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Figure 1: An example of completing a partial scan data with various complement suggestions using our method. Partial objects are repre-
sented as fuzzy sets in our embedding, and their complements can be retrieved with a fuzzy set operation in the embedding space. (a) and (b)
are a Kinect color and depth image from [SKAG15], (c) is a point cloud after removing background, (d) is a partial shape retrieved from our
dataset using ICP with a manual initial pose, and (e) are complete objects with four out of the best ten complement retrievals (green parts).
The position of complements are automatically computed using a placement network in [SSK∗17], which is retrained with the partial object
data.

Abstract

Modeling relations between components of 3D objects is essential for many geometry editing tasks. Existing techniques com-
monly rely on labeled components, which requires substantial annotation effort and limits components to a dictionary of pre-
defined semantic parts. We propose a novel framework based on neural networks that analyzes an uncurated collection of 3D
models from the same category and learns two important types of semantic relations among full and partial shapes: complemen-
tarity and interchangeability. The former helps to identify which two partial shapes make a complete plausible object, and the
latter indicates that interchanging two partial shapes from different objects preserves the object plausibility. Our key idea is to
jointly encode both relations by embedding partial shapes as fuzzy sets in dual embedding spaces. We model these two relations
as fuzzy set operations performed across the dual embedding spaces, and within each space, respectively. We demonstrate the
utility of our method for various retrieval tasks that are commonly needed in geometric modeling interfaces.

CCS Concepts
• Computing methodologies → Shape modeling; Machine learning approaches; Shape analysis;

1. Introduction

Component-based 3D object modeling is common in design of
man-made objects. Creating automatic or semi-automatic tools
for such component-based modeling has been a long-standing
goal in 3D object processing. Towards that goal, previous work
leveraged 3D CAD model datasets with known components and

component structures for creating new objects [FKS∗04], com-
pleting partial shapes [SFCH12], and for analyzing shape struc-
tures [KLM∗13, LXC∗17]. Recently created large-scale 3D CAD
datasets [Tri17, CFG∗15] offer significant diversity of component
geometry and structure, thus increasing the potential of component-
based geometry processing for practical usages.
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While a large database increases the diversity in modeling and
editing shapes, it also requires the burden of annotating shape
components in a consistent manner. Most previous part labeling
methods are not scalable [vKXZ∗13], or require some human su-
pervision [YKC∗16]. To avoid the labor of an annotation, while
still taking advantage of the large scale of the databases, Sung
et al. [SSK∗17] proposed an annotation-free component assembly
method, which trains a neural network to retrieve plausible com-
plementary components given a query partial object. The relations
among partial objects and complementary components are learned
from the data. However, the incremental approach of Sung et al.
does not account for the plausibility of the full constructed shape,
or can detect groups of segments which can plausibly complete a
given partial shape. This functionality is important when the plau-
sibility of the full object is important, for example when creating
a new object by mixing components from different models in the
database [XZCOC12], or when completing partially created ob-
jects [SKAG15].

To address these limitations, we propose an annotation-free deep
learning framework which learns partial shape representations from
database component assemblies, and jointly encodes two semantic
relations between partial shapes: complementarity and interchange-
ability. Complementarity means that the two partial shapes can be
combined into a complete, semantically meaningful object. Inter-
changeability indicates that replacing a part of a model with an-
other partial shape still produces a plausible new object. This re-
lations can capture semantic similarities among partial shapes in
terms of their usage in the context of full objects, even when these
partial shapes are geometrically dissimilar. Both complementarity
and interchangeability are closely related to each other, since inter-
changeability means that two partial shapes share the same set of
complements.

Encoding these relations in embedding spaces is not trivial.
Complementarity is an irreflexive relation, therefore a naïve em-
bedding scheme which minimizes distances among related data is
not applicable. In addition, we do not have any supervision for
learning interchangeability relations, and need to infer this from the
complementarity relations between partial shapes. To tackle these
challenges, we suggest a novel embedding approach into dual em-
bedding spaces (Figure 2). We consider the symmetric (undirected)
complementary relation as both-way directed relations, and create
two embedding spaces f and g for one-to-N mapping, such that
all variations of partial shapes are present in both spaces. Given
two partial shapes, complementarity between them is reflected by
their embeddings into the two spaces. To learn the N-to-N irreflex-
ive complementarity mapping with this embedding scheme, we use
fuzzy set representations [Zad65] for both embedding spaces, and
encode the complementarity relation as the intersection of sets.
When learning the complementary relations across two embedding
spaces, the similarity in the same embedding space can be inter-
preted as interchangeability.

Key contributions:

• We propose a novel dual embedding framework to learn com-
plementarity and interchangeability relations between partial
shapes.

g 

Complementary 

f 

Interchangeable 

Interchangeable 

Figure 2: We propose a dual space embedding that encode both
complementarity and interchangeability. The complementarity is
represented by inter-space relations, and the interchangeability is
represented by intra-space relations.

• The complementarity and interchangeability of partial shapes
are encoded as inter- and intra-relations in the dual embedding
spaces, respectively.

• Fuzzy set representations are utilized for both embedding spaces,
to learn N-to-N irreflexive complementarity mapping between
them.

• We demonstrate the effectiveness of the proposed embedding
scheme for learning the two relations between partial shapes for
several shape modeling tasks, on a variety of shape categories.

2. Related Work

We review related work on component-based 3D modeling, and
structural embedding techniques using neural networks.

Component-based 3D Modeling Funkhouser et al. [FKS∗04]
were the first to introduce the idea of reusing parts in the
existing 3D models for creating new objects. Subsequent ap-
proaches [CKGK11, KCKK12, CKGF13] developed the idea of
shape construction using labeled components, by learning the com-
ponent structure and suggesting appropriate components in the
interactive assembly process. Shen et al. [SFCH12] used partial
scanned data as a cue for constructing complete 3D models. There,
components in the database were retrieved and stitched to each
other to fit to the input geometry and fill the missing area in the
incomplete scans. This completion approach was further extended
by Sung et al. [SKAG15], who integrated both symmetry- and
retrieval-based inferences to detect the missing parts. These ap-
proaches successfully demonstrated practical applications of lever-
aging the component structure in a given dataset of 3D models,
but all of them relied on having models with labeled components,
which required significant annotation effort.

Recently, Sung et al. [SSK∗17] introduced a method for con-
structing shapes from unlabeled components in an iterative assem-
bly process. Specifically, given a partial shape, their method pro-
duces multiple plausible complementary components. This is done
by training a neural network which jointly maps database compo-
nents into the embedding space and predicts a complementary com-
ponent probability distribution over that space given a partial shape.
While here we also learn complementary relations, we aim at learn-
ing relations between partial shapes, as opposed to relations be-
tween partial shapes and single components in [SSK∗17]. Towards
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that goal, we embed all possible partial objects and discover shapes
that complete the query in a plausible manner. This is more chal-
lenging problem since the shape variation space of partial shapes
is much larger than the space of single components. We evaluate
both methods using partial shape datasets, and demonstrate that our
method outperforms the previous work in quantitative and qualita-
tive evaluations.

Deep Structural Embedding Data embedding with neural net-
works is widely used for encoding relations among large-scale
data. The advantages of inferring relations between data points in
a structured embedding space, instead of learning binary indica-
tor functions of the relations, are clearly described in the seminal
work [BWCB11]: simple adaptation to various datasets, compact
information storage, flexible joint encoding of different types of re-
lations, and, most importantly, the ability to infer unseen relations
from the structure of the embedding space. Notable examples of
the above in language processing are [SCMN13] and [MSC∗13],
where low-dimensional word embeddings were used to capture the
relations among words, and in image processing - [SKP15], which
proposed learning an embedding space of facial images, where dis-
tances directly corresponded to face similarity, independently of
the face pose. Deep embedding of 3D data was utilized by Li et
al. [LSQ∗15], who suggested a method for real time object recon-
struction, by learning correlation between images and 3D models,
and by Wu et al. [WZX∗16], who showed that the relations among
3D object structures can be learned using a generative adversarial
network. Sung et al. [SSK∗17] learned a different embedding space
of complementary components for input partial shapes.

Unlike previous work, in the proposed approach we construct
embedding spaces that reflect both complementarity relations,
learned in a supervised manner, as well as interchangeability rela-
tions, for which no supervision is provided, and successfully dis-
cover both types of relations between previously unseen partial
shapes. In addition, the majority of existing techniques for deep
embedding encode reflexive and symmetric relations, such as sim-
ilarities, into distances or angles between vectors in the embedding
space [KFF15]. Some recent methods focus on other types of re-
lations, such partial order relations [VKFU16, NK17], which are
asymmetric and transitive. In this work, we consider different ir-
reflexive and symmetric complementarity relations, and propose a
new embedding space construction technique to reflect these rela-
tions.

3. Method

In this section, we explain how we train a neural network to jointly
encode both the complementarity and interchangeability in embed-
ding spaces. We first give an overview of the proposed approach,
then describe in detail all its components.

3.1. Overview

We design binary energy functions of complementarity and inter-
changeability, both of which take the embedding coordinates of
partial shapes as inputs. A neural network is to used to define the
embedding function for partial shapes. In the training of the neu-
ral network, we create complementary pairs of partial shapes as

training examples by splitting full objects into two parts. But we
do not have any supervision for interchangeability. Thus, the net-
work is trained to minimize only the complementarity energy, but
is still able to predict the interchangeability from the embedding
structure. In next subsections, we elaborate on how we define the
embedding spaces and the binary energy functions on them. We
first describe the motivation for using the dual embedding spaces
to represent complementarity (Section 3.2), and how this relation is
encoded across the dual spaces (Section 3.3). Then, we define the
complementarity and interchangeability energy functions as fuzzy
set operations on the embedding spaces, in Sections 3.4 and 3.5,
respectively. The loss functions used for the neural network train-
ing and the neural network implementation details are described in
Sections 3.6 and 3.7.

3.2. Dual Embedding Spaces

We first describe how to design the embedding spaces and a binary
indicator function for complementarity. One can consider a graph
which nodes and edges indicate partial shapes and their comple-
mentary relations, respectively. Our problem can be viewed as a
graph embedding problem aimed at finding unseen edges between
nodes (unseen complementarity relations) by using the geometry
of partial shapes as node attributes. The binary complementarity
indicator function is then defined as whether a partial shape is con-
nected to the other, and vice versa. There are several previous tech-
niques for the graph node embedding problem with input node at-
tributes [PARS14, HYL17, KW17], but they all use same approach
of mapping neighboring nodes to proximal locations in the embed-
ding space, which is not applicable to our case for two reasons.
First, complementarity is not transitive, meaning that, given a par-
tial shape, a complement of its complement is generally not a com-
plement of it. Thus, first-order neighbors need to be discriminated
from higher-order neighbors. Second, complementarity is also not
reflective; a partial shape is not a complement of itself. Thus, each
node should be isolated from the its neighbors in the embedding
space. To handle the non-transitivity and irreflexivity, we consider
dual embedding spaces as shown in Figure 2. All partial shapes
live in both embedding spaces, and the complementarity relations
among partial shapes are now represented by the relations between
their embedding coordinates across the two spaces. Since one par-
tial shape can have different embedding coordinates in different
spaces, this allows a partial shape not to have a relation to itself. We
define the structure of two embedding spaces and the inter-space
complementary relation in the next subsection.

3.3. Embedding as Set Inclusion

The naïve idea for constructing dual spaces is to align the posi-
tions of complementary partial shapes at the same coordinates in
different spaces. However, it may cause some non-complementary
pairs to be encoded as complementary to each other. For example,
in the case illustrated in Figure 3(a), shape p is complementary to
both r and s, but shape q is only complementary to s. Then, from
the complementarity of p and r,s, both r and s should be placed
at the location of p in the other space ( f (p) = g(r) = g(s) and
f (r) = f (s) = g(p)). Because of the complementarity of q and s,
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Figure 3: A schematic example showing how our set representation works on the dual embedding space. (a) (p, r) (p, s), and (q, s) are
complementary pairs, and (q, r) is a non-complementary pair. (b) A case of embedding data as points, and aligning embedding coordinates
of complementary shapes in different spaces (e.g. f(p) = g(s) and f(r) = g(p)). The complementarity of (p,r) and (p,s) implies that g(r) = g(s)
(similarly, f (r) = f (s)). Because of the complementarity of (q,s) this also incorrectly implies that g(q) = g(r) ( f (q) = f (r)), which results
in a wrong complementary relation between q and r. (c) The proposed approach of representing complementarity with set representations.
All relations can be correctly encoded.

q also goes to s’s location in the other space. This leads to a com-
plementary relation between q and r, which is contradictory to the
assumption (See Figure 3(b)).

To avoid this problem, we suggest to relate a coordinate in one
embedding space to multiple coordinates in the other space. In the
aspect of graph embedding described in Section 3.2, the relation
is indicated by checking both ways of whether a node is a neigh-
bor of the other node. When considering one-way relations only,
and encoding 1-to-N mapping from a partial shape to its comple-
ments, we view the embedding coordinates as a representation of a
set, such that the complementarity relation is encoded as inclusion
from one space to the other. One choice of encoding sets and inclu-
sions in the embedding space is using the approach of Vendrov et
al. [VKFU16]:

x⊆ y ⇔
D∧

i=1
xi ≤ yi, (1)

where x,y ∈ RN
+ are the embedding coordinates of x,y, respec-

tively, and
∧

is a ‘logical and’ operator (note that Vendrov et al.
use reversed direction of the inequality but we switch back to the
natural direction). Since here we wish to relate embedding coor-
dinates in two different spaces (due to the irreflexivity), given two
embedding spaces f (·) and g(·) we represent the one-way comple-
mentarity c(x→ y) as follows:

c(x→ y) ⇔
D∧

i=1
f (x)i ≤ g(y)i. (2)

According to the analogy with the inclusion relation, we will call
f and g the subset and superset spaces, respectively, in the rest of
paper. Then, the binary indicator function for both-way comple-
mentarity c(x,y) can be represented as follows:

c(x,y) ⇔ c(x→ y)∧ c(y→ x). (3)

Figure 3(c) illustrates how the relations between p,q,r,s in Fig-
ure 3(a) can be represented with sets and inclusions.

3.4. Fuzzy Set Interpretation

While the inclusion embedding of [VKFU16] was first applied for
neural network training in that paper, the idea is actually closely
related to the well-studied fuzzy set theory [Zad65]. In fuzzy set
theory, a set is represented with fuzzy memberships over a discrete
set of elements, which is also called possibility distribution. Then,
the notion of inclusion is defined so that the membership scores (or
probabilities) over all elements of a superset are greater or equal
to the corresponding scores of a subset, which is identical with the
definition in Equation 1.

With the fuzzy set representation, one can consider how to de-
fine set operations analogous to classic crisp (non-fuzzy) set theory.
For example, for ‘logical and’ (intersection) ∧, and ‘inclusive or’
(union) ∨, there are various ways of defining the operations with
fuzzy sets (see Section 3 in [Zim01] for details), but the simplest
form is using minimum and maximum operations:

(x∧ y)i = min(xi,yi),

(x∨ y)i = max(xi,yi).
(4)

In the neural net training, we need to fuzzify the notion of inclu-
sion to obtain a continuous loss function. Vendrov et al. suggest to
penalize when the embedding coordinates of a subset are greater
than the coordinates of the superset, element-wise:

E(x⊆ y) = ∑
i

max(0,xi− yi)
2. (5)

This is actually the same as making the subset to be equal to the
intersection of the two sets x and y, using the above definition of
intersection:

E(x⊆ y) = ∑
i
(xi−min(xi,yi))

2 = ‖x− (x∧ y)‖2
2. (6)

Using Equation 2 and Equation 3, we can define the energy func-
tions for the one-way complementarity Ec(x→ y) and the both-way
complementarity Ec(x,y), as follows:

Ec(x→ y) = ∑
i

max(0, f (x)i−g(y)i)
2, (7)
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Ec(x,y) = Ec(x→ y)+Ec(y→ x). (8)

3.5. Interchangeability via Complementarity

In Section 3.3 and 3.4, we described how complementarity is repre-
sented as an inter-space fuzzy set operation. Now we discuss how
we define an intra-space fuzzy set operation that measures the de-
gree of interchangeability.

It is obvious that two partial shapes have exactly same com-
plements with same energy values when they have the same em-
bedding coordinates in both embedding spaces. This implies that
two partial shapes with similar embedding coordinates in each em-
bedding space have a similar set of complements. In the following
propositions, we show that how the union and intersection of two
fuzzy sets represented by the embedding coordinates are related to
the complementarity energies with arbitrary partial shapes.

Proposition 1 max(Ec(x→ z),Ec(y→ z))≤ Ec((x∨ y)→ z)

Proof Refer to Appendix

Proposition 2 max(Ec(z→ x),Ec(z→ y))≤ Ec(z→ (x∧ y))

Proof Refer to Appendix

Corollary 1

1
2
(Ec(x,z)+Ec(y,z))

≤max(Ec(x→ z),Ec(y→ z))+max(Ec(z→ x),Ec(z→ y))

≤ Ec((x∨ y)→ z)+Ec(z→ (x∧ y))

Corollary 1 shows that the union on the subset space and the in-
tersection on the superset space bound the sum of complementarity
energies for arbitrary partial shapes. When restrict the l2-norm of
all embedding coordinates to be one, one can consider how close
the l2-norm of f (x)∨ f (y) and g(x)∧g(y) are to one as a measure
of interchangeability energy Er(x,y):

Er(x,y), (‖ f (x)∨ f (y)‖2
2−1)+(1−‖g(x)∧g(y)‖2

2)

= ‖ f (x)∨ f (y)‖2
2−‖g(x)∧g(y)‖2

2

(9)

Note that the unit l2-norm constraint is not only for defining in-
terchangeability relation in the embedding, but it is also a com-
mon constraint in neural network training to avoid over-fitting
[SKP15, VKFU16].

3.6. Neural Network Loss

The loss function for the neural network training is defined using
the complementarity energy (Equation 8). Given N complementary
pairs (xi,yi) in a batch, we consider all mis-matched pairs (xi,y j 6=i)
as negative examples. We suggest two loss functions that can be
used depending on the application. For complement retrieval tasks,
we use pairwise ranking loss as introduced in [KFF15, VKFU16]:

LR = ∑
i

∑
j 6=i

max
(
0,Ec(xi,yi)−Ec(xi,y j)+α

)
+∑

j
∑
i 6= j

max
(
0,Ec(xi,yi)−Ec(xi,y j)+α

)
,

(10)

where α is a given margin parameter. We use α = 0.05 in all
our experiments. This pairwise ranking loss learns relative dis-
tances between positive and negative pairs. But we need a com-
mensurable measure of complementarity for the interchangeability
measure (Equation 9) since it is based on the upper bound of the
complementarity energies. Thus, we introduce another loss func-
tion learning absolute errors with a threshold:

LT =
1
N ∑

i
max

(
0,Ec(xi,yi)−

(
t− 1

2
α

))
+

1
N(N−1) ∑

i
∑
j 6=i

max
(

0,
(

t +
1
2

α

)
−Ec(xi,y j)

)
,

(11)

where t is a learnable threshold parameter. This loss function
makes the energy of positive pairs smaller than t and the energy of
negative pair greater than t with the margin α between them.

3.7. Neural Network Architecture and Training

We used the PointNet architecture [QSMG17] as a basic building
block of the proposed embedding network, as illustrated in Fig-
ure 4. Since all partial shapes are embedded into both embedding
spaces, we have two separate PointNet Siamese architectures for
learning the f and g embedding functions. We feed both f and g-
networks with 1k sampled points x and y, to produce f (x),g(x) and
f (y),g(y). Note that we use the unit l2-norm constraint for output
embedding coordinates as described in Section 3.5. Both networks
receive inputs as centered point clouds of partials shapes, translated
so that the centers of axis-aligned bounding boxes are located at the
origin. Thus, the relation prediction is performed without the infor-
mation of the partial shape location. In all experiments, we train the
network for 1,000 epochs with batch size of 32, and use ADAM
optimizer with 1.0E-3 initial learning rate, 0.7 decay rate and 200K
decay steps. The embedding dimension is fixed to be D = 100.

4. Results

4.1. Partial Shape Dataset

In our experiments, we use the ShapeNet 3D component dataset
of Sung et al. [SSK∗17]. It consists of 9 model categories from
the ShapeNet [CFG∗15], each of which has up to 2.4K models.
All models are consistently aligned, scaled to have unit radius,
and pre-segmented into components. The components were cre-
ated from the ShapeNet CAD model scene graphs; the leaf node
components of scene graphs were preprocessed, so that symmet-
ric components were grouped into a single component, and small
components were merged with the adjacent larger components. We
build contact graphs of components based on their proximity, and
during training generate complementary partial shape pairs by ran-
domly splitting the contact graphs into two subgraphs. The dataset
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Figure 4: Neural network architecture. We build two Siamese net-
works with shared weights, for both f and g embeddings. We use
PointNet [QSMG17] to compute the embeddings, but any neural
network architecture for 3D geometry processing is applicable.

is split into 80% training and 20% test sets, and separate networks
are learned for different model categories.

4.2. Qualitative Evaluation

Complementarity Evaluation Figure 5 shows examples of the
top-5 complement retrieval, in terms of the complementarity energy
Ec (Equation 8), one example per category. In the retrieval experi-
ment, we used all possible partial shapes in the test set as a database
of complement candidates. The centered query and retrieved par-
tial shapes were automatically stitched, using the placement neural
network introduced in [SSK∗17]. Here, the placement net was re-
trained with partial shapes instead of single components. We note
that the retrieved complementary partial shapes have different ge-
ometries and styles, but most of them complement the queries in
a plausible manner. For example, given a chair query with swivel
legs removed, both four legs and swivel legs are retrieved, and all
the results look plausible. In another example, given the stretcher
of a table, different tables having appropriate widths fitting the
stretcher are retrieved. The three lamps are complemented with
suitable mount accessories, including the three wall mount plates
of the last complement.

Interchangeability Evaluation Figure 9 shows examples of inter-
changeable partial shapes extraction. Here, we also used all possi-
ble partial shapes in the test set as a database of interchangeable
candidates. For each query shape, we extracted its top-5 nearest
partial shape neighbors, now using the interchangeability measure
Er (Equation 9). The results demonstrate that our method can prop-
erly learn interchangeability among partial shapes, even when they
are constructed of different components and have dissimilar ge-
ometries. For instance, table stand bottoms (Figure 9, second col-
umn from the right) have different shapes, but they can be replaced
by each other in any table. For the partial chair without a seat, we
successfully retrieve all partial chairs without seats, while all re-
trievals have different back and leg parts. The lamp components

retrieved by a query have various shapes with different sizes, but
all of them are shade parts with tubings.

4.3. Comparisons

We compare our method with ComplementMe [SSK∗17], which
also learns complementary relations among 3D shapes, but for a
different purpose. ComplementMe was designed for an iterative
component assembly task, therefore it retrieves a single component
for each query partial shape in every iteration. Thus, when applied
to fully automatic shape synthesis or completion, ComplementMe
has limitations of accumulating noise in successive iterations and
missing a notion of termination. Contrarily, the proposed method
finds groups of components fully completing the query shape in a
single retrieval step. Another difference in terms of the difficulty
of the problems is that the proposed method handles much larger
shape variation space since it embeds all possible partial shapes,
while ComplementMe only embeds single components.

ComplementMe approach can also be adapted to handle partial
shapes instead of individual components. However, we argue that
the proposed method is more effective for learning both comple-
mentarity and interchangeability relations due to the differences in
relation representations. In ComplementMe, the one-way comple-
mentarity energy function is defined as a negative log-likelihood
of a Gaussian mixture probability density function. The multi-
modality of the distribution is essential in ComplementMe since
a single Gaussian raises the embedding collapse problem described
in Section 3.2 and Figure 3(b). But it also leads to two limitations.
First, a larger number of Gaussians can better encode all possible
complementary relations, but it also increases the number of out-
put parameters, making the network more difficult to train. Thus,
the representation power can be impaired either when the number
of Gaussians is too small or too large. Second, some interchange-
ability relations may not be captured with the multi-modal distri-
butions since two interchangeable partial shapes can be included in
different modes. Our fuzzy-set-based representation, using a sin-
gle vector to represent a partial shape, is much more concise than
the Gaussian mixture representation and does not have the above
multi-modality issues.

In the following experiments, we demonstrate that the difference
in the relation representations affects the performance of both com-
plementary and interchangeable shape retrievals in practice. For
comparison, we re-train the ComplementMe retrieval network us-
ing our partial shape dataset, and the same training parameters and
embedding dimension as in the proposed method. We also use our
loss functions (Equation 10 and Equation 11) instead of the triplet
loss in ComplementMe. Note that the losses are identical except
for the larger number of negative pairs used in the proposed loss
(N(N−1) vs. N in ComplementMe, which makes the training more
efficient).

Evaluating whether the retrieved shapes are complementary or
interchangeable is non-trivial since the criteria are subjective. Hu-
man annotations may not be consistent and can be prone to bias.
Thus, for the quantitative evaluation of the complement retrievals,
we measure recall and rank of the ground truth complements, fol-
lowing the recent retrieval work [KLSW15, VKFU16]. Table 1
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Airplane Car Chair Guitar Lamp Rifle Sofa Table Watercraft 

Figure 5: Examples of top-5 complement shape retrievals. The top row shows the original shapes (gray) with highlighted query partial
shapes (magenta). Next five rows show the retrieved top-5 complementary partial shapes (green), together with the query shapes (magenta).
See the accompanying text for details.

Airplane Car Chair Guitar Lamp Rifle Sofa Table Watercraft 

Figure 6: Examples of partial shape interchangeability. The top row shows the query partial shapes. Next five rows show partial shapes
interchangeable with it, which were detected using the proposed approach. Different components comprising the partial shapes are shown
with different shades of blue. See the accompanying text for details.
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Category
(# Partial Shapes)

Airplane
(4140)

Car
(5770)

Chair
(8374)

Guitar
(198)

Lamp
(1778)

Rifle
(1184)

Sofa
(4452)

Table
(4594)

Watercraft
(1028) Mean

Recall@1
CM 9.9 2.4 4.9 19.2 1.7 1.9 3.9 2.7 0.7 4.3
Ours 17.5 5.8 8.0 23.7 5.1 7.3 6.7 4.1 3.2 7.8

Recall@10
CM 48.6 15.5 27.2 67.7 11.1 17.1 20.0 15.5 7.3 23.5
Ours 61.3 30.5 35.0 72.2 19.7 23.5 30.1 19.2 14.3 32.9

Median
Percentile Rank

CM 99.8 98.8 99.6 97.0 89.6 94.3 98.5 98.3 87.0 97.9
Ours 99.9 99.5 99.7 98.5 90.4 95.8 99.2 98.5 88.7 98.4

Mean
Percentile Rank

CM 98.4 96.4 98.3 94.5 81.4 88.2 94.0 94.9 77.6 94.8
Ours 98.5 97.2 98.5 93.8 79.9 89.0 94.9 95.0 78.7 95.2

Table 1: Quantitative evaluations of complement retrievals using ComplementMe [SSK∗17] and our method. The number of all possible
partial shapes in the test set are given in parentheses at the first row. Recall@N measures the percentage of the ground truth complements in
the top-N rank retrievals, and Percentile Rank measures the percentage of partial shapes having ranks equal or greater than the rank of the
ground truth complements. Higher is better in all measures.

Query Our rank-1 CM rank-1 Query Our rank-1 CM  rank-1 Query Our rank-1 CM rank-1 

Figure 7: Comparison of complement shape retrieval results of the proposed method and the ComplementMe architecture. In each case, the
first column is the query partial shape, the second column is our rank-1 retrieval, and the third column is the rank-1 retrieval of Comple-
mentMe [SSK∗17]. The color-coding is the same as in Figure 5. The red circles show incomplete areas in the ComplementMe results.

shows the quantitative evaluation results when testing both Com-
plementMe and our method with all possible partial shapes in the
test set as queries (the partial shape number are in parentheses at the
first row, for each shape category). Recall@N indicates the percent-
age of the ground truth in the top rank-N retrievals, and percentile
rank indicates the percentage of partial shapes having ranks equal
or greater than the rank of the ground truth. The proposed fuzzy set
representation outperforms ComplementMe in all cases, except for
mean percentile ranks for two model categories.

Figure 7 shows complementary shape retrieval results of both
methods. Although ComplementMe produces reasonable results,
some retrievals do not fully complement the query shape, result-
ing in missing areas in the combined shapes: e.g., armrests in a
chair, a trunk in a car, and the bottom parts of a sofa and a lamp.
Our method successfully creates complete plausible output shapes
with the retrieved complements.

For the interchangeable shape retrievals, we also compare the
proposed method with ComplementMe, and additionally with
Multi-View CNN (MVCNN) descriptor [SMKLM15]. To eval-
uate the retrievals quantitatively, we use semantic single parts
[YKC∗16] instead of partial shapes, and measure the correlation
between the detected interchangeable parts and their semantic la-

bels. While this measure is imperfect since some parts with dif-
ferent labels may have similar shapes, this is uncommon for most
shape categories. Given a query semantic part, we find its inter-
changeable parts using each one of the methods: the interchange-
ability measure Er(x,y) (Equation 9) for our method, and the dis-
tances in the embedding and descriptor spaces for ComplementMe
and MVCNN, respectively. Then, we compute the ratio of the num-
ber of neighbors having the same semantic label as the query and
the number of all retrieved neighbors. Higher values mean that
more neighboring parts share the semantic label with the query.
Figure 8 shows the average ratio of equal nearest neighbor labels,
as a function of the number of the neighbors, up to 10% of the all
parts. Our method (green line) consistently produces higher corre-
lation with semantic labels compared to other methods in all cat-
egories, except cars, for which training data mostly have coarse
segmentations not into parts but into larger partial shapes.

Figure 9 visualizes some results of interchangeable partial shape
retrievals using both methods: query shape, rank-1 retrieval of ours,
and rank-1 retrieval of ComplementMe, from left to right. We also
list the retrieval ranks based on the interchangeability measure (em-
bedding distances for ComplementMe and energy function Er(x,y)
for ours) of the other method. The results indicate that the proposed
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Figure 8: Evaluation of interchangeability measures with human-
annotated part correspondences in [YKC∗16]. We present cor-
relations between the interchangeability measures and the se-
mantic part labels. Our method (green) shows better perfor-
mance, indicated by higher correlations, as compared to MVCNN
(blue) [SMKLM15] and ComplementMe (orange) [SSK∗17]. See
the accompanying text for details.

method is able to detect more semantically meaningful shapes as
its rank-1 retrievals, as compared to ComplementMe. Furthermore,
according to the ComplementMe ranks, it maps both the shapes in-
correctly retrieved by it and the plausible shapes retrieved by the
proposed method nearby in its embedding space. In contrast, the
proposed method is able to discriminate between the interchange-
able and non-interchangeable shapes, as indicated by its ranks for
the shapes retrieved by ComplementMe.

4.4. Application - Partial scan completion

One potential application of the proposed method is completion
of partial scan data with various partial shapes form the dataset.
Figures 1 and 10 show examples of completing real and synthetic
partial scan data with complements retrieved with our method. We
first use ICP with manual initial scan pose, to find a partial shape
in our test dataset that best fits the input point cloud (shown with
pink). We then retrieve complementary partial shapes (shown with
green) using our fuzzy set operations. Note that, unlike other shape
completion methods, such as [SKAG15, DQN17], which create a
single completion result, our method can easily provide multiple
plausible outputs according to the partiality of the input data.

4.5. Computation time

Both training and test are performed with a single NVIDIA TI-
TAN Xp graph card. It took 4.5 hours to train a network for
50k iterations. At test time, computing the embedding coordi-
nates of 5k partial shapes and their corresponding complementar-
ity/interchangeability energies w.r.t. the query, takes in a few sec-
onds.

5. Conclusion and future work

We have presented a novel neural network-based framework for
learning complementarity and interchangeability relations between
partial shapes. The two relations are learned jointly by embedding
the partial shapes into dual embedding spaces, where the shapes
are encoded using the fuzzy set representation. This embedding al-
lows us to model the complementarity and the interchangeability
as fuzzy set operations performed across and within the embedding
spaces, respectively. The method is fully automatic, and was trained
using a dataset of models with unlabeled components. Qualitative
and quantitative evaluations demonstrate that our method captures
well both types of relations, and produces meaningful results when
applied to previously unseen shapes.

While our framework is applicable to partial shape completion, it
is limited to filling the missing area at the level of the components,
and does not facilitate symmetry information as done in [SKAG15]
(Figure 11(a)). Also, small or thin components can be neglected in
the retrieved shapes due to the limited resolution of point clouds
used as neural network inputs (Figure 11(b)).

In future work, we plan to investigate how the fuzzy set oper-
ations can be applied to represent the other shape relations, and
also the relations among different modalities, e.g. images and 3D
shapes.
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Appendix

Proposition 1 max(Ec(x→ z),Ec(y→ z))≤ Ec((x∨ y)→ z)

Proof

max(Ec(x→ z),Ec(y→ z))

= max

(
∑

i
max(0, f (x)i−g(z)i)

2,∑
i

max(0, f (y)i−g(z)i)
2

)
≤∑

i
max

(
max(0, f (x)i−g(z)i)

2,max(0, f (y)i−g(z)i)
2
)

= ∑
i

max(0,max( f (x)i, f (y)i)−g(z)i)
2

= Ec((x∨ y)→ z)

Proposition 2 max(Ec(z→ x),Ec(z→ y))≤ Ec(z→ (x∧ y))

Proof

max(Ec(z→ x),Ec(z→ y))

= max

(
∑

i
max(0, f (z)i−g(x)i)

2,∑
i

max(0, f (z)i−g(y)i)
2

)
≤∑

i
max

(
max(0, f (z)i−g(x)i)

2,max(0, f (z)i−g(y)i)
2
)

= ∑
i

max(0, f (z)−min(g(x)i,g(y)i))
2

= Ec(z→ (x∧ y))
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