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Abstract

Humans have a remarkable ability to predict the effect of
physical interactions on the dynamics of objects. Endowing
machines with this ability would allow important applica-
tions in areas like robotics and autonomous vehicles. In
this work, we focus on predicting the final-state dynamics
of 3D rigid objects, in particular an object’s final resting
position and total rotation when subjected to an impulsive
force. Our approach generalizes to unseen object shapes—
an important requirement for real-world applications. To
achieve this, we represent object shape as a 3D point cloud
that is used as input to a neural network, making our ap-
proach agnostic to appearance variation. The design of our
network is informed by an understanding of physical laws.
We train our model with data from a physics engine that
simulates the dynamics of a large number of shapes. Ex-
periments show that we can accurately predict the resting
position and total rotation for unseen object geometries.

1. Introduction

Humans have a fundamental intuitive understanding of
the dynamics of the physical world. Even at a young age,
we are able to understand and predict the effect of phys-
ical interactions with objects. This intuitive knowledge of
dynamics allows us to operate in previously unseen envi-
ronments, and interact with and manipulate objects encoun-
tered for the first time. Endowing machines with the same
ability would allow new applications in autonomous driv-
ing, home robotics, and augmented reality (AR) scenarios.

The 3D dynamics of objects can be predicted using well-
studied physical laws given precise properties and system
parameters (e.g., mass, moment of inertia, applied force).
In practice however, it is impossible to estimate all system
parameters, especially from non-contact sensory data. Fur-
thermore, simulating the physics of complex environments
requires exact specification of a partially-observed system,
and can be computationally expensive and imprecise.

Inspired by the generalizable ability of humans to intuit
object dynamics, we develop a deep learning approach to
predict the physical dynamics of unseen 3D rigid objects.

Learned dynamics has advantages over traditional simula-
tion as it offers differentiable predictions useful for opti-
mization. There has recently been a lot of interest in learn-
ing to predict object dynamics, but a number of limitations
remain. First, most prior work lacks the ability to generalize
to shapes unseen during training time [4], or lacks scalabil-
ity [9]. Second, many methods are limited to 2D objects
and environments [3, 6] and cannot generalize well to 3D
objects. Finally, many methods use images as input [7, 2]
which provide only partial shape information and entangle
variations in object appearance with physical motion.

Our goal is to learn to predict the final-state dynamics
of 3D rigid objects and generalize these predictions to pre-
viously unseen object geometries. To this end, we focus
on the problem of accurately predicting the final rest state
(position and total rotation) of an object (initially stationary
on a plane) that has been subjected to an impulse—a force
causing an instantaneous change in velocity. As a result of
this impulse, the object moves along the plane but friction
eventually brings it to rest (see Figure 1). This problem for-
mulation has surprisingly many nuances. The motion of an
object after an applied impulse depends non-linearly on fac-
tors such as its moment of inertia, amplitude of the force,
and surface friction. Furthermore, sliding objects could
wobble resulting in unpredictable motions. Learning these
subtleties in a generalizable way requires a deep under-
standing of the connection between object shape, mass, and
dynamics. Since this problem formulation is well-defined,
it allows us to better evaluate shape generalization with-
out worrying about other complex dynamics like collisions.
Yet, there are many practical applications, for instance, in
tabletop robotics where a differentiable final state prediction
is useful for planning actions (i.e. applied impulses) [8].

To solve this problem, we present a neural network that
takes the shape of an object and additional information
about the applied impulse as the input, and predicts the
final rest position and total rotation undergone through-
out the entire motion of the object. We use a 3D point
cloud to represent shape and use features extracted by Point-
Net [10]. This decouples object motion from appearance
variation making our method more robust. To train this
network, we simulate a large number of household objects



Figure 1. We study the problem of predicting the position Pf and total rotation θ of an object initially resting on a plane subjected to an
impulse J at position r (left). Our method can predict the dynamics of a variety of different shapes (right top) and generalizes to previously
unseen object shapes and impulses. One challenge of this is unpredictable 3D motion such as wobbling (right bottom).

from the ShapeNet repository [5]. Our network learns to
extract salient shape features from these examples. This al-
lows it to make accurate predictions not just for impulses
and object shapes seen during training, but also for unseen
objects in novel shape categories subjected to new impulses.

2. Problem Formulation
We investigate the problem of predicting the dynamics of

an initially stationary rigid object subjected to an impulse.
We assume the following inputs: (1) the shape of the ob-
ject in the form of a point cloud (O ∈ RN×3), and (2) the
applied impulse vector and its position. We further assume
that the object moves on a plane under standard gravity, the
applied impulse is parallel to the plane at the same height
as the center of mass, and that all objects have the same
friction coefficient, density, and restitution.

Our goal is to accurately predict the final rest position
(Pf ∈ R2) and the total rotation (θ ∈ R) (about the vertical
axis) of an object subjected to an impulse. Since the ob-
ject could undergo multiple 360◦ rotations before coming
to rest, the total rotation θ is often different from the rigid
rotation. While we parametrize the final object state with 2
translational and 1 rotational parameters, we do not restrict
the object motion to 2D. As shown in Figure 1, the object is
free to move in 3D as long as it does not topple over. We use
a point cloud to encode object geometry since it depends on
the surface geometry, making it agnostic to appearance, and
can be readily captured in the real-world.

Instead of solving the highly challenging unconstrained
3D dynamics prediction problem, we choose to specifically
model 3D motion along a plane and predict final rest state
(as opposed to multi-step [9]). This allows us to work on
a well-defined problem and to focus on gaining insight and
evaluating generalization to unseen object shapes without
complex interactions such as collisions. We do not allow
the object to roll on its side or to topple over, but varying
contact surface area from 3D wobbling (see Figure 1) re-

sults in complex trajectories. Unobserved quantities (e.g.,
mass, volume, moment of inertia, and contact surface) ad-
ditionally contribute to the difficulty of this problem.

3. Data Simulation

We use 3D simulation data from the Bullet physics en-
gine [1]. In each simulation, an object is placed at rest on a
flat plane and a random impulsive force is applied parallel to
the ground. The object eventually comes to rest. We record
the point cloud (1024 points), the magnitude, direction and
position of the applied impulse, and the final resting posi-
tion and total rotation. Friction coefficients and densities
are the same for all objects. We only record simulations
where the object does not fall over, but motion is not explic-
itly constrained in any way. Training objects are simulated
with a non-uniform random scale to increase shape diver-
sity. Simulated objects travel between 0.5 and 5 meters, and
can rotate from 0◦ to more than 2000◦ (5–6 rotations).

We synthesized multiple categories of datasets. There
are two primitive object datasets: the Box and Cylinders
datasets. There are four datasets which contain every-
day objects taken from the ShapeNet [5] repository (Mugs,
Bottles, Trashcans, and Speakers). These exhibit
wide shape diversity and offer a more challenging task.
Lastly, we have a Combined dataset which combines all
of the objects from the previous six to create a large and ex-
tremely diverse set of shapes. In total, we use 793 distinct
object shapes and ran 98826 simulations.

4. Method

To predict final rest position and total rotation after an
impulse, we use a neural network trained on simulated data.
We take a principled approach and inform the design of our
network based on our understanding of physical laws and
priors. We observe that the linear and angular velocities de-
pend on: (1) the applied impulse (J) magnitude, direction,



Figure 2. Model architecture. Our network predicts the final rest-
ing position and total rotation for a sliding object. + is concatena-
tion and MLP indicates multilayer perceptron.

position (r), and its angular impulse (r × J), and (2) the
shape of the object which affects its mass and moment of
inertia. We therefore base our network design on learning
important information related to the applied impulse and
shape of the object. Our network (see Figure 2) is composed
of two main branches whose output features are jointly used
to make a final position and rotation prediction.

Impulse Processing: The top branch in our network
is the impulse processing branch which takes the applied
impulse, its position, and 4 pairwise terms as input, and
outputs an impulse feature. The 4 pairwise terms are the
products of the components of the impulse with those of the
impulse position r; this helps the network learn the difficult
cross product r × J. The aim of this branch is to learn the
effect of the impulse and the angular impulse on the motion
of the object producing a final impulse feature.

Shape Processing: The bottom shape processing branch
is designed to extract salient shape features that are cru-
cial to making accurate predictions. Object geometry af-
fects both linear and angular velocities so the network must
develop notions of volume, mass, and inertia from a point
cloud. We use PointNet [10] to effectively learn this. As
shown in Figure 2, the object point cloud is fed to the Point-
Net classification network which outputs a global feature
that is further processed to output our final shape feature.

Prediction: After concatenating the impulse and shape
features, we jointly predict final position and total rotation
with a 6-layer multilayer perceptron (MLP).

Loss Functions: The goal of the network is to mini-
mize the error between the predicted and ground truth posi-
tion and rotation. We propose a relative loss: for translation
we penalize the relative distance between the predicted final
position P̂f and ground truth Pf : Lp = ‖Pf − P̂f‖/‖Pf .
For rotation we use a relativeL1 error between the predicted
total rotation θ̂ and the ground truth θ (and sum the denom-
inator for numerical stability): Lθ = (|θ̂ − θ|)/(|θ̂| + |θ|).
Our final loss is the sum of the two L = Lp + Lθ.

Figure 3. Comparison of performance on single object categories
(blue), the full Combined dataset (orange), and Combined
dataset with the evaluated category left out (green). Curves show
cumulative fraction of test examples under a certain error.

5. Experiments
Evaluation Metrics: For all experiments, we report

mean relative errors for position and total rotation. For
position, we use the same relative error used for the loss.
For rotation, we report a binned relative error ηθ = (|θ̂ −
θ|/b)/(d|θ|/be) where θ is the ground truth total rotation
and θ̂ is the prediction. For all results we use a bin of
b = 30◦. This metric prevents relative rotation error un-
fairly increasing when ground truth rotation is near zero.

5.1. Object Generalization

We perform object generalization experiments to eval-
uate whether the learned model is able to apply accurate
dynamics predictions to unseen objects—a crucial ability
for autonomous systems in unseen environments. For these
experiments, we split datasets based on unique objects such
that no test objects are seen during training. Furthermore,
the impulses applied for test objects are disjoint from those
in the training set. We evaluate models trained on both sin-
gle and combined categories.

Single Category: Results when a separate network is
trained for each object category are summarized by the blue
curves in Figure 3. For position, around 90% of predictions
for all object categories fall under 20% relative error, while
for rotation this number falls closer to 80-85%. This indi-
cates that the network is able to generalize to unseen objects
within the same shape category.

Combined Categories: Performance when training on
the Combined dataset then evaluating on all individual
datasets is shown by the orange curves in Figure 3. Per-
formance is similar to training on individual datasets and
even improves errors in some cases. This indicates that
exposing the network to larger shape diversity at training
time can focus learning on underlying physical relationships
rather than properties of a single or small group of objects.
In order to maintain this high performance, the network is
likely learning a general approach to extract salient physical
features from the diverse objects in the Combined dataset



Figure 4. Sample predictions from models trained on the Combined dataset with one category left out. Initial object state is shown in
shaded grey, ground truth final state is in transparent grey, and network prediction is in transparent red. Relative errors are shown.

rather than just memorizing how specific shapes behave.
Out of Category: Lastly, we evaluate performance on

the extreme task of generalizing outside of trained object
categories. For this, we create a new combined datasets
each with one object category left out of the training set.
We then evaluate its performance on objects from the left
out category. Results for these experiments are shown by
the green curves in Figure 3. The network is able to achieve
good results on all left-out object categories except for
Speakers. Speakers contributes the most unique ob-
jects to the Combined dataset by far (368 unique objects);
without them, the network may not see enough diversity in
training to perform well. Overall, this result shows that we
can still make accurate predictions for objects from com-
pletely different categories in spite of their shape not being
close to the trained objects. Some predictions from leave-
one-out trained models are visualized in Figure 4.

6. Limitations and Future Work

In this work, we took a different approach by predicting
the final state of a 3D rigid object instead of multi-step pre-
dictions. Future work should consider closing the loop by
predicting both the final state as well as multiple interme-
diate states. We ignore the physical parameter estimation
problem and assume constant friction and density. We also
ignore free 3D dynamics and complex phenomena such as
collisions which are important directions for future work.
We believe that our approach provides a strong foundation
for developing methods for these complex motions.

7. Conclusion

We presented a method for learning to predict the final
position and total rotation of a 3D rigid object subjected to

an impulse and moving along a plane. Our neural network
model is capable of generalizing to previously unseen object
shapes by operating directly on 3D point clouds.
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