based on its
distance to the medial axis of the mesh [3]. Vertices of the mesh are
denoted as s and p, and the sample candidates s are selected from the
remaining set of vertices of the mesh. For each pi in P we compute
the distance according to Eq. 1. This de�nition is not symmetric
as we only consider the saliency of the points that already exist
in P . The lfs is the distance to the medial axis of the mesh, which
is insensitive to its resolution. To ensure plausible results for non-
smooth shapes, we approximate the medial axis as discussed in Li
et al. [29]. If the lfs value for a vertex is smaller than a threshold
δ it is revised as δ , which ensures non-zero values for all vertices.
Fig. 3 (e) and (f) illustrate the resulting farthest point sampling for
an animated surface mesh.

For �uid �ows and other Lagrangian simulations, positions for
motion particles are directly derived from the simulation. In our
implementation, �uid particles are randomly initiated. Hence, we
can stochastically sample a subset of motion particles from the set
of �uid particles. We track the selected motion particles until the
life time of the corresponding �uid particle has ended and initiate
a new particle at the �uid emitter. Other implementations of �uid
simulations might require more re�ned sampling strategies to assure
complete coverage of particle positions across the motion driver.
For most of our tests we used a few hundred to a couple of thousand
particles for both, moving surfaces and �uid �ows.

4.2 Sensor Placement and Particle Tracking
To track the movement of motion particles we distribute a set of
sensors S in the interaction spaceU . As we cannot assume any prior
knowledge about where an interaction is going to happen (i.e., for
simulations), we distribute sensors in the entire domain of U , by
subdividing the space with an Octree. To emphasize the importance
of motions in the vicinity of M , we produce a graded set of cubes
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Fig. 4. We capture interactions by defining sensor regions in the domain
around the observed shape (le�). We compute samples on its surface (middle)
and use them to produce a spatial subdivision of a graded set of cubes that
get finer close to its surface. Location and size of each sensor correspond to
the leaf nodes of an Octree that generates the sensor regions (right).

that gets �ner closer to the shape surface. As we cannot rely on the
tessellation of M to produce the levels of the Octree, we sample the
surface with a 3D variant of Poisson Disk Sampling. We randomly
select a triangle T of M and compute a sample candidate by

ec = (1 −
√
r1)Ta +

√
r1(1 − r2)Tb + (

√
r1r2)Tc , (2)

where Ta , Tb , Tc are the vertices of the triangle T in IR3 and r1, r2
are random numbers in [0, 1] [36]. We add ec to the sample set E
when ∀ei ∈ E : |ei − ec | > c , where c is a user de�ned threshold
that speci�es the minimum distance between the samples. We then
insert the samples into the Octree and subdivide each of its cells as
long as they contain more than one sample. Thereby, threshold c is
a control parameter for the depth of the Octree and hence implicitly
de�nes the number of cells (Fig. 4). For most of our tests we used
sample distances from 0.01 to 0.5, which roughly corresponds to 1%
of the width of the interaction space U .

Sensors are placed at the cell centers of the Octree, each observ-
ing a region de�ned by the corresponding cell. This allows us to
maintain cuboidal sensor regions, while the sensors are adaptively
placed according to their distance to the input shape. Intuitively,
motions close to the surface contribute the most in describing the
interaction; however, we found that distant motions, can also be
important for thoroughly describing an interaction. This can be
seen in Fig. 3, (a-c): the head tilt of the model produces unique mo-
tion trajectories (visualized in red) that help to discriminate sitting
interactions from other motion types. Moreover, the arrangement
of shape parts of M a�ects how the motion driver interacts with
the shape — some regions are more important than others. Employ-
ing an adaptive spatial subdivision allows us to place sensors with
sensing regions of di�erent sizes and thereby to capture particle
motions with varying degrees of precision.

Each sensor si de�nes a cuboidal region rsi of size qsi , which
tracks bypassing motion particles. We sample each particle’s motion
trajectory in rsi with a constant time step ∆t and retain its posi-
tion and velocity as it moves through the volume over time. After
capturing the interaction, we uniformly discretize rsi into cells ci, j
and average the positions and directions of all trajectory samples
that fall into the same cell ci, j resulting in the vector ®uci, j . For each
sensor si we build a vector �eldvi through trilinear interpolation of
the discretized sensor region. The set of vector �eldsV = {v1, ...vn }
represents the observed interaction of two participating shapes —
so we can now proceed to analyze the properties of the interaction
by detecting patterns in sets of such vector �elds.

4.3 Encoding Motion Flows

Each interaction is represented as a set of vector �elds. To facilitate
the comparison and clustering of interactions we de�ne a distance
measure between two sets of vector �elds V1 and V2, each repre-
senting one interaction of a motion driver and a static object. To
compute this distance we compare locally captured motion �ows.
We compute the gradient for each vector �eld vi ∈ V1,V2 to derive
a set of its �rst-order attributes [52], which associate a real value
to each cell ci, j . In particular, we measure the magnitude of the
attributes vorticity, dilatation, shear strain rate, and the gradient
tensor �eldT (see Appendix A for the precise de�nitions). Addition-
ally, we consider the magnitude of vector ®uci, j and the dot product
of ®uci, j with the closest surface normal of the mesh as two vector at-
tributes. Computing this set of attributes onvi allows us to quantify
the measured interactions I1 and I2 by computing a set of histograms.

Histograms. We compute a histogram for each attribute a of the
vector �eld vi , forming a set of histograms

H = {ha ,a ∈ A}, (3)

where ha is a normalized histogram over the attribute a (Fig. 5, a).
The histogram ha is built by binning the corresponding attribute
values of a vector �eld in the range [0, 1]. The contribution to the in-
dividual bins is weighted by an exponential scaling of the Euclidean
distance of the relative position pci, j of cell ci, j to the closest point
pM on the surface of M . We compute the value of a given bin mk
by

mk =
1
N

nc∑
j=1

tj exp(−(
‖pci, j − pM ‖

r
)2) · χE (tj ), (4)

where nc is the number of cells in the vector �eld, tj the attribute
value in the current cell, r the size of the sensor si and χE the
indicator function that associates χE = 1 if tj ∈ E and χE = 0
otherwise, where E = [ kN ,

k+1
N [. Each bin is normalized by N , the

number of all bins. The exponential weighting ensures that distant
motions have less in�uence than those in the vicinity of M . Finally,
we compute a set of global histograms

H = {ha ,a ∈ A}, (5)

where each histogramha represents the average of all histogramsha
of the attribute a across all vector �eldsvi ∈ V (Fig. 5, b). To account
for di�erently sized sensor regions we compute each binmk of ha as

mk =

∑n
j=1mjk r

3
j∑n

j=1 r
3
j
, (6)

where n is the number of histograms (and vector �elds) of one at-
tribute, mjk the k-th bin of the j-th histogram ha and qj , the size
of the corresponding sensor s . Additionally, we only consider sen-
sors that tracked motion particles to reduce the complexity. For the
sake of a clear presentation we describe the computation of the
histograms as a two stage process, however, the global histograms
can be directly computed from the vector �elds.
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(a) (b) (c)
Fig. 5. A 2D illustration of our descriptor: each sensor region is converted into a vector field that allows us to derive a set of six a�ributes describing pa�erns
in the captured motion flows, which we quantize by computing histograms for each a�ribute (a). We average the local a�ribute histograms over all vector
fields to produce a global histogram for each a�ribute (b). Finally, we define a similarity score between two interactions by computing the sum of relative
distances between two corresponding global histograms (c).

Interaction Descriptor. We de�ne our interaction descriptor
as a set of global histograms, encoding the motion patterns of an
interaction of a motion driver and a static object. We compare inter-
actions (Fig. 5, c) by computing the relative distance between two
sets of histograms as the similarity score:

d(V1,V2) =

∑
a∈AwaDB (ha ,ka )

|A|
, (7)

where wa is a weight for attribute a, |A| the number of attributes
and DB the Bhattacharyya distance between two global histograms
ha and ka , associated with V1 and V2 respectively. Operating on
the global histograms allows us to compare interactions, even if
the number of used sensors for each of them di�ers. We use the
Bhattacharyya distance, as it has proved e�ective at relating se-
mantically similar interactions and discriminating ones that di�er.
Moreover, we found the weights wa by experimentation; dilatation
magnitude and vector orientation turn out to be the most impor-
tant attributes, while shear strain rate and vector magnitude do not
contribute much to interaction comparison.
Time variance. A time sensitive descriptor allows to di�eren-

tiate interactions of varying speeds and time-steps, an important
property for dynamic interactions. However, while exploiting this
features is desirable in many scenarios, we aim at providing a means
of controlling the importance of temporal information. For example,
when grasping a cup, the speed of the grasp might di�erentiate
motions, while it can be irrelevant for classifying the shape. Our
approach can accommodate both modalities. When discretizing the
sensor boxes into vector �elds we compute a vector ®uci, j for each
cell ci, j in the vector �eld vi . This vector is the sum of all trajectory
vectors located in ci, j normalized by the factor F :

®uci, j =

∑
uk ∈ci, j uk

F
. (8)

To di�erentiate similar interactions with di�erent speeds, we choose
F = |ci, j |, e�ectively calculating the average vector, which re-
tains the velocity of the motion �ow. When we match similar
interactions independent of their temporal resolution we choose
F = ‖

∑
uk ∈ci, j uk ‖, which normalizes the vectors and thus only

maintains information of the motion �ow direction.

Alternative Approaches. Instead of averaging the captured mo-
tions we performed a number of experiments with more sophis-
ticated mathematical methods for �nding matching pairs of vec-
tor �elds, e.g., through Hungarian Optimization and Spectral Align-
ment [28] and tested di�erent distance measures such as Chi-Square
or Earth-Mover-Distance [41], but found averaging the signatures
performs better on our data sets. Moreover, we employed Dynamic
Time Warping (DTW) [9] to temporally align the histograms before
computing the signatures, however, we found that in most cases
DTW did not improve much the quality of the clustering.

5 IMPLEMENTATION AND DATASETS
We implemented our method in C++ with OpenGL and GLSL. The
system was deployed on a desktop computer with an Intel Xeon
processor clocked at 3.7 GHz, with 32 GB RAM and an NVIDIA
GTX 980 GPU. Results shown in the paper were generated with our
own framework.

We focus on capturing time-variant interactions of one or multiple
motion drivers and a single observed object. The motion trajectories
are generated by tracking the motion driver (surface or particles) and
by updating the corresponding motion particles e�ciently through
graphics hardware. Depending on the number of motion particles
on the surface and the amount of tracked trajectories, this can be
done at interactive rates. We exploit the interactivity of our system
to provide the user with control of capturing the motion trajectories.
We provide access to the control parameters, such as the number
of motion particles, sampling speed of simulations and animations,
and parameters for the �uid simulations, e.g., velocity, viscosity, and
surface tension.

The initialization step is done during preprocessing and the most
time demanding step is the farthest point sampling strategy of the
motion driver that is currently implemented without any acceler-
ation and has O(n2) complexity, where n is the number of mesh
vertices. We compute the local feature size (lfs) as the approximated
medial axis de�ned in Li et al. [29]. The most demanding part of the
runtime module is the tracking of motion particle trajectories. We
test if a motion particle is contained in a sensor volume and capture
its motion trajectory, resulting in at worstO(mn) complexity, where
m and n is the number of sensors and particles, respectively.

We measured the sampling of motion drivers with 80–600 seconds
(with 2k particles as the upper limit) and 2–20s for observed objects.
Depending on the recording time, we capture around 100k–8M
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(a) (b) (c) (d) (e) (f)

Fig. 6. The simulation of a humanoid hand grasping small scale man-made objects: cup (a), phone (b), and bo�le (c). The motion trajectories indicate a series
of interactions performed on the corresponding object. Interactions of a fluid and a cup: the SPH fluid particles are poured into a cup (d), and their trajectories
are captured (e). The trajectories of a stirring motion from a di�erent interaction (f).

(a) (b) (c) (d) (e)

Fig. 7. Real world interactions: we used the SceneGrok [Savva et al. 2014] dataset which includes 45 RGB-D captures in 14 environments (a) to capture motion
trajectories of humans (b) performing interactions that can be categorized into 8 classes. (c-e): motion capture data of a human interaction with physical
objects can also be used in our framework.

Motion Driver Object Sensors Trajectories Signature
Fig. MP MT MY OS OT S OL DS T TS ST
3 (a) 2.0k 552s AN 0.7k 0.40s 2.6k 8 6 17k 991k 0.54s
3 (b) 2.0k 552s AN 0.3k 0.20s 1.6k 8 6 13k 896k 0.39s
16 (*) 2.0k 581s AN 1.1k 0.43s 3.3k 8 6 14k 907k 0.65s
6 (e) 2.0k - FL 5.5k 2.23s 17.7k 7 5 28k 601k 2.82s
8 (*) 2.0k - FL 3.6k 1.76s 4.5k 8 10 10k 242k 1.74s

16 (†) 2.0k - FL 1.8k 0.65s 4.8k 6 6 20k 570k 0.65s
17 (*) 2.0k - FL 0.8k 0.21s 2.9k 8 10 22k 566k 0.57s
6 (a) 1.5k 161s GR 0.9k 0.56s 3.2k 7 5 18k 201k 0.81s
8 (†) 1.6k 154s GR 1.6k 0.75s 5.6k 8 5 21k 294k 1.63s
7 (a) 1.8k 80s SG 1.8k 1.75s 6.6k 10 15 51k 639k 1.11s
7 (d) 2.0k 119s MC 0.5k 0.18s 2.1k 9 8 5k 79k 0.34s

Table 1. Details on the processed interactions of some of the figures
shown in the paper; MP=Motion Particles, MT=Motion Driver Sam-
ple Time, OS=Object Samples, OT=Object Sampling Time, S=Sensors,
OL=Octree Level, DS=Domain Size, T=Trajectories, TS=Trajectory Sam-
ples, ST=Signature Time. The table is sorted by the type (MY) of mo-
tion driver: AN=Animation, FL=Fluid Simulation, GR=GraspIt! Simulation,
SG=SceneGrok, MC=MotionCapture. We sampled motion trajectories with
∆t = 25ms and set the sample distance for the observed object to 0.1.

trajectory samples which roughly amounts to 10–80MB of motion
data. Computing the signatures, which involves calculating vector
�elds and their corresponding histograms from the trajectories takes
0.30–3.0 seconds. Table 1 provides details on the complexity of some
of the interactions shown in the paper.

5.1 Datasets
Shapes can interact in a variety of ways, which makes comparing
and aggregating them a challenging task. To show the versatility
of our system we employed data from various sources. Simulations
and RGB-D data provide more meaningful signatures compared to
precomputed data sets. This is mostly because rigged animations
and motion capture data cannot be easily acquired, resulting in a
sparse representation of an interaction when used for computing

the distances. Simulations can be used with arbitrary input meshes
and can dynamically adapt. Moreover, we found that aggregating
repeated interactions of the same two participating shapes improves
the quality of the resulting signatures.

Simulations. We explored two di�erent types of simulation.
First, we explored interactions of a human hand grasping objects. We
used the GraspIt! simulator [40], which is a publicly available tool
for simulating grasping motions of human and robot hand designs.
It accommodates arbitrary input meshes and detects the quality
of grasping con�gurations by simulating collisions of hands and
obstacles. We used GraspIt! to simulate the interaction of human and
robotic hands with small scale man-made objects, e.g., cups, cellular
phones, and books (Fig. 6, a-c). We do not simulate any advanced
e�ects, such as force closure or precision grasps, but instead rely on
GraspIt!’s support for detecting collisions and determining contact.

Second, we simulated �uids with Smoothed Particle Hydrodynam-
ics (SPH) [34]. Unlike Eulerian approaches, particles are trackable
in 3D space and thus easily allow detecting �uid-obstacle collisions.
We randomly select �uid particles to capture motion trajectories
of the �uid �ow. We used SPH to explore objects interacting with
�uids, such as a �uid poured in a cup, and wind �elds, such as planes
and cars. Fig. 6 (d-f) and 8 (middle row) show examples of �uid �ows
and the captured motion trajectories.

Animations. To account for full-body interactions of humans
with large scale rigid objects such as furniture, we used animated
humanoid meshes and motion captured data. We employed models
from Adobe’s Mixamo [1] model repository that provides a large
number of humanoid models rigged to perform certain actions,
e.g., jumping, sitting on a chair, or walking. We manually �tted
these models to object meshes and captured their motion data when
performing the prede�ned action. Fig. 11 shows three human models
performing di�erent motions.
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Motion Capture and RGB-D. To show that our method works
with real-world data, we employed the RGB-D scans from Scene-
Grok [42] and motion capture (MoCap) data from the KIT Whole-
Body Human Motion Database [24], illustrated in Fig. 7. The Scene-
Grok dataset contains 45 RGB-D captures in 14 environments rep-
resenting humans performing interactions that can be categorized
into 8 di�erent classes. We use the captured environment as static
object and build a humanoid mesh that is updated based on the
provided skeleton positions and used as the motion driver.

The MoCap dataset includes high-quality human whole-body
motions that involve human-object interactions. In particular, we
explored 10 sitting interactions each with 3-4 objects. To generate
a surface model we �t the human body model (template mesh) [4]
to MoCap data points. Speci�cally, we embedded a skeleton to the
template using automatic rigging software [7] and scaled the body
segments of the template to �t the body shape of the captured
subject. For both data types we sample point locations from the
produced surface mesh (Section 4.1) which is continuously updated
to drive motion to capture interaction trajectories.

6 RESULTS, EVALUATION AND APPLICATIONS
We have introduced a novel descriptor for aggregating time-variant
interactions of arbitrary shapes and motion drivers for 3-dimensional
spaces. Unlike previous approaches we are not limited to static
scenes and rigid surfaces but instead allow and exploit time vari-
ance for interactions. In this section we show results, provide an
evaluation of our method and discuss its performance against other
state-of-the-art shape and interaction descriptors. Moreover, we
show that knowledge of interactions informs knowledge of the
shape function that can be employed for shape classi�cation and
saliency estimation.

6.1 Results
Fig. 8 (top row) shows two multidimensional scaling (MDS) embed-
dings of simulated interactions. We see a plot of grasping interac-
tions from Graspit! (left), objects in wind tunnels (middle), and a
clustering of motion capture interactions (right). For both exper-
iments our descriptor provides a meaningful aggregation of the
interaction of shapes that allows us to relate and even retrieve them
according to their function (Fig. 16). For the wind experiment, bicy-
cles and motorbikes share some overlap due to their similarities in
both their function and shape.

For most of our tests we randomly selected models from the
Modelnet [51] and ShapeNet [11] model repositories; our database
includes 157 objects of 20 classes. We tested our framework with
an automated setup that loads scene �les with the speci�cation
of motion driver and observed object. We run the interactions for
around 60 seconds to capture enough trajectories; animations and
Graspit! sets are tracked for their entire duration. To capture the
interaction of cars, planes and motorbikes with wind �elds we setup
wind tunnel scenes with �xed particle emitters. For Graspit! we
randomly chose the positioning of the hand relative to the observed
shape for the simulation and aggregated the interaction into a data
set readable by our framework.

Bottle
Bowl
Camera
Drinkware

Bag Bicycle
Car
Motorbike
Plane

Sit Down Chair
Sit Down Stool
Stand Up Chair
Stand Up Stool

Fig. 8. Top: multidimensional scaling (MDS) plots of isolated clusters of
categories. Le�: interactions of simulated grasps from Graspit! and small
scale objects. Middle: a plot of interactions of objects in wind tunnels. Right:
motion captures of a human si�ing on furniture. Our method generates
discernable clusters, objects of overlapping classes share functional com-
monalities, also noticeable from their visual appearance. Middle + bo�om:
objects and their motion trajectories used for the MDS embeddings.
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Fig. 9. Le�: a subset of orientations of the motion driver around the up-
axis of the observed shape. Right: a color-coded matrix that visualizes
the distances between each of the configurations. We performed three
experiments: rotation of the object around the up-axis (T1), both of the
other two axes (T2) and the rotation of the motion driver (T3).

Fig. 9 illustrates the behavior of our descriptor with respect to
variations in the orientation of observed object and motion dri-
ver. On the left we show a subset of arrangements of a hand po-
sitioned around the up-axis of the cup. The color-coded distance
matrix (right) visualizes the distances of all scenes we used in this
experiment. We tested 58 (29 bottle, 29 mug) scenes representing
di�erent orientations of the observed object along the up-axis (T1),
both of the other axes (T2), and of the motion driver (T3). As we use
global histograms to discriminate di�erences in the interactions,
our descriptor is mostly agnostic to variations in the arrangements
of shapes and involved motions.

Fig. 10 shows a result of ten scenes of one and two motion dri-
vers interacting with a single static object. Our method allows to
capture several interactions at the same time and to encode them as
a meaningful signature. The image on the left shows the setup for
this experiment. A grasping motion and a �uid are both interacting
with a cup as the observed model. The MDS embedding on the
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Pour
Stir
Grasp
Grasp + Pour
Grasp + Stir

Cup Mug

Fig. 10. Encoding two motion drivers. Le�: the hand and the fluid are
interacting with the observed cup at the same time. Right: a MDS embedding
of multiple scenes showing the e�ect of using two motion drivers.

2 3 4 5 6 7 8

(a) (d) (b) (c) Avg 
Speed

Drunk TV
Injured TV
Drunk TN
Injured TN

Fig. 11. Top le�: relative distances of human-chair interactions (Fig. 3 a-
d) showing the e�ect of normalizing (dashed lines) or emphasizing (solid
lines) the velocity of an interaction. Taking the speed into consideration
allows us to even di�erentiate subtle motions. The MDS embedding (top
right) shows 20 animations of "drunk" and "injured" walks from the Mixamo
model repository (bo�om) where we computed the distances with (TV) and
without (TN) time variance.

right shows that our method allows to produce a more principled
clustering of the interactions when two motion drivers are used.

Finally, our descriptor enables to di�erentiate interactions based
on their speed. Fig. 11 (top, left) shows the relative distances of
human-chair interactions shown in Fig. 3 (a-d) with di�erent speeds.
As can be seen in the diagram normalizing or emphasizing the veloc-
ity in the computation yields di�erent results. Taking the velocities
into consideration acts like a switch that allows to further di�er-
entiate subtle variations in the motion �ows. The MDS embedding
(top right) shows 20 animations of "drunk" and "injured" walks from
the Mixamo model repository (bottom) where we computed the
distances with (TV) and without (TN) time variance (Section 4.3).
Taking velocities into consideration yields �ner clusters while nor-
malizing the motions causes a stronger grouping.

6.2 Evaluation
Unlike previous methods, our descriptor uses time-varying data.
Therefore, comparing it to existing techniques only has limited

0.0
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External
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Fig. 12. Comparison of di�erent se�ings for the number of motion particles
and sensors in our framework. Top: the number of motion particles (MP);
bo�om: the number of sensors defined by the levels of an Octree (OL) and by
a uniform grid (G). The diagrams show the relative distances of interactions
within the same group (internal) and across di�erent groups (external). We
used five interactions per category, where we used di�erent animations as
motion driver for the interaction with chairs and beds (si�ing, lying) or the
floor (walking).

meaning. However, we measure its e�ectiveness for common shape
classi�cation and retrieval tasks. For these evaluations we employ
precision and recall queries on our data set and compare the per-
formance to existing descriptors on the same task, but with static
scenes. Additionally, we discuss a number of experiments to show
the e�ect of parameters, e.g., the number of motion particles and
sensors, speci�ed in our framework.

Parameters and Method. For most of our tests we distributed
between a few hundred and a couple of thousand motion particles
on moving surfaces or advect them directly through the simulation.
We tested di�erent settings for the number of motion particles
and sensors and found that using only a few particles generates
sparse motion trajectories that do not provide enough data to extract
meaningful signatures. On the other hand, placing many particles
does not improve the results because of the discretization of sensor
regions into vector �elds. We computed vector �elds of sizes 43, 83,
and 163 and found that the method is somehow independent to the
resolution in this range, however, size 83 performs best.

Fig. 12 shows the e�ect of di�erent settings for the numbers
of motion particles and sensors. We evaluated these changes by
comparing the relative distances of three sets of animations (sitting,
lying, walking) each containing �ve interactions. The descriptor
is most e�ective when it di�erentiates interactions from the same
group from those of di�erent groups. Therefore, we measure the
distance of interactions within the same group (internal) and across
di�erent groups (external). The best results were achieved using
2,000 motion particles and sensors generated by an Octree of level 7
or 8, which corresponds to about 3k active sensors for a domain of
size 6 and an object sample distance of 0.1. Further increasing the
number of the particles and sensors did not provide signi�cantly
better results. Additionally, we measured the e�ectiveness of using
an Octree compared to a uniform grid with di�erent cell sizes.

ACM Transactions on Graphics, Vol. 9, No. 4, Article 39. Publication date: March 2017.



39:10 • Pirk, S. et al

Recall
0.2 0.4 0.6 0.8 1.0

Pr
ec

is
io

n

0.0

0.2

0.4

0.6

0.8

1.0

LFD
IBS
ICON
OUR

Fig. 13. Precision and recall diagram showing the performance of our de-
scriptor compared to the LFD, IBS and ICON.

Comparison. To evaluate our method, we used the Interaction Bi-
sector Surface (IBS) [53] and the more recently introduced Interaction
Context (ICON) [22] descriptors, both of which describe interactions
of groups of spatially arranged shapes by measuring the geometric
properties of intersection surfaces between a center object and each
of its surrounding shapes. ICON additionally provides Interaction
Regions (IR) to facilitate functionality descriptors on these datasets
that allow to classify shapes based on their function. However, both
approaches only operate on static scenes of two or more partici-
pating shapes, which makes a direct comparison with our method
di�cult.

To compare IBS and ICON with our method we selected sets of
animations and simulations in our dataset and converted them to a
series of static scenes, by selecting snapshots of the motions. For
each series, we selected pairs of motion driver and object, where
the motion driver is closest to the surface of the observed shape and
used this con�guration as the input. We tested this approach on six
categories: bags, bottles, and cups (grasping); chairs, benches, and
beds (animations) which are composed of 65 time-variant scenes.
Fig. 13 shows the precision and recall diagram. Our method allows
to retrieve objects more reliably than other descriptors. Moreover,
it returns objects that share the same functionality, even if their
geometry di�ers.

We also used the light-�eld descriptor (LFD) [13] to evaluate our
method as it provides a baseline for visual similarity based shape
retrieval. It determines the similarity of two given shapes by their
visual appearance. However, due to the semantic gap between ge-
ometry and function, shapes with the same functionality potentially
show large geometric variations. Consequently, the performance
of LFD is inferior compared to our method, with a precision under
50% for a recall of 60% (Fig. 13). Moreover, our method is capable of
retrieving objects that have similar functionality, which LFD cannot
reproduce.

Fig. 14 shows the evaluation of our method and ICON on the
RGB-D scans from Savva et al. [42]. The dataset includes labeled
interactions of a human in an environment captured from RGB-D
scans. We use the provided motion information (captured skeleton)
to build a stick �gure mesh to sample and advect motion particles.
The reconstructed environment mesh represents the observed object.
We capture each type of interaction for the duration provided in the
dataset. For ICON we used the �gure mesh to compute the IBS and
RS with the environment mesh.
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Fig. 14. A set of interactions from SceneGrok showing the interaction of
a human with an environment (top). Compared to ICON our method pro-
duces similar results with respect to distances across di�erent classes of
interactions (external) while it performs be�er in discerning interactions of
the same class (internal).
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Fig. 15. Top row: multidimensional scaling (MDS) plots of our method (le�)
and ICON (right). While ICON can only di�erentiate the types of inter-
actions, our method also allows to discriminate them according to their
speed. Bo�om row: we used three di�erent interactions for this experiment
at di�erent speeds (1x, 2x, 4x).

Although our descriptor does not produce signi�cantly di�erent
distances compared to ICON, it emphasizes the di�erence between
interactions of the same groups (internal) and across di�erent groups
(external), with a ratio of 8.1 (ICON) to 11.2 (our) for the average
distance. However, processing RGB-D scans poses a challenge in
that they contain a lot of noise; the location of skeleton joints often
jumps from frame to frame. To constrain these artifacts we only use
sequences close to the interaction without considering transitions
between them. This explains the similarity to ICON as many of the
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interactions (e.g., Read Book or Rest Feet) do not show signi�cant
amounts of motion. In case reliable motion information is available
(e.g., Walk Floor) our descriptor provides better results.

Fig. 15 illustrates the advantage of exploiting motions for discrim-
inating interactions. We captured three animations of humanoid
meshes interacting with static objects at di�erent speeds (bottom
row). As can be seen in the embedding space (top, left), our method
allows to discern the type of interaction (punch, kick, vault) as well
as variations in the speed at which they are performed.

Other descriptors do not consider speed as feature, which is illus-
trated in Fig. 15 (top, right). We used ICON for an evaluation on our
datasets by taking static snapshots of the motion driver sampled at
relative temporal distances of the animation. Each static snapshot is
a similar object-motion arrangement, independent of the variations
in speed. Hence, ICON can di�erentiate the type of interaction, but
not the variations of the motion. The MDS plot on the right visual-
izes the interactions shown on the left. All static snapshots of the
same interaction appear the same to ICON and are thus positioned
at the same location in the embedding space.

It is important to note that our descriptor, although designed for
motion comparison, provides comparable results to descriptors that
are designed for static scenes.

6.3 Applications
To demonstrate the e�ectiveness of our interaction descriptor we
illustrate its application for shape classi�cation and saliency esti-
mation. In particular, we perform tests by querying objects from
a dataset, by estimating salient regions of shapes based on their
interaction response, and by analyzing motions to predict the corre-
sponding type of interaction. It is important to note that we expect
shapes of the same class to share a common orientation and require
a canonical arrangement of the interaction landscape with respect
to the observed shape. Objects can store signatures of multiple
interactions with various motion drivers.
Shape Retrieval. We quantify the performance based on the

quality of shape retrievals from a dataset containing groups of la-
beled shapes (157 objects, 20 classes). Each object in the database
stores a signature of the interaction with a motion driver that we
manually assigned to each class. We select an unknown query object
and perform an interaction with the same motion driver. Finally,
we determine the precision and recall of shapes in the database by
searching for the closest matches using the relative distance (Sec. 4.3
and Fig. 13) and by counting true and false positives until we recall
all shapes from a given class. Fig. 16 shows the result for some of the
objects used for this experiment. We query our dataset with an input
shape (blue), right to it we see the returned shapes in prioritized
order (from left to right). Except for the failure case of the wineglass,
our method returns semantically similar shapes (an object is a chair
because you use it as a chair). Unlike the current approaches for
describing static object relationships, capturing interactions as con-
tinuous motions implicitly reveals the a�ordance of the observed
shapes in a more principled way. Although we rely on the speci�c
arrangement of object and motion driver, this experiment empha-
sizes the potential of our method, as we are able to retrieve shapes
that share similarities in their form and function.

Fig. 16. Visual comparison of models retrieved by our descriptor. The query
object is shown in blue, the closest models according to our descriptor to
the right; the retrieved objects share similar properties in descending order.
The motion drivers used for this experiment were: si�ing animation (chairs),
fluid simulation (bicycles), grasping simulation (bo�les, bags).

Fig. 17. A comparison of surface salience estimations of our approach (top)
and Lee et al. [2005] (bo�om). Salient regions are highlighted as color overlay,
red indicates a high response to the performed interaction, blue identifies
uninvolved areas. The motion drivers for this experiment were: side grasp
(flask), wind (car), top grasp (basket), animation (chair), wind (plane).

Saliency Estimation. Shapes are often synthesized without con-
text and without knowledge about the semantic identity of their
parts, making predictions on their functional use a di�cult problem
in structure-aware modeling. Previous methods proposed �nding
salient features of shapes through analyzing their geometric repre-
sentation [17, 44], however, they only operate on shapes in isolation.
Kim et al. [25] proposed to predict salient features by �nding con-
tact points of human agents interacting with shapes; their method
explicitly focuses on human-centric salience estimation.

We track interactions as continuous events in the interaction
space of two shapes. We not only know where the motion driver is in
direct contact with the observed shape, but also how it approaches its
surface, or even how it initiates the interaction. We estimate salient
regions by mapping the motion signature data to the geometry of
a model. We �nd the sensor region for each shape vertex and its
corresponding vector �eld. The saliency is measured for each vertex
of the observed shape by computing the weighted sum of vector �eld
attributes of the cell that contains the vertex. The weight for each
attribute was found through experiments (Section 4.3). Additionally,
we de�ne a spherical region around the center of the current cell and
include all adjacent cells with a distance smaller than the speci�ed
radius in the computation. We assign the normalized weighted
sum to each vertex as the saliency measure. Fig. 17 (top) shows a
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visualization of salient regions in direct comparison with the surface
curvature based approach of Lee et al. [27] (bottom). Although we
do not conclude that our saliency estimation provides better results,
we would like to emphasize that an interaction-based estimation is
a more general means that provides meaningful hints towards high
level saliency detection. Compared to existing methods that solely
rely on analyzing the geometry for �nding salient regions, exploiting
interaction information provides more details of the observed object
to the cost of a more complex setup.
Shape Correspondence. Matching correspondences of seman-

tically similar parts remains a challenging problem in many areas,
such as shape completion, and segmentation, similarity assessment,
or structure-aware modeling. To test our descriptor on this task, we
�nd salient regions of shapes of the same category and determine
the sum of their di�erences. Vertices of participating meshes are
inserted into a uniform grid and the saliency value assigned to each
vertex is used for the computation. Regions with the minimal sum
of these di�erences can be de�ned as corresponding regions. This is
similar to what Kim et al. [25] de�ne for human-centric interactions.
We can identify multiple interactions on the same object (e.g., grasp-
ing a cup from above or from the side). By �nding the best match
between these two kind of interaction signatures, our method allows
us to detect corresponding regions of geometrically di�erent shapes.
Fig. 18 illustrates the results between a set of cups. The bottom row
shows the result of an interaction transfer experiment. Here we
capture a sitting interaction (animation) for the three chairs (a), (b),
and (d). The results of (a) is transfered to the other chairs (c), (e).
Interaction Prediction. Finally, we show that exploiting time

variations of interactions enables new types of applications that
cannot be supported by static interaction descriptors. Our method
can be used to predict the type of an interaction when only the �rst
few seconds are known. To perform this experiment, we captured
interactions and divided the motion trajectories into N = 8 time
spans, for which we independently compute a signature. The k’th
signature of an interaction is computed based on the trajectories
captured between the beginning tbeдin and tbeдin +

k
N d , where

d is the duration of the interaction. We found that computing the
signatures from subsequent parts of the interaction is more reliable
than comparing the individual time spans. The set of signatures for
each interaction is stored in a database. We used 23 interactions of
3 categories (sitting down, walking, grasping) to produce a total of
184 signatures. To perform the prediction of an unseen interaction
we progressively calculate the signature of the already available part
of an interaction and compare it to the signatures in the database
that cover the same number of time spans.

The performance of predicting the type of an interaction is vi-
sualized in Fig. 19. On the left we show a walking motion with
color-coded trajectories. Each color represents a temporal sequence
of the interaction. The PR diagram on the right shows how the
performance gradually increases the more time spans become avail-
able. The graphs show the average precision and recall values for
all interactions used in this experiment. With only one segment
available we achieve a precision of 60% with a recall of 50%. The
color in the PR diagram matches the color of the corresponding
sequence up to where we compute the signature for the interaction.

(a) (b) (c) (d) (e)

Fig. 18. An example of matching correspondences with our descriptor. We
can apply the same interaction to di�erent shapes and find their their
corresponding regions if saliency is shared among the shapes. The top row
shows three cups with color coded corresponding regions, handle (grasp
from the side) and rim (grasp from top). The bo�om row shows the result of
an interaction transfer experiment. We capture a si�ing interaction for the
three chairs (a), (b), and (d). The captured interaction of (a) is transfered to
the other chairs (c), (e).
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Fig. 19. Interaction prediction: we divide interactions into equidistant time
spans (le�, start: blue, end: red) and store the signature for each part in a
database. We predict an interaction by progressively comparing sequences
of an unseen interaction to the previously encoded segments in the database.
Right: a PR diagram that visualizes the quality of the interaction prediction.
More sequences allow to more reliably predict an interaction. The color of
the curves in the PR diagram matches the color of the sequence up to where
we compare the interaction.

Current descriptors for interactions provide a means for analyz-
ing and predicting the functionality of objects, but do not allow
to predict interactions as dynamic motions. Unlike the previous
approaches, our descriptor analyzes the motion �ow and allows to
reliably predict the type of interaction. Predicting interactions can
be useful for the motion planning of autonomous agents and for
objects in smart environments.

6.4 Discussion and Limitations
The main limitation of our approach is the absence of more mean-
ingful interaction data. Prede�ned animations do not provide the
same complexity in the motions found in the real-world or simu-
lated data sets. Moreover, some of our current observations rely on
small groups of prede�ned data resulting in a sparse representation
of the captured interactions. It would be interesting to overcome
this limitation and to test our method with more data from RGB-D
video sequences of real-world interactions.
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Unlike IBS [53] and ICON [22], we do not provide a hierarchical
aggregation of interactions, but only consider the entire interaction
landscape of the observed object, which could yield less meaningful
signatures for complex interaction of many objects. We explicitly
limit ourselves to a single object interacting with one or more mo-
tion drivers and would like to address more complex interaction
concepts as future work. Moreover, our method is constrained by
the need to place motion particles on moving surfaces. While this
does not pose a problem for Lagrangian simulations, we rely on an
expensive sampling of surfaces to �nd motion particle positions for
solid objects. Moreover, only sampling a surface causes imprecision
in capturing the motion trajectories and the corresponding inter-
action. However, capturing interactions through tracking complex
geometric surfaces or even volumes does not yet seem feasible.

Instead of employing vector �elds to quantize motions, potentially
more re�ned representation exist. For example, directly de�ning
and exploiting properties on the motion trajectories could be an
interesting endeavor. However, to our knowledge, no method exists
to readily explore such attributes of time-variant trajectories as
geometric entities. Just �nding correspondences or common parts
within a single trajectory is a di�cult problem that cannot be solved
easily and at the required scale. Compared to more lightweight
approaches that directly operate on sensor data, employing vector
�elds is less prone to artifacts and noise in the input data. The vector
�elds regularize the signal of the motion �ow and can be e�ciently
analyzed. Our descriptor is based on six attributes and allows us to
encode �ner nuances of the motions compared to, e.g., capturing
the properties of normals of propagating surfaces as discussed in
Oreifej and Liu [35].

7 CONCLUSION AND FUTURE WORK

We have presented a novel general-purpose descriptor that exploits
time-variant properties of interactions observed in 3-dimensional
spaces. We de�ne interaction landscapes as the interaction space of
two objects participating in an interaction. We distribute sensors in
this interaction space and place motion particles on moving surfaces
to track their movements. Our framework allows capturing interac-
tions from a variety of sources, including simulations, animations,
motion capture, and RGB-D scans. By encoding the resulting mo-
tion trajectories of the tracked particles, we can acquire information
that supports a more complete understanding of shapes and their
function. Moreover, we have shown that the signatures of observed
interactions can be used to classify shapes and to �nd their salient
regions.

Capturing the interaction of objects is essential in order to learn
more about shapes and their function. Moreover, we believe that a
general purpose descriptor provides a valuable means for exploring
and classifying interactions with many potential avenues of future
work. In this work we speci�cally limited ourselves to encoding
static interaction landscapes of one motion driver and an observed
object. However, in future work observing objects in dynamically
changing interaction spaces seems like an interesting endeavor.
Furthermore, the interactions of entire groups of entities, e.g., as
can be found in crowds or swarms, could be explored.

An interesting avenue for future work would be to explore our
descriptor for other, non-proximal, interaction types as many inter-
actions do not happen through object-object contacts, but remotely.
This spans from physiological phenomena, such as capturing views
or non-verbal human behavior to non-contact physical interactions,
such as the transport of light or the e�ect of magnetism. Our method
provides a general means for encoding interactions applicable to
many domains. Finally, we would like to explore more elaborate
methods to better encode �ner nuances in the captured motion
�ows and to thereby enable our descriptor for more evolved appli-
cations in shape analysis, such as functional correspondence, shape
synthesis, and symmetry detection.
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A FIRST-ORDER VECTOR FIELD ATTRIBUTES
We analyze the captured motion �ows by computing a set of �rst-
order attributes on a vector �eld. As shown in Xu et al. [52] the
gradient of a 3D vector �eldvi is an asymmetric 3D tensor �eld that
can be decomposed into symmetric S and asymmetricA components.
While the diagonal and o�-diagonal entries of S represents dilatation
and shearing respectively, the o�-diagonal entries of A measure
vorticity. Given the tensorT (p) of a point p ∈ vi , the decomposition
is de�ned as

T (p) = ©«
T11 T12 T13
T21 T22 T23
T31 T32 T33

ª®¬ =
©«

∂Vx
∂x

∂Vx
∂y

∂Vx
∂z

∂Vy
∂x

∂Vy
∂y

∂Vy
∂z

∂Vz
∂x

∂Vz
∂y

∂Vz
∂z

ª®®®®®¬
= A + S,

with S and A given by

S =
©«
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1
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1
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1
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1
2θ2

1
2θ1 ϵ3
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ω3 0 −ω1

−ω2 ω1 0

ª®®®¬ ,
where ϵi and θi represent the diagonal and o�-diagonal components
of S :

ϵ1 =
∂Vx
∂x

, ϵ2 =
∂Vy
∂y

, ϵ3 =
∂Vz
∂z
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+

∂Vy
∂z

, θ2 =
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and ωi the o�-diagonal entries of A:

ω1 =
1
2
(
∂Vz
∂y
−
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∂z
), ω2 =
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2
(
∂Vx
∂z
−
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∂x
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(
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−
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Based on this formulation, the attributes tensor magnitude Mt ,
dilatation magnitude Md , magnitude of shear strain rate Ms and
vorticity magnitude M−→ω are given by

Mt =
√

1
2
∑
T 2
i, j , Md =

√∑
ϵ 2
i ,

Ms =

√∑
θ 2
i , M−→ω =

√∑
θ 2
i ,

with i, j = 1, 2, 3. Additionally, we derive the attributes vector
orientation O , and vector magnitude M directly from the vector
�eld. In contrast to the approach of Xu et al. [52], we do not consider
the attribute pressure P , as it cannot easily be acquired for all motion
drivers in our framework.
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