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ABSTRACT
We present a robust approach to data collection, aggrega-
tion, and dissemination problems in sensor networks. Our
method is based on the idea of a sweep over the network: a
wavefront that traverses the network, passes over each node
exactly once, and performs the desired operation(s). We do
not require global information about the sensor field such as
node locations. Instead, in a preprocessing phase, we com-
pute a potential function over the network whose gradients
guide the sweep process. The sweep itself operates asyn-
chronously, using only local operations to advance the wave-
front. The gradient information provides a local ordering of
the nodes that helps reduce the number of MAC-layer colli-
sions as the wavefront advances, while also globally shaping
the wavefront so as to conform to the sensor field layout.
The approach is robust to both link volatility and node fail-
ures that may be present in real network conditions. The
potential is computed by a stable diffusion process in which
each node repeatedly set its potential to the average of the
potentials of its neighbors. Aggregation paths are decided
on-line as the sweep proceeds and no fixed tree structure is
needed over the course of the computation. We present sim-
ulation results illustrating the correctness of the algorithm
and comparing the performance of the sweep to aggregation
trees under various network conditions.

Categories and Subject Descriptors:C.2.1[Network Ar-
chitecture and Design]: Wireless communication; Network
communications; Network topology

General Terms: Algorithms, Design

Keywords: Distributed Protocols, Topology, Sensor Net-
works

1. INTRODUCTION
Many applications of sensor networks require that data

be collected from or disseminated to all nodes of the net-
work or large subsets thereof. For example, sensor readings
may need to be aggregated (in- or out-of-network) in or-
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der to compute certain statistics over the whole sensor field,
or new sensor settings or code images may need to be dis-
tributed to the sensor nodes before a new round of sensing
begins. These common data collection and data dissemina-
tion operations are widely used basic networking primitives
that deserve careful implementation.

We investigate a novel class of methods for implementing
data collection and dissemination operations using a com-
munication pattern we call a sweep of the network, see Fig-
ure 1. Imagine a wavefront that traverses the physical space
in which the sensor network nodes are embedded. Using
such wavefronts to schedule and perform computations is
very common in several disciplines dealing with modeling
the physical world, such as solving partial differential equa-
tions and computing various geometric structures. In our
setting, the sweep provides an orderly way to traverse the
network while guaranteeing that each node is visited exactly
once.

Figure 1: Nodes in the center form a wavefront
that separates the swept nodes on the left and the
unswept nodes on the right.

The network sweep is implemented by a narrow band of
active nodes that ‘moves’ over the network by issuing invi-
tations to new nodes to join the band, and dropping nodes
that have already been processed and serve no other essen-
tial purpose. At any time the network is divided into three
regions: the already swept and currently inactive part con-
sisting of nodes over which the desired operation has already
been performed, the active sweep band consisting of nodes
that hold the currently accumulated data and implement
the sweep algorithm, and the remaining unswept part.

By using simple local diffusion algorithms, we can pre-
compute a certain potential at each node. The gradients
associated with this potential can help guide the sweep and
guarantee the correctness and efficiency of the method. We
effectively solve a simple PDE, a Laplace’s equation with
Dirichlet boundary conditions, over the network to define



a harmonic potential function whose level sets correspond
to the desired wavefronts. Our algorithm, in its simplest
form, is just the familiar Gauss-Seidel iteration (each node
sets its value to the average values of its neighbors). The
construction guarantees that no local extrema where the
sweep could get stuck are present in the field. In general,
such potentials and their gradients are rather resilient to
link connectivity changes in the network because their val-
ues integrate information from large areas of the network.
They also smooth out local variations in node density. They
are used by the sweep protocol to provide global guidance
so that the wavefront propagates in an orderly way with-
out self-collision while allowing the sweep control to remain
completely local. The gradients are also used to schedule
invitations for nodes to join the sweep in a manner that
alleviates MAC-layer collisions. Such interactions between
the network and MAC layers can be efficiently implemented
using the recently proposed sensor network protocol (SP)
abstraction [17].

A key feature of our structure that adds to its robust-
ness is that even though tree structures are used for partial
aggregation within the sweep active band, these trees are
local and are used almost as soon as they are formed. Thus,
we do not need to assume the existence of a long-term sta-
ble global tree structure in the network. Furthermore, our
method does not require geographic location information of
the nodes or any other global network knowledge except the
potential function computed during the preprocessing phase.

2. RELATED WORK
Most common approaches for data collection and dissem-

ination in a network are tree-based. They are usually cou-
pled with scheduling protocols that control the data flow
so as the desired operation can be performed in an orderly
manner [15]. However, tree structures are not robust: any
single node or link failure can disconnect the tree. Obvi-
ous approaches to this problem introduce problems of their
own. Retransmissions over failed links can introduce de-
lays, while the use of more richly connected routing struc-
tures, such as DAGs, raises issues of duplicate suppression
and information over-counting [15, 22]. This can be amelio-
rated using duplicate-insensitive encodings and approxima-
tions [16, 3], but the design of such methods is itself a chal-
lenging problem and must be thought through anew for each
type of aggregation desired. In contrast, there is no long-
lasting data structure needed for a particular data collec-
tion/dissemination operation in the sweep algorithm we pro-
pose. As long as radio links remain stable as the wavefront
passes the relevant nodes, data will be collected/distributed
correctly.

The notion of sweep in sensor networks has appeared be-
fore. In [2], information broadcast was obtained by ‘wave
expansion’ over a multihop radio network. A polynomial
heuristic scheduling algorithm was introduced which, in the-
ory, provides collision-free communication between neigh-
bors with bounded time-delay, assuming global synchroniza-
tion, static links and a global connectivity graph known to
all nodes. Collision-free communication was achieved by
spatial reuse in the broadcast process, exploiting the con-
nectivity graph. This greedy algorithm operates in phases
but is not local however: coordination is required among
nodes in each ‘belt’ — nodes with equal shortest hop dis-
tance from the broadcast node.

More recent work introduced distributed algorithms to
carry out wave-like sweeps in the context of sensor fields
with very regular geometry and in which sensor locations
are known. [21] partitions nodes into cells and treats each
cell as a ‘supernode’ for the scheduling algorithm; the algo-
rithm activates spatially well separated ‘edges’ between su-
pernodes. Effectively, the separation of the activated edges
is ensured by their Euclidean distance, exploiting the unit
disk communication graph assumed. [19] deals with sensing
coverage, where a curve segment ending on two opposite bor-
ders of the sensor field periodically scans the field. A set of
sensors that wake up to cover the curve form the ‘hot region’,
whose envelope in the direction of the curve motion forms
the wavefront. Each node in the hot region advances the
wave by waking up all nodes whose sensing ranges (disks)
intersect with its current wavefront. The difficulties facing
these methods are twofold: first, accurate sensor locations
are assumed but can be expensive to obtain; second, it is un-
clear how they would perform in the type of non-idealized
connectivity observed in the real world [11].

Besides the tree-based approach discussed above, there
is another line of study on data dissemination inspired by
epidemic and gossiping algorithms [1, 4] developed for the
Internet. Trickle and Deluge [14, 10] use a ‘polite gossip’
policy to adjust local ‘communication rates’ to local network
density, meanwhile continually maintaining data consistency
in a manner similar to epidemic algorithms. Such solutions
have the advantage of being completely autonomous and re-
silient to network dynamics. However, they are only appro-
priate for data dissemination which is an easier problem than
data aggregation as data duplication issues do not arise.

3. POTENTIAL FUNCTION AND SWEEP
Suppose that we would like to sweep over a rectangular

sensor field as shown in Figure 2(i). If each sensor knows its
exact location, one solution would be to have the network
sweep emulate a geometric vertical sweep line moving over
the field from one side to the opposite side.

However, when geographic location information is unavail-
able, the notion of direction given by the common coordinate
system shared by all the nodes no longer exists. To compen-
sate for this, we introduce the notion of a potential function
over the network, whose guidance allows the sweep front to
evolve in a smooth and simple manner so that it will pass
over each node precisely once. We want the function to have
the following properties:

1. It must be free of local extrema so that the sweep does
not get stuck.

2. It must have smooth contours so that the sweep fronts
are well-shaped, providing us a means for alleviating
radio interference while advancing the sweep front.

3. It is desirable that the global maxima (minima) form
a small connected set so that the network sweep initi-
ation and termination can be done efficiently.

The sweep over the sensor field progresses following the
gradient of this potential function from high to low values (or
vice versa). The potential function locally provides a sense
of direction using which the sweep could evolve in a globally
consistent way. In addition, the potential function gives a
local ordering among the 1-hop neighbors of any node. This
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Figure 2: (i) Level sets x = 0.0, .25, .5, .75, and 1.0 based on geometric coordinates of the nodes, (ii) Potential
function φ obtained from the averaging process (iii) Level sets φ = 0.0, .25, .5, .75, and 1.0 of that potential
function.

ordering can be exploited to reduce packet collisions at the
MAC level.

We compute the potential function once in a preprocessing
phase and reuse it for many data dissemination and aggre-
gation operations. As the data dissemination operation is
essentially a subproblem of the data aggregation operation,
we focus our discussion on data aggregation from this point
on.

3.1 The Model
The network is represented as a undirected graph in which

each edge represents a communication link between two
nodes. The links are assumed to be stable in the short term.
The effect of link dynamics are discussed in section 3.6 and
simulation results are presented in section 5. To define the
potential function, a small subset of nodes are selected as
sink nodes and their potential values are fixed to 0. Another
small subset of nodes are selected as source nodes, and their
potential values are fixed to 1. All other nodes are called
regular nodes. Sources are connected to sinks via regular
nodes.

3.2 Construction
The potential function can be computed during the pre-

processing phase as follows. Regular nodes initially have
zero potential value, and each repeatedly sets its potential
value to the average of the potential values of its neighbors
in the network. Formally, regular node i performs the as-
signment:

φ(i)←
1

|N(i)|

X

j∈N(i)

φ(j) , (1)

where φ is the potential function and N(i) is the set of neigh-
bors of node i.

The averaging process for computing the potential on the
sensor field is essentially the Gauss-Seidel iteration for solv-
ing sparse linear systems. A similar method was used in the
virtual coordinate computation in Rao et. al. [18].

It is easy to see that the potential value at each regular
node can only increase in the process, and that the value is
bounded from above by one. Thus,

Lemma 1. The averaging process to compute the potential
function converges.

We observe that nodes that are disconnected from both
the source and the sink nodes have their values unchanged in
the averaging process. The potential values at the remaining
regular nodes satisfy a system of linear equations involving
their own values and the values at the source and sink nodes.
This linear system is always invertible; see Proposition 3.3
in [7]. The diffusion value at each node is thus a linear com-
bination of the values at the source and sink nodes, where
the combination depends only on the network connectivity.

Using the Gauss-Seidel iteration to solve elliptic partial
differential equations discretized on N grid points has been
well studied. Given Dirichlet boundary conditions, the asym-
ptotic convergence rate in 2-D is O(N) [23]. In our setting,
the communication graph does not form a grid mesh, and
each node does not have a constant degree. Nevertheless,
we observe experimentally that the convergence rate is still
linear in the number of nodes in the network, see Section 5.1
for more details.

3.3 Properties
We note that in the limit, when the sensor field is a contin-

uous domain, the resulting potential function is the solution
to the Laplace’s equation ▽2φ = 0 with Dirichlet boundary
conditions on the domain. The potential function is thus a
harmonic function and has no local minima nor maxima. In
a discrete sensor field, that is true only with certain caveats.
As the potential value at each regular node is the average of
the values of its neighbor, we have that

Lemma 2. The potential function does not have a strict
minimum or maximum at a regular node.

If a regular node is a local minimum or maximum, it must
have the same value as all of its neighbors — otherwise it
cannot be the average of its neighbors. The local minima
(maxima) in the sensor field appear in clusters that we call
plateaus. While there are many ways plateaus may arise in
theory, in the absence of network symmetry as is often the
case in sensor network, we observe that a plateau is often a
group of nodes that are almost disconnected from the rest of
the network. A plateau may connect to the remainder of the
network through a single node called the plateau boundary,
in which case the potential of the nodes on the plateau is
the same as the potential of that plateau boundary node. A
plateau may also connect to the remaining of the network via
a set of nearby plateau boundary nodes that are guaranteed



to have the same potential by sharing an identical set of
non-plateau neighbors. Once the potential at each node has
been computed, nodes can identify themselves as plateau or
plateau boundary nodes by simply comparing their potential
values to those of their neighbors.

Every non-plateau node must have a neighbor with a
higher potential value and a neighbor with lower potential
value. The nodes that are strictly above it (with respect to
the potential function) are called upstream neighbors, and
the nodes that are strictly below it are called downstream
neighbors. Clearly these nodes are non-plateau nodes also.
From a non-plateau node, we can follow its upstream nodes
to reach the source as well as follow its downstream nodes
to reach the sink. It follows that

Lemma 3. Any non-plateau node is on some strictly
monotonically decreasing path (with respect to the potential
function) connecting some source node to some sink node
while avoiding all the plateaus.

3.4 The Sweep Algorithm
Given such a potential function, we can use it to guide

our sweep over the network from the sources to the sinks.
We exploit the gradient of the potential function to control
the advance of the sweep locally, so that it follows the level
sets of the potential function.

Initially, all source nodes are in the sweep and are not yet
aggregated. Once all the upstream nodes of a given node
have been aggregated, the node invites all its downstream
neighbors to join the sweep, passes down its aggregated data
to one of them, then leaves the sweep. The sweep terminates
when all the aggregated data reach the sink nodes.

The set of nodes that are in the sweep at any moment
is called the sweep line. From Lemma 3, it is easy to see
that a non-plateau node is guaranteed to be invited and its
aggregated data is guaranteed to reach the sink nodes. Thus

Lemma 4. The sweep line will pass through each non-
plateau node exactly once, and the sweep will aggregate all
data from non-plateau nodes to the sink nodes.

We can augment our sweep to take care of the plateau
nodes. For example, when a sensor field is well-connected,
plateaus do not exist or are small, and restricted flooding is
sufficient for aggregating information from such regions to
the plateau boundary node(s). In such cases,

Theorem 1. The augmented sweep algorithm will aggre-
gate information from all nodes in the network exactly once.

Additionally, we would like to show that the sweep main-
tains certain nice topological properties. The sweep line
separates the set of nodes that have already been aggre-
gated and the set of nodes that are yet to be swept. We
need to ensure that the sweep does not divide two regions
of unswept nodes. In particular,

Lemma 5. The set of aggregated nodes can never enclose
any unswept non-plateau nodes.

Proof. Let P be an unswept non-plateau node. By Lem-
ma 3, there is a monotone path from P to some sink node.
As P is unswept, none of the nodes in this path are swept,
and thus any set of nodes inclosing P must contain an
unswept node.

Lemma 5 essentially states that the sweep line does not
“self-intersect” and create pockets of unswept nodes as it
advances.

3.5 Selecting source and sink nodes
We envision the sweep as starting at the source nodes

and proceeding towards the sinks. When any node could
potentially be a query point, building a potential function
repeatedly based on different nodes can be costly. Instead,
we can fix the source and sink sets so that all sweeps share
the same potential function. If a query node is not in the
source or sink set, it sends a message to a source set to begin
the sweep and collects the aggregated information from the
sink set. Here we discuss the different considerations for
selecting the source and sink nodes.

First, there are structural considerations. When data is
collected and disseminated via base stations or some other
fixed nodes in the network, it is natural to choose such spe-
cial nodes as the sinks for the diffusion potential function
and the nodes on the outer boundary of the sensor field as
the source nodes.

More generally, the source and and sink nodes should be
small sets. A small source set reduces the start up time of
the sweep while a small sink set makes final collection of the
aggregated data easier. Each set must also be connected to
ensure that all source nodes initiate the sweep and that all
the information is accessible in one place in the network at
the end of the sweep.

The sets should be well-connected with the rest of net-
work. This important for the robustness of the sweep and
the construction of the potential field. If the source or sink
is poorly connected, the convergence time is longer and the
resulting potential field is more sensitive to failed links. This
limits how small we can make the source and sink sets.
Larger sets are inherently better connected to the rest of
the network by having more regular nodes as neighbors.

Determining best source and sink sets is a difficult prob-
lem in general. Although we do not know how to do it
optimally, the method we propose is to pick sets of nodes
which are far apart in the network. The rationale behind
choosing such sets is that all gradient paths, each connect-
ing a given node in the sensor field to the source and the
sink sets, have comparable lengths, and sweeping using the
resulting potential function progresses evenly.

Distant sets of nodes can be discovered by flooding. To
avoid the high overhead of multiple floods, we can use the
following algorithm, which gives a 2-approximation of the
farthest pair of nodes in the field. Starting from a node,
p, find the node q that is furthest from p. Then, find the
node r that is farthest from q. The nodes q and r are the
chosen pair of nodes, with one as the source and the other
as the sink. Note that both q and r are on the boundary of
the sensor field. The nodes q and r can subsequently recruit
more nearby nodes on the boundary to enlarge the source
and sink sets.

A higher-level understanding of the sensor field layout
may provide insight into how to select the source and sink
sets. Recently, there has been work toward this global struc-
ture of the network such as the combinatorial Delaunay com-
plex discussed in [5] or the detection of inner and outer
boundaries [5, 8, 6, 12]. Such morphological understanding
can enable more intelligent source and sink selection.



3.6 Link dynamics
Because the gradient is determined by a global computa-

tion, it is relatively insensitive to small fluctuations in the
connectivity structure. If the communication links change
more permanently over time, we can maintain the potential
function by letting nodes periodically broadcast their values,
and have each node recompute its value to be the average of
the latest values it knows about its neighbors. The potential
at each node will converge to the correct current potential,
once the network connectivity becomes stable.

During a sweep, a typical node has many downstream
neighbors to which it can pass its aggregated data. This
is the major advantage of using the sweep compared to a
tree based approach. Even in the case when the links to
all downstream neighbors of a node are out, temporarily
making the node a local minimum, simple local backtrack-
ing would quickly allow the sweep to avoid that local min-
imum. For similar reasons, while the global convergence of
the potential function is desirable, it is often not completely
necessary for the sweep to progress properly.

4. THE SWEEP PROTOCOL
The sweep protocol is simple and completely local, follow-

ing the program outlined in Algorithm 1. A node is initially
unswept and remains so until it is invited into the sweep.
Once it is in the sweep, it listens for possible requests for
data aggregation from its upstream neighbors and aggre-
gates any data it receives.

After all its upstream neighbors have forwarded their ag-
gregated data and left the sweep, the node invites all its
downstream neighbors into the sweep and forward its data to
a selected downstream neighbor, using point-to-point com-
munication. This is important for avoiding double counting
and ensuring that the aggregated data is not lost. Once the
data forwarding is successful, the node leaves the sweep.

Algorithm 1 Pseudocode for Sweep

1: repeat
2: WAIT
3: until RECEIVE invitation from upstream node
4: ENTER sweep
5: repeat
6: if RECEIVE request to aggregate then
7: RECEIVE data
8: AGGREGATE data
9: end if

10: until all upstream neighbors have left the sweep
11: INVITE all downstream nodes into the sweep
12: repeat
13: SELECT a downstream node
14: SEND request to aggregate
15: until RECEIVE acknowledgement
16: LEAVE sweep

All the decisions a node makes are local and based only on
its 1-hop neighborhood information. As the sweep proceeds,
information in the swept parts are aggregated to nodes cur-
rently in the sweep, ensuring that when the sweep termi-
nates, the sink nodes have the aggregate information of the
whole network.

The overhead information required at each node is mini-
mal. Each node has a node ID, a potential value, and a state

(swept or not). It also keeps track of the node information of
its neighbors as well as the time of the last communication
with each of them.

To reduce the communication cost, nodes can obtain in-
formation about their neighbors explicitly by direct commu-
nication, or implicitly by overheard packets. In particular
when a node overhears a data or acknowledgement packet
from upstream nodes, it can label that upstream nodes as
swept and can immediately join the sweep if it has not al-
ready done so.

The sweep algorithm uses CSMA for collision avoidance
at the MAC level. As we let nodes forward their aggregated
data when all their upstream neighbors have been aggre-
gated, we effectively use the potential function to locally or-
der the aggregation of the nodes. This ordering provided by
the potential function reduces the chance of multiple nodes
contending for communication channels.

If the packets being transmitted are small, a simple colli-
sion avoidance scheme such as CSMA is sufficient. For large
aggregated data packets, RTS/CTS is required to reserve
the channel before the packets are sent.

It may happen that a node may not hear that its up-
stream neighbor has left the sweep. In this case there is a
timer which dictates how long a node waits before requesting
state information from its upstream neighbor. If this fails,
then the upstream node is considered dead and the sweep
moves on. However, for some information to be missed, the
upstream node must have all of its downstream links fail.
A complete finite state diagram for the sweep algorithm is
shown in Figure 3.

The starting and ending of the sweep require special treat-
ment. To begin a sweep, the node initiating the sweep must
first notify all source nodes. One simple way to do so is to
ascend the gradient of the potential function to reach some
source, then do a restricted flooding to notify them all.

The stopping criterion for the sweep is local. Once all
the sink nodes have received the aggregated data from their
upstream neighbors, the sweep has completed. The node
initiating the sweep can periodically descend the gradient
to reach a sink node to find out the status of the sweep, and
if the sweep has completed, initiates a restricted flooding to
collect the aggregate data from all sink nodes.

5. SIMULATIONS
In this section we investigate the correctness of our sweep

algorithm, its robustness to link failures, and its aggrega-
tion speed in experimental settings and compare it with
a tree-based aggregation algorithm. Two series of experi-
ments were conducted. The first series tested the correct-
ness and robustness of the potential function and the data
aggregation algorithm on randomly generated graphs with
independent random link failures and were done in MAT-
LAB. The second series of experiments are conducted using
TOSSIM [13].

5.1 Computing the potential function
In this experiment, we generated random sensor fields of

various sizes on a unit square. The communication radius
was chosen so that the average number of neighbors at each
node was roughly 7. The sources and the sinks were se-
lected along two opposite boundary of the square. Initially,
the initial potential value at a node that was not a source
nor a sink node was randomly generated, then was updated
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using the averaging rule. The averaging stopped when all
potential values changed less than 10−5.

We observed that the number of iterations it takes for the
whole network to converge is roughly proportional to the
number of nodes in the network, see Figure 4.
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Figure 4: The number of iterations needed for con-
vergence is proportional to the number of nodes in
the network.

5.2 Flipped links and local minima
We considered a network consisting of 500 nodes randomly

generated on a square. The source and the sink nodes are
selected along the two opposite sides of the square. We
selected the communication radius for the sensor field so
that the average number of neighbors at each node was from
5 to 14. We computed a potential function on the network
then randomly disabled a number of links.

Figure 5(i) shows the percentage of links that change their
gradient directions after the potential function was recom-
puted for the new network connectivity. The figure shows
that most gradient directions were stable when the network
degree was 6.66 or more. For a network with degree 6.66,

even when 20% of the links failed, only 8% of the gradient
are now wrong.

As the links failed, some nodes became local minima, see
Figure 5(ii). The number of local minima, however, was
relatively small. For a network with degree 6.66, around
8% of the nodes were local minima even when 20% of the
links died. We note that virtually all local minima we en-
countered were very shallow, and when sweeping the field, a
simple local search scheme was sufficient to bypass the local
minima.

As expected, when the network density increased (i.e. the
number of neighbors increased), the potential function be-
came more stable: the percentage of flipped links and the
percentage of local minima became lower.

5.3 Robustness of the sweep aggregation
In this experiment we considered a simple aggregation

problem of counting the nodes in the sensor field. Each node
aggregated a count locally and passed down the sum when it
left the sweep. We compared the performance of our sweep
algorithm with a tree based aggregation approach. In the
tree-based approach if a link in the aggregation tree died, we
improved its performance by letting nodes pass on their ag-
gregated sums to any nodes that were not yet aggregated. In
both the sweep and tree-based approach, some of the counts
accumulated could not reach the sinks, see Figure 6 for the
failure rates It is clear that the sweep approach performed
much better even though we did not implemented the local
search algorithm to avoid the local minima. When the net-
work degree was around 7, our sweep algorithm lost 10% of
the aggregated values, while tree based algorithm lost more
than 60%. The sweep algorithm was even more robust for
networks with higher node degrees.

5.4 Networking performance
To verify the algorithm in more realistic conditions, the

sweep was implemented on TinyOS [9] and tested in TOSSIM.
The sensor network used was a 20x20 grid of 400 nodes. The
source and sink sets are chosen along the opposite sides of
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Figure 5: (i) The percentage of gradients flipped as a result of failed links for different node densities; (ii) The
percentage of local minima that result from failed links before recomputation for different node densities.

Table 1: Performance results for the sweep
# of neighbors Sweep Time(sec) Delivery Time(sec)

4 15.8 21.8
8 48.5 52.5
12 56.8 61.9
20 100.1 101.7

8(15% loss) 62.8 68.8
8(50% loss) 151.2 159.8

Table 2: Performance of the aggregation tree
Run Time(sec) % of Data Delivered

4 Epoch 1 58.5 35.8
neighbors Epoch 2 117.5 48.3

Epoch 3 176.2 80
8 Epoch 1 48.2 12.5

neighbors Epoch 2 107 59.7
Epoch 3 161 60.7
Epoch 1 24.2 11.2

12 Epoch 2 66.5 42.3
neighbors Epoch 3 109.1 61.3

Epoch 4 151.4 68.7

the outer boundary of the sensor field. Testing was done
on networks with each node having 4, 8, 12, and 20 neigh-
bors, with perfect links. We also considered two lossy radio
models in which each node had 8 neighbors. The first lossy
model had a packet loss rates of up to 15%, while the second
had packet loss rates of up to 50%.

For comparison, the aggregation tree algorithm used in
Tag [15] was considered. The metric considered is percent of
data delivered over time. The routing tree and diffusion field
were built in a preprocessing phase, and then aggregation
was started. In the case of the aggregation tree, the sink
boundary first flooded outward to inform all the nodes that
aggregation should begin. The nodes began forwarding their

data according to a schedule based on the node’s depth in
the aggregation tree.

We used the query nodes as the source nodes and let them
initiated the sweep. When the sweep completed, the data
was sent upstream to the source nodes where it was con-
sidered delivered. An example of the sweep propagation is
shown in Figure 7. The node in the lower left corner began
the sweep. This sweep propagated across the source bound-
ary, then proceeded nicely to the sink boundary. The regular
nodes in the middle of the field had a higher probability of
collisions because they had more neighbors on average. The
fact that the midsection of the wavefront progressed as fast
in the middle as on the edges indicated that packet collisions
did not hinder sweep progress significantly.

Figure 7: Wave fronts at roughly 10 sec intervals
during the sweep showing that the sweep progressed
evenly.

The complete performance results of the sweep can be
seen in Table 1. The sweep time refers to the time when
all nodes have forwarded their data and the delivery time
refers to the time all the data is received back at the source.
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Figure 6: (i) The percentage of data which is not delivered by TAG for different rates of link failure at
varying node densities; (ii) The percentage of data which is not delivered by the sweep for different rates of
link failure at varying node densities.

In the 4-neighbor model, the sweep proceeded very quickly
across the network. With more neighbors, the sweep pro-
ceeded slower. This was because with more neighbors, fewer
nodes in the sweep could transmit simultaneously, resulting
in less parallelism. Introducing lossy links also increased
latency due to retransmissions caused by bad links. The
long duration of the sweep was caused by the current imple-
mentation which did not drop nodes from the neighbor list
and forwards down the gradient, resulting on retransmis-
sions on bad links. These implementational issues resulted
in slow sweep propagation when a realistic radio model was
used. We plan to implement a more optimized version of
the sweep that will include link estimation and a dynamic
neighbor list.

The performance of the tree implementation, which can
be seen in Table 2, shows significantly worse performance
than the sweep. The result was poor even though we spent
a lot of effort experimenting with many combinations of pa-
rameter values for each radio model and reported only the
best results. Random delays at the MAC layer caused packet
losses during aggregation epochs. The scheduling problem
was made harder by collisions between nodes forwarding to
different parent nodes and synchronization over all levels of
the tree.

6. DISCUSSION

6.1 Computing the potential function
The current computation of the potential function is rather

slow — it takes O(N) iterations to converge. Two possible
speedup methods are worth investigation: Successive Over-
relaxation (SOR) [23] methods and a multi-grid type ap-
proach.

SOR is a method of solving a linear system of equations
derived by extrapolating the Gauss-Seidel method. This ex-
trapolation takes the form of a weighted (weight ω) average
between the previous iteration and the computed Gauss-
Seidel iteration, successively for each component. The pa-
rameter ω is usually experimentally obtained and set so as

to accelerate the rate of convergence of the iterations to
the solution. Hence it could be computed given the local
smoothing operator, network topology and boundary condi-
tions.

Another way to speed up the process is to use a more elab-
orate initialization procedure. At the initialization stage,
the source and sink nodes flood the network. Each node
records its shortest hop count distances to the source and
the sink, r1 and r2. If the potential values at the source
and sink are p1 and p2, each node gets an initial value that
equals to r2 × (p2 − p1)/(r1 + r2). Using these initial val-
ues, the convergence for the potential computation may be
faster.

6.2 Segmenting the sensor layout domain
For sensor fields with complex shapes, the gradient value

might be too small across different level sets of the potential
function. Such a case may then become indistinguishable
from a plateau, when numerical precision is considered. One
way of handling this problem is to segment the problem do-
main so that in each sub-domain the sensor field layout is
nice, in the sense that each subnetwork is well connected.
For example, in Figure 8, we can segment the domain into
three sub-domains at the ‘narrow bridges’ region and build
separate potentials in each sub-region that can then be com-
bined to give us a nice overall potential field.

However, when we do not have prior knowledge of the
network layout, we need to first decide if a segmentation
is necessary and where to perform the segmentation. For a
sampled shape, there exist geometric methods for segmenta-
tion based on defining a continuous flow on the samples[20]
(i.e. the sensor nodes). In the case where sensor coordinates
are unknown, we may employ some heuristics for identify-
ing ‘narrow bridges’ of the network. A simple approach can
be based on collecting shortest path statistics between a se-
lected sample of the nodes: 1) compute the pairwise shortest
paths in a flooding stage; 2) record in each node the total
number of paths bypassing it; 3) increase the weight in each
node for shortest path computation proportionally to the
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Figure 8: This illustrative example shows how an
irregular region could be segmented into three sub-
regions R1, R2, R3.

number of paths it has recorded; 4) repeat 1), 2), 3) un-
til the number of paths through each node stabilizes. The
nodes with higher path counts form the ‘narrow bridge’.

After the segmentation, we add a source/sink set for each
well connected region and build a gradient field in the region
to help with the aggregation in that region.

7. SUMMARY
In this paper, we have studied a localized, asynchronous

data, energy-aware, and scalable data dissemination, collec-
tion and aggregation protocol for wireless sensor networks.
Our technique uses no location information and is com-
pletely based on the link connectivity graph of the net-
work. We take full advantage of the redundancy built in
network connectivity to gain stability under link dynamics,
common in the real world. There are still many unanswered
questions, as discussed in section 6. However, imposing a
meaningful, smooth, stable function over the communica-
tion graph and using it for various network functions can be
an interesting approach for other network problems as well,
including various types of routing or information brokerage,
and deserves further study.
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