
Predicting the Physical Dynamics of Unseen 3D Objects

Davis Rempe Srinath Sridhar He Wang Leonidas J. Guibas
Stanford University

Abstract

Machines that can predict the effect of physical interac-
tions on the dynamics of previously unseen object instances
are important for creating better robots and interactive vir-
tual worlds. In this work, we focus on predicting the dynam-
ics of 3D objects on a plane that have just been subjected to
an impulsive force. In particular, we predict the changes in
state—3D position, rotation, velocities, and stability. Dif-
ferent from previous work, our approach can generalize dy-
namics predictions to object shapes and initial conditions
that were unseen during training. Our method takes the 3D
object’s shape as a point cloud and its initial linear and an-
gular velocities as input. We extract shape features and use
a recurrent neural network to predict the full change in state
at each time step. Our model can support training with data
from both a physics engine or the real world. Experiments
show that we can accurately predict the changes in state for
unseen object geometries and initial conditions.

1. Introduction

We study the problem of learning to predict the phys-
ical dynamics of 3D rigid bodies with previously unseen
shapes. The ability to interact with, manipulate, and pre-
dict the dynamics of objects encountered for the first time
would allow for better home robots and virtual or aug-
mented worlds. Humans can intuitively understand and pre-
dict the effect of physical interactions on novel object in-
stances (e.g., putting a peg into a hole, catching a ball) even
from a young age [5, 28]. Endowing machines with the
same capability is a challenging and unsolved problem.

Learned dynamics has numerous advantages over tradi-
tional simulation. Although the 3D dynamics of objects can
be approximated by simulating well-studied physical laws,
this requires exact specification of properties and system pa-
rameters (e.g., mass, moment of inertia, friction) which may
be challenging to estimate, especially from visual data. Ad-
ditionally, many physical phenomena such as planar push-
ing [58] do not have accurate analytical models. Learn-
ing dynamics directly from data, however, can implicitly
model system properties and capture subtleties in real-world

physics. This allows for improved accuracy in future pre-
dictions. Using neural networks for learning additionally
offers differentiability which is useful for gradient-based
optimization and creates flexible models that can trade off
speed and accuracy. There has been increased recent inter-
est in predicting object dynamics, but a number of limita-
tions remain. First, most prior work lacks the ability to gen-
eralize to shapes unseen during training time [8], or lacks
scalability [31, 39]. Second, many methods are limited to
2D objects and environments [6, 11, 19, 51] and cannot
generalize well to 3D objects. Lastly, many methods use
images as input [38, 37, 16, 3] which provide only partial
shape information possibly limiting the accuracy of forward
prediction compared to full 3D input [42], and may entangle
variations in object appearance with physical motion.

Our goal is to learn to predict the dynamics of objects
from their 3D shape, and generalize these predictions to
previously unseen object geometries. To this end, we focus
on the problem of accurately predicting, at each fixed time
step, the change in object state, i.e., its 3D position, rotation,
linear and angular velocities, and stability. We assume that
the object initially rests on a plane and has just been sub-
jected to an impulsive force resulting in an initial velocity.
Consequently, the object continues to move along the plane
resulting in one of two possible outcomes: (1) friction even-
tually brings it to a rest, or (2) the object topples onto the
plane (see Figure 1). This problem formulation is surpris-
ingly challenging since object motion depends non-linearly
on factors such as its moment of inertia, contact surface
shape, the initial velocity, coefficient of restitution, and sur-
face friction. Objects sliding on the plane could move in 3D
resulting in wobbling motion. Excessive initial velocities
could destablize objects leading to toppling. Learning these
subtleties in a generalizable manner requires a deep under-
standing of the connection between object shape, mass, and
dynamics. At the same time, this problem formulation has
many practical applications, for instance, in robotic pushing
of objects, and is a strong foundation for developing meth-
ods to predict more complex physical dynamics.

To solve this problem, we present a neural network
model that takes the object shape and its initial linear and
angular velocities as input, and predicts the change in object

state—3D position, rotation, velocities, and stability (13
parameters)—at each time step. We use a 3D point cloud
to represent the shape of the object since it is compact and
decouples object motion from appearance variation, and un-
like other 3D representations can be easily captured in the
real world with commodity depth sensors. To train this net-
work, we simulate the physics of a large number of house-
hold object shapes from the ShapeNet repository [10]. Our
network learns to extract salient shape features from these
examples. This allows it to learn to make accurate predic-
tions not just for initial velocities and object shapes seen
during training, but also for unseen objects in novel shape
categories with new initial velocities.

We present extensive experiments that demonstrate our
method’s ability to learn physical dynamics that generalize
to unseen 3D object shapes and initial velocities, and adapt
to unknown frictions at test time. Experiments show the
advantage of our object-centric formulation compared to a
recent approach [39]. Finally, we show the ability to learn
dynamics directly from real-world motion capture observa-
tions, demonstrating the flexibility of our method.

2. Related Work
The problem of learned physical understanding has been

approached in many ways, resulting in multiple formula-
tions and ideas of what it means to understand physics.
Some work answers questions related to physical aspects
of a scene [7, 59, 29, 30, 27, 35], while others learn to in-
fer physical properties of objects from video frames [54,
52, 53, 36], image and 3D object information [33], or intu-
itive physics [26, 46]. We limit our discussion to work most
closely related to ours, i.e., learning to predict dynamics.

Forward Dynamics Prediction: Many methods that at-
tempt direct forward prediction of object dynamics take the
current state of objects in a scene, the state of the environ-
ment, and any external forces as input and predict the state
of objects at future times. Forward prediction is a desirable
approach as it can be used for action planning [21] and an-
imation [20]. Multiple methods have shown success in 2D
settings [18]. [19] uses raw visual input centered around
a ball on a table to predict multiple future positions. The
neural physics engine [11] and interaction network [6] ex-
plicitly model relationships in a scene to accurately predict
the outcome of complex interactions like collisions between
balls. [51] builds on [6] by adding a front-end perception
module to learn a state representation for objects. These 2D
methods exhibit believable results, but are limited to sim-
ple primitive objects. Learned forward dynamics predic-
tion can be useful for physical inference and system prop-
erty prediction [9, 60, 49, 25]. A differentiable physics en-
gine would facilitate this and has been demonstrated previ-
ously [12, 45, 22]. However, it is unclear if the accuracy of
these methods is sufficient for real-world applications.

Dynamics in Images & Videos: Many methods for
3D dynamics prediction operate on RGB images or video
frames [57, 43, 15, 13, 47, 14, 23]. [37] and [38] introduce
multiple algorithms to infer future 3D translations and ve-
locities of objects given a single static RGB image. Some
methods directly predict pixels of future frames conditioned
on actions [40]. [16] infers future video frames involving
robotic pushing conditioned on the parameters of the push
and uses this prediction to plan actions [17]. [4] study the
case of planar pushing and bouncing. In a similar vein, [3]
uses video of a robot poking objects to implicitly predict
object motion and perform action planning with the same
robotic arm. Many of these methods focus on real-world
settings, but do not use 3D information and possibly entan-
gle object appearance with physical properties.

3D Physical Dynamics: Recent work has taken initial
steps towards more general 3D settings [50, 31, 32, 56]. Our
method is most similar to [8] who use a series of depth im-
ages to identify rigid objects and predict point-wise trans-
formations one step into the future, conditioned on an ac-
tion. However, they do not show generalization to unseen
objects. Other work extends ideas introduced in 2D by us-
ing variations of graph networks. [44] decomposes systems
containing connected rigid parts into a graph network of
bodies and joints to make single-timestep forward predic-
tions. The hierarchical relation network (HRN) [39] breaks
rigid and deformable objects into a hierarchical graph of
particles to learn particle relationships and dynamics from
example simulations. Though HRN is robust to novel ob-
jects, it requires detailed per-particle supervision and results
are shown only on simulated data.

3. Problem Formulation
We investigate the problem of predicting the 3D dynam-

ics of a rigid object moving along a plane with an initial
velocity resulting from an impulsive force. We assume the
following inputs: (1) the shape of the object in the form of
a point cloud (O ∈ RN×3), and (2) the initial linear and
angular velocities. We further assume that the object moves
on a plane under standard gravity (see Figure 2), the friction
coefficient and the restitution are constant, the object has a
uniform density, and that the object eventually comes to rest
due to friction and the absence of external forces.

Our goal is to accurately predict the change in state
Tt

c (we omit the superscript for brevity) of the object at
each fixed time step t until it comes to rest or topples
over. Specifically, we predict the change in 3D position
(Pc ∈ R3), rotation (θc ∈ R3 where |θc| denotes the an-
gle, and θ̄c the axis), linear velocity (vc ∈ R3), angular
velocity (ωc ∈ R3), and binary stability state (s ∈ {0, 1})
for a total of 13 parameters. The stability state indicates
whether the object has toppled over. We continue to predict
object state even after toppling, but the motion of the ob-

Figure 1. We study the problem of predicting the 3D dynamics of an object with linear and angular velocities, vi and ωi (top left). Our
goal is to predict, at each fixed time step, the change in object state Tc, i.e., change in 3D position (Pc), rotation (θc), linear and angular
velocities (vc,ωc), and stability (s). Our method can predict the dynamics of a variety of different shapes (top right) and generalizes to
previously unseen object shapes and initial velocities. Our problem formulation presents many challenges including the unpredictable 3D
motion caused due to wobbling of objects under motion (bottom left), and object toppling due to destabilization (bottom right).

ject after toppling is stochastic in the real world making it
hard to predict accurately. For this reason, we focus evalua-
tion of model-predicted trajectories (see Section 6) on shape
generalization for sliding examples without toppling. As
shown in Figure 1, we model the 3D motion along a plane
but 3D object motion is unrestricted otherwise. The object
can and does exhibit complex wobbling motion or topples
over when destabilized. Unobserved quantities (e.g., mass,
volume, moment of inertia) additionally contribute to the
difficulty of this problem. Such a formulation has numer-
ous practical applications, for instance a robotic arm push-
ing objects on a desk to reach a goal state, and uses data
which lends itself to real-world use. We use a point cloud
to encode object geometry since it only depends on the sur-
face geometry, making it agnostic to appearance, and can be
readily captured in a real-world setting through commodity
depth sensors. Additionally, the initial velocities of the ob-
ject can be estimated from the point clouds and video.

4. Data Simulation
We use 3D simulation data from the Bullet physics en-

gine [1] in Unity [2] for our task. However, our method
can also be trained on real-world data provided ground truth
shape and initial velocities are available. In fact, we show
results on real motion capture data in Section 6.5.

A single datapoint in each of our datasets is a unique sim-
ulation which begins with an object on a flat plane that has
just been subjected to a random 3D impulsive force. This
force results in the object acquiring initial linear and angu-
lar velocities and eventually comes to rest due to friction
or topples over. We record the full state of the object (3D
shape, 3D position, rotation, linear and angular velocities,
and stability) at each discrete time step during the entire
simulation. We use this information to derive the change in
object state at each time step to train our network. An ob-

Figure 2. Problem input. Our method uses a point cloud (red
spheres) and initial linear vi (arrow) and angular velocity ωi (cir-
cular arrow) to predict dynamics. The object is assumed to move
on a plane but can exhibit wobbling or complete toppling.

ject is considered to be toppling (i.e. the binary flag is set to
unstable) when the angle between its up-axis and the global
up-axis is greater than 45 degrees. Although we apply an
initial impulsive force, we do not use this information in
our network. This makes our method generally applicable
with only the knowledge of initial velocities which could be
estimated from point cloud observations or video.

Simulation Procedure: For our input, we use the same
technique as [41] to sample a point cloud with 1024 points
from the surface of each unique object in all datasets (see
Figure 2). ShapeNet objects are normalized to fit within a
unit cube so the extents of the objects are about 0.5 m. The
applied impulsive force direction, magnitude, and position
are chosen randomly from a uniform distribution around the
object center of mass. This helps the simulations span both
sliding and toppling examples, and imparts both initial lin-
ear and angular velocities. Objects may translate up to 10
m and complete more than 10 complete rotations through-
out the simulated trajectories. Simulations are usually 3 to

5 seconds long with data collected at 15 Hz. Friction coeffi-
cients and object density are the same across all simulations.
We use the exact mesh to build a collider that captures the
object complexity during ground contact in simulation.

Datasets: We synthesize multiple categories of
datasets to train and evaluate our models: Primitives,
Bottles, Mugs, Trashcans, Speakers, and
Combined. Training objects are simulated with a different
random scale from 0.5 to 1.5 for x, y, and z directions
in order to increase shape diversity. The Primitives
dataset is further divided into a Box dataset which is a
single cube scaled to various non-uniform dimensions, and
a Cylinders dataset that contains a variety of cylinders.
The remaining four datasets represent everyday shape
categories taken from the ShapeNet [10] repository. These
exhibit wide shape diversity and offer a more challenging
task. Lastly, we have a dataset which combines all of the
objects and simulations from the previous six to create a
large and diverse set of shapes which is split roughly evenly
between categories. In total, we use 793 distinct object
shapes and run 65,715 simulations to generate our data.

5. Method
A straightforward approach to predict changes in object

state could be to combine all inputs into one vector and use
a neural network to directly predict state change at each step
in a recursive fashion. This approach cannot learn the intri-
cacies of object shape and non-linear object motion since it
does not keep track of past states of the object. We therefore
use a combination of PointNet [41], which extracts shape
features, and a recurrent neural network (RNN) which en-
codes past states and predicts future states of the object.

5.1. Network Architecture

The motion of an object throughout a trajectory depends
on: (1) the shape which affects mass m, moment of inertia
I , and contact surface, and (2) initial linear and angular ve-
locities. We therefore design our network to learn important
information related to the shape and initial velocities. Our
model (see Figure 3) is composed of two parts, a one-time
shape processing branch and a state prediction branch.

Shape Processing: The shape processing branch is de-
signed to extract salient shape features that are crucial to
making accurate predictions. Object geometry affects both
linear and angular velocities through its mass (which de-
pends on volume) and moment of inertia. The aim of this
branch is to help the network develop notions of volume,
mass, and inertia from a point cloud. It must also learn the
effect of the area and shape of the bottom contacting surface
which determines how friction affects rotation. To this end,
we use PointNet [41]. As shown in Figure 3, the initial ob-
ject point cloud is fed to the PointNet classification network
which outputs a global feature that is further processed to

output a final shape feature. Since the shape of rigid objects
does not change, we extract a shape feature once during the
first step and re-use it in subsequent steps.

State Prediction: The goal of the state prediction
branch is to estimate the change in object state at each
time step in a sequence. Similar to other sequential prob-
lems [48], we use a recurrent neural network, and particu-
larly a long short-term memory (LSTM) network to capture
the temporal relationships in object state changes. The in-
put to our LSTM, which maintains a hidden state of size
1024, consists of a 22-dimensional vector which concate-
nates the initial linear and angular velocities, and the fea-
tures extracted by the shape processing branch (see Fig-
ure 3). The LSTM predicts the change in object state, i.e.,
change in 3D position, rotation, object stability (Pc,θc, sc),
and linear and angular velocities (vc,ωc). At test time, we
would like to roll out an entire trajectory prediction. To do
this, the input to the first step is the observed initial veloci-
ties (vi,ωi). Then the LSTM-predicted change in velocity
is summed with the input to arrive at the new object veloc-
ity (which is used as input to the subsequent step). This is
performed recurrently to produce a full trajectory of relative
positions and rotations, given only ground truth initial state.

5.2. Loss Functions & Training

The goal of the network is to minimize the error between
the predicted and ground truth state change. We found that
using Lp losses for position, rotation, and velocities caused
the network to focus too much on examples with large error.
Instead we propose a form of relative error. For instance, for
change in 3D position we use a relative L2 error between
the predicted position P̂c and the ground truth Pc. We sum
the values in the denominator to avoid numerical instability
when ground truth change in position is near zero. Further-
more, we found that different components of the object state
change required different losses for best performance. We
use the L2 loss for 3D position and linear and angular ve-
locities. For rotation represented in axis-angle form, we use
an L1 loss. For change in 3D position and rotation:

LP =
||P̂c −Pc||2
||P̂c||2 + ||Pc||2

, Lθ =
||θ̂c − θc||1
||θ̂c||1 + ||θc||1

. (1)

We use binary cross entropy loss Ls for object stability. The
losses for change in velocities are identical to that of posi-
tion. Our final loss is the sum of L = wPLP + wθLθ +
wvLv +wωLω +wsLs. Empirically, all objective weights
are 1 except the stability term ws = 2.

We train the state prediction LSTM on sequences of 15
timesteps (corresponding to 1 second of simulation). Each
sequence is a random window chosen from simulations in
the dataset. The loss is applied at every timestep. We train
all branches of our network jointly using the Adam [24] op-
timization algorithm. In the shape processing branch, Point-

Figure 3. Model architecture. Our network takes the initial linear and angular velocities, and the object point cloud as input and predicts
the change in the object’s 3D position, rotation, linear and angular velocities, and object stability. The shape processing branch extracts
shape features which are concatenated with the input velocities and fed to an LSTM (shown unrolled here) which makes the state change
prediction at each time step. The input velocities are the cumulative sum of the estimated velocity changes and the initial velocities.
Numbers in bracket indicate the output size of each layer and MLP indicates multilayer perceptron.

Net weights are pretrained on ModelNet40 [55], then fine-
tuned during our training process. Before training, 10% of
the objects in the training split are set aside as validation
data for early stopping.

6. Experiments

We present extensive experimental evaluation on the
generalization ability of our method, compare to baselines
and prior work, and show results on real-world data. We
highly encourage the reader to watch the supplementary
video which gives a better idea of our data, along with the
accuracy of predicted trajectories from the model.

Evaluation Metrics: For all experiments, we report
both single-step and roll-out errors for dynamics predic-
tions. Both errors measure the mean difference between the
model’s change in state prediction and ground truth over
all timesteps in all test examples. The metrics differ due
to the input used at each time step. Single-step error uses
the ground truth velocities as input to every timestep (the
same process used in training). Single-step errors are shown
in Table 1 for linear (cm/s) and angular (rad/s) velocity,
position (cm), angle (deg), and rotation axis (measured as
1 − cosα where α is the angle between the predicted and
ground truth axes). Single-step errors are reported for all
test sequences, including those with toppling. On the other
hand, roll-out error measures the model’s capability to roll
out object trajectories given only the initial conditions. In
this case, the network uses its own velocity predictions as
input to each following step as described in Section 5. Roll-
out errors for various models are shown in Figure 4. Unless
noted otherwise, reported roll-out errors are only for test se-
quences that do not contain toppling. This is done to focus
evaluation on shape generalization without the stochasticity

of toppling (see discussion in supplementary material).

6.1. Object Generalization

We first perform object generalization experiments to
evaluate whether the learned model is able to generalize to
unseen objects—a crucial ability for autonomous systems
in unseen environments. Since it is impossible to experi-
ence all objects that an agent will interact with, we would
like knowledge of similarly-shaped objects to inform rea-
sonable predictions about dynamics in new settings. For
these experiments, we split datasets based on unique objects
such that no test objects are seen during training. Since
our network is designed specifically to process object shape
and learn relevant physical properties, we expect it to ex-
tract general features allowing for accurate predictions even
on novel objects. We evaluate models trained on both single
and combined categories; all single-step errors are shown in
Table 1 and roll-out errors in Figure 4.

Single Category: We train a separate network for each
object category. Results for single-step errors on each
dataset are shown in Table 1 under the procedure Single,
and roll-out errors over all evaluation datasets are shown
by the blue curves in Figure 4. Our model makes accurate
single-step predictions (with ground truth velocity input at
each step) and is able to stay under 1 cm and 2.5 degrees
error for position and rotation for unseen objects during roll
out (using its own velocity predictions as input to each step).
This indicates that the network is able to generalize to un-
seen objects within the same shape category.

Combined Categories: Next, our model is trained on
the Combined dataset and then evaluated on all individual
datasets. Single-step errors are shown under the Combined
training procedure in Table 1 and roll-out errors by the or-

Test Set Procedure v ω P |θ| θ̄ Test Set Procedure v ω P |θ| θ̄

Box Single 2.615 0.201 0.111 0.460 0.148 Trashcans Single 3.014 0.168 0.144 0.247 0.040
Combined 2.696 0.209 0.107 0.453 0.140 Combined 2.858 0.162 0.138 0.226 0.032
Leave Out 2.661 0.208 0.107 0.454 0.161 Leave Out 2.918 0.165 0.142 0.237 0.035

Cylinders Single 4.235 0.228 0.152 0.489 0.029 Bottles Single 4.894 0.264 0.654 0.993 0.029
Combined 4.597 0.238 0.157 0.492 0.030 Combined 4.662 0.247 0.652 0.992 0.030
Leave Out 4.851 0.255 0.165 0.518 0.024 Leave Out 4.891 0.264 0.658 1.010 0.029

Mugs Single 2.851 0.179 0.113 0.207 0.019 Speakers Single 1.786 0.112 0.096 0.233 0.044
Combined 2.723 0.173 0.099 0.181 0.019 Combined 1.675 0.106 0.082 0.200 0.040
Leave Out 2.781 0.177 0.104 0.198 0.018 Leave Out 1.770 0.110 0.084 0.223 0.048

Combined Combined 3.175 0.184 0.218 0.417 0.041

Table 1. Single-step errors for object generalization experiments. For each dataset, we show the single-step evaluation errors when a model
is trained on that Single dataset, the Combined dataset which contains all shape categories, and the Combined dataset with the evaluation
category left out. Errors are in cm/s for linear velocity v, rad/s for angular velocity ω, cm for position P, degrees for rotation angle |θ|,
and 1 - cosα for axis θ̄. Single-step errors are the mean difference between predicted change in state and ground truth change given the
ground truth as input to each step.

Figure 4. Roll-out errors for object generalization experiments. Each curve shows the median roll-out error over all evaluation datasets using
that training procedure. Separate models trained on each dataset are shown by the blue curves, a single model trained on the Combined
dataset then evaluated on individual datasets is shown by the orange curve, and separate models trained on the Combined dataset with the
evaluation shape category left out are shown in green.

ange curve in Figure 4. In general, performance is very
similar to training on individual datasets and even improves
errors in many cases; for example, single-step errors on the
Mugs, Trashcans, Bottles, and Speakers. This in-
dicates that exposing the network to larger shape diversity
at training time can help focus learning on underlying phys-
ical relationships rather than properties of a single group of
objects. In order to maintain this high performance, the net-
work is likely learning a general approach to extract salient
physical features from the diverse objects in the Combined
dataset rather than memorizing how specific shapes behave.

Out of Category: Lastly, we evaluate performance on
the extreme task of generalizing outside of trained object
categories. For this, we create new Combined datasets
each with one object category left out of the training set.
We then evaluate its performance on objects from the left
out category. Single-step errors for these experiments are
shown under the Leave Out heading in Table 1 and roll-out

errors appear in the green curve in Figure 4. We see only
a slight drop in single-step performance for almost every
evaluation shape category. Additionally, mean roll-out er-
rors reach less than 1.2 cm and 4 degrees for position and
rotation angle, respectively. Overall, this result shows the
model can make accurate predictions for objects from com-
pletely different categories in spite of their dissimilarity to
training shapes. The model seems to have developed a deep
understanding of how shape affects dynamics through mass,
moment of inertia, and contact surface in order to generalize
to novel categories. Some trajectories from leave-one-out
trained models are visualized in Figure 5.

Toppling Classification: In addition to predicting ob-
ject state, our model also classifies whether the object is cur-
rently toppling at each time step (the binary stability flag).
Here we evaluate the ability to classify entire trajectories as
toppling or not. To do this, we consider a rolled-out trajec-
tory as toppling if the model predicts the object is unstable

Figure 5. Qualitative results. Four sample frames from a sequence for models trained on the Combined dataset with the evaluation
category left out. Ground truth simulation is shown in grey and the network-predicted trajectory in green. Three non-toppling examples are
shown for Bottles (top left), Mugs (top right), and Trashcans (bottom right). A toppling result is shown for Boxes (bottom left).

for any step in the rolled-out sequence. We find that a single
model trained on the Combined dataset is able to achieve
an average F-score of 0.64 on this classification task for the
Boxes, Cylinders, and Bottles datasets. Roughly
half of the simulations in these datasets contain toppling
(see supplement), so the model has sufficient examples to
learn what features of motion indicate probable instability.

6.2. Friction Generalization

One advantage of learning dynamics over traditional
simulation is the ability to implicitly represent physical
properties of a system. Our LSTM achieves this by ag-
gregating information in its hidden state. This is exem-
plified in the ability to adapt to unknown friction coeffi-
cients at test time. In this experiment, we create a new
Speakers dataset where the object in each simulation has
a randomly chosen friction coefficient from a uniform dis-
tribution between 0.35 and 0.65. We train our model on
this new dataset, and compare its ability to roll out trajec-
tories against the model trained on constant-friction data.
Roll-out errors are shown in Table 2. Unsurprisingly, the
model trained on the varied friction data is less accurate
than the constant model given only initial velocities. With
only initial conditions, there is no way for the model to infer
the object friction. Therefore, we allow the varied friction
model to use additional ground truth velocity steps at the
beginning of its test-time roll out (indicated by “Steps In”
in Table 2), which allows it to implicitly infer the friction
using the LSTM’s hidden state. As seen in Table 2, when
the model trained on varied friction data uses 6 input steps,
its performance is as good as the constant-friction model.
This shows the model’s ability to accurately generalize to

Data Steps In v ω P |θ| θ̄

Constant Friction 1 1.993 0.098 0.369 0.743 0.016
Vary Friction 1 2.918 0.112 0.723 1.283 0.057
Vary Friction 4 2.287 0.098 0.417 0.674 0.033
Vary Friction 6 2.163 0.094 0.358 0.575 0.029

Table 2. Roll-out errors (same units as Table 1) for friction gen-
eralization experiments. Our model is trained on the Speakers
dataset with constant a friction coefficient of 0.5 and with friction
randomly varied from 0.35 to 0.65. Test-time roll-outs use a varied
number of observed velocity input steps (Steps In).

new frictions if allowed to observe a small portion (< 0.35
seconds) of the object’s motion.

6.3. Comparison to MLP Baseline

We justify the use of a memory mechanism by compar-
ing our proposed model to a modified architecture where
the LSTM in the state prediction branch is replaced with a
simple MLP containing 5 fully-connected layers. We train
and evaluate both models on the Speakers dataset (with
constant friction). The baseline MLP architecture has no
memory, so it predicts based on the velocities and shape
feature at each step. This is a natural approach which as-
sumes the future physical state of an object relies only on
its current state. However, as shown in Table 3, this model
gives worse results, especially for position and angle. This
may be because a hidden state gives the network some no-
tion of acceleration over multiple timesteps and allows for
self-correction during trajectory roll out.

State Predictor v ω P |θ| θ̄

LSTM 1.786 0.112 0.096 0.233 0.044
MLP 2.770 0.194 0.286 0.819 0.061

Table 3. Single-step errors (same units as Table 1) training on
the Speakers dataset with our proposed state predictor (LSTM)
against an MLP baseline with no memory.

6.4. Comparison to Other Work

We compare our method to the hierarchical relation net-
work (HRN) [39] to highlight the differences between an
object-centric (our work) approach and their particle-based
method. Both models are trained on a small dataset of 1519
scaled boxes simulated in the NVIDIA FleX engine [34],
then evaluated on 160 held out simulations. Each simula-
tion contains a box sliding with some initial velocity which
comes to rest without toppling. We compare the mean roll-
out errors of the two models. Our model averages 0.51 cm
and 0.36 degrees roll-out errors for position and rotation an-
gle, respectively, while HRN achieves 1.99 cm and 2.73 de-
grees. An object-centric approach seems to simplify the job
of the prediction network offering improved accuracy over
individually predicting trajectories of particles that make up
a rigid object. We note, however, that HRN shows predic-
tion ability on falling rigid objects and deformables, which
our model can not handle.

6.5. Real-World Data

To show our model’s ability to generalize to the real
world, we captured 66 trials of a small sliding box using
a motion capture system which provides full object state in-
formation throughout a trajectory. From this we extract all
necessary training data then construct a point cloud based
on the box measurements. We train our model directly on
56 of the trials and test on 10 held-out trajectories. For
real-world data, we give the model 2 steps of initial veloc-
ity input, which we found improved performance. Simi-
lar to the friction experiments in Section 6.2, having mul-
tiple steps as input allows the network to perform implicit
parameter identification since the real-world data is much
noisier than in simulation (i.e. different parts of the table
may have slightly different friction properties) and possi-
bly helps the network identify initial acceleration. Despite
the lack of data, our model is able to reasonably learn the
complex real-world dynamics achieving single-step errors
of 8.3 cm/s, 0.733 rad/s, 0.289 cm, 1.13 degrees, and 0.436
(for axis). We visualize a predicted trajectory in Figure 6.

7. Limitations and Future Work
Our approach has limitations and there remains room

for future work. Here we focused on learning the 3D dy-
namics of objects on a planar surface by capturing sliding

Figure 6. Real-world data. We captured 66 sequences of a box with
a motion capture system and trained our method on the captured
data. The top row shows an external view of one of the test trials.
The bottom row shows predictions.

dynamics. However, free 3D dynamics and complex phe-
nomena such as collisions are not captured in our work and
presents important directions for future work. Additionally,
we avoid the uncertainty inherent to toppling in favor of
evaluating shape generalization, but capturing this stochas-
ticity is important for future work. We believe that our ap-
proach provides a strong foundation for developing meth-
ods for these complex motions. Our method is fully super-
vised and does not explicitly model physical laws like some
previous work [47]. We show some examples on real-world
data but more complex motion from camera-based sensing
is a topic for future work and will be important to exploit the
potential for our learned model to improve accuracy over
analytic simulation. Results from Section 6.2 indicate our
model’s potential for physical parameter estimation, but we
largely ignore this problem in the current work by assuming
constant friction and density for most experiments.

8. Conclusion

We presented a method for learning to predict the 3D
physical dynamics of a rigid object moving along a plane
with an initial velocity. Our method is capable of general-
izing to previously unseen object shapes and new initial ve-
locities not seen during training. We showed that this chal-
lenging dynamics prediction problem can be solved using
a neural network architecture that is informed by physical
laws. We train our network on 3D point clouds of a large
shape collection and a large synthetic dataset with exper-
iments showing that we are able to accurately predict the
change in state for sliding objects. We additionally show
the model’s ability to learn directly from real-world data.

Acknowledgments: This work was supported by a Van-
nevar Bush Faculty Fellowship, the AWS Machine Learn-
ing Awards Program, the Samsung GRO program, and the
Toyota-Stanford Center for AI Research. Toyota Research
Institute (“TRI”) provided funds to assist the authors with
their research but this article solely reflects the opinions and
conclusions of its authors and not TRI or any other Toyota
entity.

References
[1] Bullet physics engine. https://pybullet.org. 3
[2] Unity game engine. https://unity3d.com. 3
[3] P. Agrawal, A. Nair, P. Abbeel, J. Malik, and S. Levine.

Learning to poke by poking: Experiential learning of intu-
itive physics. In Proceedings of the 30th Conference on Neu-
ral Information Processing Systems (NIPS), 2016. 1, 2

[4] A. Ajay, J. Wu, N. Fazeli, M. Bauzá, L. P. Kaelbling, J. B.
Tenenbaum, and A. Rodriguez. Augmenting physical simu-
lators with stochastic neural networks: Case study of planar
pushing and bouncing. In International Conference on Intel-
ligent Robots and Systems (IROS), 2018. 2

[5] R. Baillargeon and S. Hanko-Summers. Is the top object
adequately supported by the bottom object? young infants’
understanding of support relations. Cognitive Development,
5(1):29–53, 1990. 1

[6] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and
K. kavukcuoglu. Interaction networks for learning about
objects, relations and physics. In Proceedings of the 30th
International Conference on Neural Information Processing
Systems (NIPS), pages 4509–4517, 2016. 1, 2

[7] P. W. Battaglia, J. B. Hamrick, and J. B. Tenenbaum. Simula-
tion as an engine of physical scene understanding. Proceed-
ings of the National Academy of Sciences, 110(45):18327–
18332, 2013. 2

[8] A. Byravan and D. Fox. Se3-nets: Learning rigid body mo-
tion using deep neural networks. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017. 1, 2

[9] A. Byravan, F. Leeb, F. Meier, and D. Fox. Se3-pose-nets:
Structured deep dynamics models for visuomotor planning
and control. In IEEE International Conference on Robotics
and Automation (ICRA), 2018. 2

[10] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
et al. Shapenet: An information-rich 3d model repository.
arXiv preprint arXiv:1512.03012, 2015. 2, 4

[11] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum.
A compositional object-based approach to learning physical
dynamics. In Proceedings of the 5th International Confer-
ence on Learning Representations (ICLR), 2017. 1, 2

[12] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum,
and J. Z. Kolter. End-to-end differentiable physics for learn-
ing and control. In Advances in Neural Information Process-
ing Systems (NeurIPS), 2018. 2

[13] S. Ehrhardt, A. Monszpart, N. J. Mitra, and A. Vedaldi.
Learning A Physical Long-term Predictor. arXiv preprint,
arXiv:1703.00247, Mar. 2017. 2

[14] S. Ehrhardt, A. Monszpart, N. J. Mitra, and A. Vedaldi. Un-
supervised intuitive physics from visual observations. arXiv
preprint, arXiv:1805.05086, 2018. 2

[15] S. Ehrhardt, A. Monszpart, A. Vedaldi, and N. J. Mitra.
Learning to Represent Mechanics via Long-term Extrapo-
lation and Interpolation. arXiv preprint arXiv:1706.02179,
June 2017. 2

[16] C. Finn, I. Goodfellow, and S. Levine. Unsupervised learn-
ing for physical interaction through video prediction. In Pro-

ceedings of the 30th International Conference on Neural In-
formation Processing Systems (NIPS), pages 64–72, 2016. 1,
2

[17] C. Finn and S. Levine. Deep visual foresight for planning
robot motion. In International Conference on Robotics and
Automation (ICRA), 2017. 2

[18] M. Fraccaro, S. Kamronn, U. Paquet, and O. Winther. A
disentangled recognition and nonlinear dynamics model for
unsupervised learning. In Advances in Neural Information
Processing Systems (NIPS), 2017. 2

[19] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik. Learn-
ing visual predictive models of physics for playing bil-
liards. In Proceedings of the 4th International Conference
on Learning Representations (ICLR), 2016. 1, 2

[20] R. Grzeszczuk, D. Terzopoulos, and G. Hinton. NeuroAni-
mator: fast neural network emulation and control of physics-
based models. University of Toronto, 2000. 2

[21] J. B. Hamrick, R. Pascanu, O. Vinyals, A. Ballard, N. Heess,
and P. Battaglia. Imagination-based decision making with
physical models in deep neural networks. In Advances
in Neural Information Processing Systems (NIPS), Intuitive
Physics Workshop, 2016. 2

[22] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Free-
man, J. Wu, D. Rus, and W. Matusik. Chainqueen: A real-
time differentiable physical simulator for soft robotics. In
IEEE International Conference on Robotics and Automation
(ICRA), 2019. 2

[23] M. Janner, S. Levine, W. T. Freeman, J. B. Tenenbaum,
C. Finn, and J. Wu. Reasoning about physical interac-
tions with object-oriented prediction and planning. In In-
ternational Conference on Learning Representations (ICLR),
2019. 2

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In International Conference for Learning Rep-
resentations (ICLR), 2015. 4

[25] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel.
Neural relational inference for interacting systems. Interna-
tional Conference on Machine Learning (ICML), 2018. 2

[26] J. R. Kubricht, K. J. Holyoak, and H. Lu. Intuitive physics:
Current research and controversies. Trends in cognitive sci-
ences, 21(10):749–759, 2017. 2

[27] A. Lerer, S. Gross, and R. Fergus. Learning physical in-
tuition of block towers by example. In Proceedings of the
33rd International Conference on International Conference
on Machine Learning (ICML), pages 430–438, 2016. 2

[28] A. M. Leslie. The perception of causality in infants. Percep-
tion, 11(2):173–186, 1982. 1

[29] W. Li, S. Azimi, A. Leonardis, and M. Fritz. To fall or not to
fall: A visual approach to physical stability prediction. arXiv
preprint, arXiv:1604.00066, 2016. 2

[30] W. Li, A. Leonardis, and M. Fritz. Visual stability prediction
for robotic manipulation. In 2017 IEEE International Con-
ference on Robotics and Automation (ICRA), pages 2606–
2613, May 2017. 2

[31] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba.
Learning particle dynamics for manipulating rigid bodies,
deformable objects, and fluids. In International Conference
on Learning Representations (ICLR), 2019. 1, 2

https://pybullet.org
https://unity3d.com

[32] Y. Li, J. Wu, J. Zhu, J. B. Tenenbaum, A. Torralba, and
R. Tedrake. Propagation networks for model-based control
under partial observation. In IEEE International Conference
on Robotics and Automation (ICRA), 2019. 2

[33] Z. Liu, W. T. Freeman, J. B. Tenenbaum, and J. Wu. Physical
primitive decomposition. In Proceedings of the 15th Euro-
pean Conference on Computer Vision (ECCV), 2018. 2

[34] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim. Uni-
fied particle physics for real-time applications. ACM Trans-
actions on Graphics (TOG), 33(4):153, 2014. 8

[35] M. Mirza, A. Courville, and Y. Bengio. Generalizable
Features From Unsupervised Learning. arXiv preprint,
arXiv:1612.03809, 2016. 2

[36] A. Monszpart, N. Thuerey, and N. J. Mitra. SMASH:
Physics-guided Reconstruction of Collisions from Videos.
ACM Trans. Graph. (SIGGRAPH Asia), 2016. 2

[37] R. Mottaghi, H. Bagherinezhad, M. Rastegari, and
A. Farhadi. Newtonian image understanding: Unfolding the
dynamics of objects in static images. In Proc. Computer Vi-
sion and Pattern Recognition (CVPR), 2016. 1, 2

[38] R. Mottaghi, M. Rastegari, A. Gupta, and A. Farhadi. “what
happens if...” learning to predict the effect of forces in im-
ages. In Proceedings the 14th European Conference on Com-
puter Vision (ECCV), 2016. 1, 2

[39] D. Mrowca, C. Zhuang, E. Wang, N. Haber, L. Fei-Fei, J. B.
Tenenbaum, and D. L. K. Yamins. Flexible neural repre-
sentation for physics prediction. In Proceedings of the 32nd
International Conference on Neural Information Processing
Systems (NIPS), 2018. 1, 2, 8

[40] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. P. Singh. Action-
conditional video prediction using deep networks in atari
games. In Advances in Neural Information Processing Sys-
tems (NIPS), 2015. 2

[41] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 1(2):4, 2017. 3, 4

[42] D. Rempe, S. Sridhar, H. Wang, and L. J. Guibas. Learning
generalizable physical dynamics of 3d rigid objects. arXiv
preprint, arXiv:1901.00466, 2019. 1

[43] R. Riochet, M. Y. Castro, M. Bernard, A. Lerer, R. Fergus,
V. Izard, and E. Dupoux. Intphys: A framework and bench-
mark for visual intuitive physics reasoning. arXiv preprint,
arXiv:1803.07616, 2018. 2

[44] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg,
J. Merel, M. Riedmiller, R. Hadsell, and P. Battaglia. Graph
networks as learnable physics engines for inference and con-
trol. In Proceedings the 35th International Conference on
Machine Learning (ICML), 2018. 2

[45] C. Schenck and D. Fox. Spnets: Differentiable fluid dynam-
ics for deep neural networks. In Conference on Robot Learn-
ing (CoRL), 2018. 2

[46] K. Smith, L. Mei, S. Yao, J. Wu, E. Spelke, J. Tenen-
baum, and T. Ullman. Modeling expectation violation in
intuitive physics with coarse probabilistic object representa-
tions. In Advances in Neural Information Processing Systems
(NeurIPS), 2019. 2

[47] R. Stewart and S. Ermon. Label-free supervision of neural
networks with physics and domain knowledge. In Proc. of
AAAI Conference on Artificial Intelligence, 2017. 2, 8

[48] I. Sutskever, J. Martens, and G. E. Hinton. Generating text
with recurrent neural networks. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11),
pages 1017–1024, 2011. 4

[49] S. van Steenkiste, M. Chang, K. Greff, and J. Schmidhuber.
Relational neural expectation maximization: Unsupervised
discovery of objects and their interactions. In International
Conference on Learning Representations (ICLR), 2018. 2

[50] Z. Wang, S. Rosa, B. Yang, S. Wang, N. Trigoni, and
A. Markham. 3d-physnet: Learning the intuitive physics
of non-rigid object deformations. In Proceedings of the
26th International Joint Conference on Artificial Intelli-
gence, IJCAI-18, pages 4958–4964, 2018. 2

[51] N. Watters, A. Tacchetti, T. Weber, R. Pascanu, P. Battaglia,
and D. Zoran. Visual interaction networks. arXiv preprint,
arXiv:1706.01433, 2017. 1, 2

[52] J. Wu, J. J. Lim, H. Zhang, J. B. Tenenbaum, and W. T. Free-
man. Physics 101: Learning physical object properties from
unlabeled videos. In Proceedings of the 27th British Machine
Vision Conference (BMVC), 2016. 2

[53] J. Wu, E. Lu, P. Kohli, W. T. Freeman, and J. B. Tenenbaum.
Learning to see physics via visual de-animation. In Proceed-
ings of the 31st Conference on Neural Information Process-
ing Systems (NIPS), 2017. 2

[54] J. Wu, I. Yildirim, J. J. Lim, W. T. Freeman, and J. B. Tenen-
baum. Galileo: Perceiving physical object properties by in-
tegrating a physics engine with deep learning. In Proceed-
ings of the 29th Conference on Neural Information Process-
ing Systems (NIPS), pages 127–135, 2015. 2

[55] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumet-
ric shapes. In Computer Vision and Pattern Recognition
(CVPR), 2015. 5

[56] Z. Xu, J. Wu, A. Zeng, J. B. Tenenbaum, and S. Song. Dense-
physnet: Learning dense physical object representations via
multi-step dynamic interactions. In Robotics: Science and
Systems (RSS), 2019. 2

[57] T. Ye, X. Wang, J. Davidson, and A. Gupta. Interpretable
intuitive physics model. In Proceedings the 15th Euro-
pean Conference on Computer Vision (ECCV), pages 89–
105, 2018. 2

[58] K.-T. Yu, M. Bauzá, N. Fazeli, and A. Rodriguez. More
than a million ways to be pushed. a high-fidelity experimen-
tal dataset of planar pushing. IROS, 2016. 1

[59] R. Zhang, J. Wu, C. Zhang, W. T. Freeman, and J. B. Tenen-
baum. A comparative evaluation of approximate probabilis-
tic simulation and deep neural networks as accounts of hu-
man physical scene understanding. In Annual Meeting of the
Cognitive Science Society, 2016. 2

[60] D. Zheng, V. Luo, J. Wu, and J. B. Tenenbaum. Unsuper-
vised learning of latent physical properties using perception-
prediction networks. In Conference on Uncertainty in Artifi-
cial Intelligence (UAI), 2018. 2

