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Abstract. The problem we address in this paper is how to detect an
intruder moving through a polygonal space that is equipped with a cam-
era sensor network. We propose a probabilistic sensor tasking algorithm
in which cameras sense the environment independently of one another,
thus reducing the communication overhead. Since constant monitoring
is prohibitively expensive with complex sensors such as cameras, the
amount of sensing done is also minimized. To be effective, a minimum
detection probability must be guaranteed by the system over all possible
paths through the space. The straightforward approach of enumerating
all such paths is intractable, since there is generally an infinite number of
potential paths. Using a geometric decomposition of the space, we lower-
bound the detection probability over all paths using a small number of
linear constraints. The camera tasking is computed for set of example
layouts and shows large performance gains with our probabilistic scheme
over both constant monitoring as well as over a deterministic heuristic.

1 Introduction

Until recently, research in wireless sensor networks (WSN) has focused primarily
on low cost, low bandwidth sensors. With dropping costs and advances in imaging
technology, there is now increasing interest in camera sensor networks. Several
platforms have already been developed for image/video acquisition in a sensor
network setting [17, 13]. Cameras provide a higher level of sensor information,
but also use more of the limited resources available to a wireless sensor node
and so present a new set of challenges. If used continuously, cameras consume
too much energy to operate on battery power. While applications such as target
tracking usually require constant monitoring, it is unlikely that all areas being
monitored will see continuous activity over time. We can achieve significant
energy savings if we reduce the amount of sensing a camera node must do,
with the goal of first detecting the target(s). Detection can provide a wake-
up mechanism for more expensive higher level services such as tracking [16, 2],
identity management [24], and occupancy reasoning [27].
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Exhibition Hall

Fig. 1. An exhibition hall with two entrances/exits, allowing for several possible paths
through it

In this paper we propose an energy efficient approach to detection in camera
sensor networks. Our approach provides two benefits. First, after the initial setup
is complete, no communication between nodes is required. The amount of sensing
done is also minimized, while still providing guarantees on detection quality.
Minimizing the use of the cameras is important since they consume as much
energy as communication [18]. The algorithm itself is simple: at each time step,
a camera independently decides to sense a frame with an assigned probability.
These are set so that probabilistic guarantees on detection can be made.

Consider the scenario of tracking people with a camera sensor network in an
exhibition hall with the floor plan in Figure 1. In the evening, the building is
empty and the network should no longer monitor continuously because there is
no one to track. When a person is detected, the network can wake up and begin
tracking once again. One possible solution is to have the cameras continuously
monitor only the entrances. This either assumes that the cameras have been
specifically deployed for the purpose of detection or the cameras which face the
entrances will be overused and may soon run out of energy. In this paper, we
assume that the cameras are spread out to cover most of the space (as they would
be deployed for monitoring or tracking). Surveillance and tracking are canonical
applications of camera sensor networks, often aimed at detecting an adverserial
intruder. The objective of the intruder is to move between sets of points called
sources and destinations. Sources can be thought of as entrances into a space and
destinations as secure areas (e.g. a bank vault). Although the intruder model is
natural in security applications, the idea of focusing on paths between certain
points in space is more general. For example in building monitoring, a destination
may be a particular office or all points of a certain distance from the entrance,
limiting how far an intruder may travel before being detected.

First we present related work and introduce the models used for the cameras
and the space. After introducing the necessary geometric preprocessing of the
camera layout, the problem of tasking the cameras subject to a global detection
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probability constraint is posed in the framework of convex optimization. A de-
terministic algorithm with a detection probability of 1 is presented for compar-
ison. Finally, analysis of the performance and validation of the algorithms are
presented.

2 Related Work

In WSNs, work in tasking sensors has primarily addressed maintaining a min-
imum level of coverage over the entire space of the network. This is usually
referred to as the k-coverage problem. Several centralized and distributed algo-
rithms have been proposed for uniform [1, 15, 12] or differentiated coverage [26].
These all, however, assume a local sensor coverage model1. For camera sensor
networks, a deployment algorithm which meets coverage constraints over a space
was recently proposed in [10]. These types of coverage problems are all closely
related the classical Art Gallery Problem and its many variants. For further
details, the reader is directed to [21].

In [20, 25, 19], algorithms for finding maximal exposure and maximal breach
paths through a sensor network with local sensors are described. The maximal
exposure path is a path which the intruder is exposed to the most sensors. More
relevant is the maximal breach path, which is the path of minimal exposure
through a sensor network. This work again assumes constant sensing and finds
the path through the network which maximally distances itself from all the sen-
sors. The idea of barrier coverage was proposed recently in [14]. Barrier coverage
refers to when active sensors form a barrier so that an intruder cannot pass
through the network undetected. Results on the probability of random sampling
needed to achieve a barrier in the network were given. However, the analysis was
done for dense random networks equipped with local sensors and the barriers are
static. Energy conservation through limiting the sensing to a small part of the
network was also considered in [11, 23]. In [11], the activation pattern follows a
user-defined path through the sensor network as a sentry. In [23], the activation
pattern is a sweep across the network. Both schemes assume a simple topology
and do not handle sensing holes.

Our work incorporates many similar ideas to the ones mentioned above. How-
ever, to the best of our knowledge, there is no prior work on providing energy
efficient detection in a non-local camera sensor network.

3 Model

The detection area is modeled as a two dimensional polygonal space. It need not
be convex or simple, as seen in the Exhibition Hall example in Figure 1. The
space may have occlusions as well as regions not covered by any cameras. Sources
and destinations are modeled as points in the space. These may be entrances or
1 A local sensors refers to a sensor that can only detect things close to itself. The

circular or Gaussian sensor model fall into this category.
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(a) (b) (c)

Fig. 2. Examples of visibility regions for cameras: (a) shows the simplest case where
two constraint edges suffice, (b) shows an occlusion from one side, where an additional
constraint edge is needed and (c) shows an occlusion in the middle of the camera field
of view, where two additional constraint edges are needed

“areas of interest.” A point may be a source in one setting and a destination in
another. The camera’s views are modeled by simple two dimensional cones. It
is assumed that detection is uniform with probability 1 inside the cone and 0
outside. More complicated models of camera coverage such as a limited depth
of view and varying probability of detection can be incorporated with minimal
changes to the framework. Time is divided into discrete steps called frames. For
energy consumption, we assume that taking a shot within a frame by a camera
has a fixed cost. This implies that minimizing the energy used by the node to
sense is equivalent to minimizing the probability that it senses during a frame.
A shortcoming of this model is that it ignores the energy lost when the node is
powering the camera up and powering it down. In future work, these costs will
be accounted for.

We assume that the cameras know their locations, orientations, and have
been properly calibrated. This could be done using structure from motion and
automatic registration. The specific problem of camera calibration has been ad-
dressed in [8, 9, 22]. Furthermore, we assume that the cameras know the layout of
the space in which they are deployed. This could be done by manually uploading
a floorplan or learning it automatically with a scanning device [3]. There are no
constraints on placement of the cameras or their viewing angles. The locations
of sources and destinations along with their corresponding detection constraints
are user-defined parameters and assumed to be known.

4 Geometric Preprocessing

The first step is to understand how the cameras cover the space. Beginning with
the empty polygonal space, the two edges which make up a camera cone are
placed into the space as constraint edges. In the presence of occlusions additional
constraint edges are needed to define the boundary of the visibility cone of the
camera. Some examples of where additional constraints are needed are shown
in Figure 2. To find all the constraint edges, we implement the rotational sweep
algorithm described in [10].

The constraint edges of all the camera cones decompose the space into polygo-
nal faces. Each face is characterized by its neighboring faces and the combination
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(a) (b) (c)

Fig. 3. (a) The coverage of 4 cameras facing each other in a rectangular space. The
brighter the color the higher the coverage. (b) The distance cost function over the
space from a point in the lower righthand corner, where the cost is 1 if the space is
covered by a camera and 0 otherwise. Note the distortion due to the uncovered areas
in the corners. (c) The cost function where the cost of traveling through the face is
proportional to the distance times the number of cameras which see the face.

of cameras which see it. The computation of the arrangement of the visibility
cones from the polygonal space and camera constraint edges is a well-studied
problem in computational geometry with known efficient solutions [7]. To sim-
plify the implementation, we compute the polygonal faces using the constrained
Delaunay triangulation of the space and the camera constraint edges. The faces
are reconstructed by joining adjacent triangles which are seen by the same com-
bination of cameras.

From this decomposition, we extract the spatial adjacency graph (SAG). The
SAG is an undirected graph G(v, e) where each vertex represents a face in the
space and two vertices are adjacent if the corresponding faces are adjacent. Two
faces are adjacent if an intruder can move between the faces without entering
any other face or equivalently, that the faces share a common vertex.

5 Tasking the Cameras

The algorithm tasks the cameras so that whichever path from the source to
the destination the intruder chooses, there is high probability that he will be
detected. First a simplified intruder motion model is considered. The results are
then extended to a more general and realistic motion model.

5.1 Assigning Probabilities in a Graph

Consider any path the intruder can traverse through the space. The continuous
path can be mapped to the SAG by marking the corresponding nodes for each
face the path crosses. We first assume that at each time step, the intruder may
only move one hop in the SAG. Under this simple motion model, each time slot
can be considered an independent trial.
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Given a path P = {v1, v2, . . . , vn} the probability of evasion2 is

PE =
∏

vi∈P
p(vi) , (1)

where p(vi) is the probability that node vi is not covered. Taking the logarithm
of Equation 1, we get

log(PE) =
∑

vi∈P
log(p(vi)) . (2)

Setting the cost of a node vi to log(p(vi)), the cost of path P is defined as sum
of the node costs along the path.

The probability that a node is covered depends on which cameras see the
corresponding face and the probability with which they are on. If the set of
cameras which cover node vi is denoted by C(vi), node vi is uncovered if and
only if the entire set of cameras C(vi) are off. The cost of a node is then given
by

log(p(vi)) =
∑

cj∈C(vi)

log(1 − p(cj)) , (3)

where p(cj) is the probability that camera cj is on. Note that if a node is not
covered by any cameras, its cost is 0 and negative otherwise.

Making the change of variables

x(cj) = − log(1 − p(cj)) ,

ε = − log(PE)

and substituting into Equation 2, ε becomes a linear function of camera weights
x(ci) along a given path. To ensure that PE is suitably small, we need to ensure
that no path of cost less than ε exists.

This is a difficult problem because the total cost of the path depends on
the individual weights assigned to the cameras. One way to ensure that there
is no path of cost less than ε is to enumerated all paths between the source
and destination. With all the paths as constraints, we can optimize the weight
vector x(ci) over any convex cost function using standard tools from convex
optimization [4]. For example, to minimize the maximum amount of time any
camera is on, we minimize ||x||∞. Although this is an LP, the number of paths
grows exponentially with the number of nodes in G. To reduce the number of
constraints, we apply the following lemma:

Lemma 1. If the cost of a node is set to 1
d , where d is the shortest distance

from the source to the destination through the node, then the total cost of the
path cannot be less than 1.

Proof. Since the length of the shortest path is d and the cost of each along the
path step is at least 1

d , it follows that the cost of any path is at least 1.

2 That is, the probability that the intruder will not be detected.
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Using this lower bound, we can provide a constraint for each node individually
rather than along paths. If we set the cost of the node vi to ε

d(vi)
where d(vi) is

path length from vi to the source plus the path length from vi to the destination,
then by Lemma 1, no path from the source to the destination will have a cost
less than ε. The constraint for each node becomes

∑

cj∈C(vi)

log(1 − p(cj)) ≥ ε

d(vi)
, ∀i . (4)

The number of constraints is reduced from the number of paths to the number
of nodes.

5.2 Assigning Probabilities in Continuous Space

Only assuming an upper bound on the speed of the intruder, we extend the
results to the continuous domain. Given the framerates of the cameras, we use
the maximum speed of the intruder to convert distance from standard units
to frames. For example, if the frame rate of the camera is 15 frames/sec and
the maximum speed of the intruder is 3 m/s then the conversion factor is 5
frames/m. The cost of P is the probability of evasion travelling along that path
at the maximum speed. If P is within the visual field of a camera for a length
of n frames and the probability of a camera taking a frame is p, the probability
of evasion along P is (1 − p)n.

To determine the probability of each camera taking a frame, we need to be
able to find the distance between two points in a polygonal space. An efficient
algorithm is known from computational geometry/robot motion planning. We
briefly outline the algorithm, but refer the reader to Chapter 15 of [7] for further
details. The algorithm first constructs the visibility graph for a space S. The
visibility graph consists of nodes representing the vertices of polygonal obstacles
in S. An edge connects two vertices if the vertices are visible to one another
(i.e. a straight line between the vertices does not intersect any obstacle). The
weight of the edge is set as its Euclidean length. To find the shortest distance
between two points, we place the points into the visibility graph and add the
appropriate edges in the same way (to all visible vertices). Dijkstra’s algorithm
is used to compute the shortest path through the graph — exactly the shortest
path through the space.

There may be regions of space not covered by any cameras which should not
contribute to the computed distance as they have a cost of 0. These “holes” act
as shortcuts through the space. To account for the holes, the visibility graph
must be augmented. In addition to the vertices of the obstacles, there must be
a vertex in the visibility graph for each uncovered face. Edges are added if the
uncovered face is visible from a vertex. The weight of the edge is the shortest
distance from the vertex to the polygon representing the uncovered face. In this
augmented visibility graph, the shortest distance returned by Dijkstra will be
correct. By comparing Figure 3(a) and Figure 3(b), we see that the distortion
introduced by holes can be significant.
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The camera probabilities must be set such that no path from the source to the
destination has a smaller cost than ε. Unlike in the graph case where paths could
be enumerated, in the continuous space there are an infinite number of paths.
By extending Lemma 1 to the continuous case, we show that one constraint per
face is sufficient to guarantee the minimum cost over all paths. The key idea is
to find a shortest path passing through each face. A path is considered to pass
through a face if it intersects or touches any part of the boundary of that face
(i.e. it does not have to enter the face). Now we can state the following theorem.

Theorem 1. For a path through the space from a source to a destination, its
length is defined as the distance the path traverses through covered faces. The
length does not increase when the path travels through uncovered faces or equiv-
alently each uncovered face is mapped to a point. If the cost of each covered face
is set to ε

d , where d is the length (as defined above) of the shortest path from
the source to the destination passing through the face, then all paths through the
space will have a cost of at least ε.

Proof. First note that by definition, any uncovered face has a fixed cost of 0.
Therefore, if an uncovered path exists from the source to the destination then
the minimum cost from source to destination is 0 and an intruder can traverse
the path without being detected with probability 1. Consider a face and the
point in the face lying on the shortest path from the source to the destination
through the face. In general, neither the point nor the path are unique, however
since the value is unique, since it is defined as the minimum. If the shortest total
path length is d then we set the cost of the face to ε

d . By Lemma 1, all other
faces that the path goes through must have equal or greater cost. Therefore, the
total cost of the path will be at least ε. By similar argument, any other path
through the face will have an equal or higher cost, because all sections of the
path will have an equal or higher cost.

Since the cost in each face is split between several cameras, all the faces must
be sampled. Each face represents a combination of cameras and we do not know
a priori which combination of constraints will be active. However, by finding the
minimum length path through every face, all possible combinations of cameras
that occur in the space are enumerated. If a path of cost lower than ε and larger
than 0 existed, it would imply that the path crosses a face where the above
constraint is not met. Since the constraint for each face is enumerated, this is a
contradiction.

5.3 Algorithm

Given a space and camera positions, we find the decomposition of space into
faces. Each face is marked with the combination of cameras which see it. Here
we only consider the case of one source and one destination but the algorithm
extends to multiple sources and destinations. For each face i, we sample the
boundary and use the visibility graph algorithm to find the smallest distance
from the source to the destination through the face, di, by computing the shortest
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distance to the source and the destination from each point along the boundary
of the face. Defining the vector ai, where aij = 1 if camera j sees face i and 0
otherwise. The optimization problem can be written as

minimize f(x) ,

subject to aT
i x >

ε

di
∀i , and

x > 0

where f(x) can be any convex function. Then we change x(ci) back to p(ci) by

p(ci) = 1 − e−x(ci) (5)

to obtain the vector of camera probabilities.

5.4 Special Case

The special case where we assign one probability to all the cameras can be solved
exactly rather than using the constraint at each face. Minimizing this probability
is equivalent to minimizing the ∞-norm of the probability vector. The optimal
probability can be found if the minimum exposure path with all cameras on is
known. The cost of a path through a face is the length of the path through the
face multiplied by the number of cameras which see the face, which is the total
number of potential frames which the intruder will be exposed to while inside
the face. Since each face can have a different cost, the visibility graph cannot be
used for computing the minimum exposure path. To find the minimum exposure
path, we discretize the space into a grid with 8 neighbors per node. The incoming
edge into each node is assigned a cost of the number of cameras which see the
node. Then Dijkstra’s algorithm is applied to the grid graph to find the minimum
cost path from the source to the destination. This gives a good approximation of
the true minimum cost. It is simple to show that the discretization error is less
than 8% if the source and destination are reasonably far apart compared to the
distance between grid points. The distance function with all the cameras on for
a simple case is shown in Figure 3(c) where the minimum cost path will clearly
need not be the Euclidean shortest path.

The minimum cost is equivalent to the total number of potential frames which
will be taken along the path. The required probability is set so that the minimum
exposure cost has at least a cost of ε. All the camera probabilities are then set
to this value. This method only works because the relative weighting of the faces
do not change. Changing the relative costs of the faces results in a more difficult
version of setting the node weights of the graph in section 5.1, since there is an
uncountable number of paths.

6 Deterministic Algorithm

We present a simple heuristic for deterministically detecting intruders as a bench-
mark to compare the performance of our randomized strategy with. The idea
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is similar to the algorithm presented in [23]. We try to sweep the space using
the cameras while maintaining a barrier between the uncleared or contaminated
areas and the destination. By maintaining a barrier, we prevent the intruder
from getting closer to the destination and the cleared area from becoming re-
contaminated. If we can grow this area, we will eventually clear the entire space.

The deterministic approach has some inherent drawbacks. First, it requires
synchronization between the nodes, resulting in communication overhead. Sec-
ondly, regions which are not covered by any cameras can never be cleared. This
implies that there must always be a separating sweep from the destination to
the first hole in coverage, since a potential intruder may hide in it. For the pur-
poses of this comparison, we ignore both issues and compare the deterministic
heuristic with the random scheme. The algorithm consists of two parts. First, a
schedule of faces which must be turned on at a given time is computed. Then a
set of cameras are found which cover the required faces.

To find a set of faces which maintain a barrier and increase the cleared region,
we return to the SAG described in Section 4. The sweep begins at the destination,
so we mark the appropriate face in the SAG as the choice at time 0. At time
1, all of its adjacent faces are marked to be on. This fulfills both criteria of
maintaining a barrier with uncleared regions and expanding the cleared area.
In general, if the chosen set of faces at time t is S(t), then S(t + 1) will be all
the adjacent faces of the faces in S(t) which have not yet been cleared. This is
repeated until the source is reached. For the purposes of comparison, we sweep
the entire region before repeating the sweep beginning at the initial face.

The second part of the algorithm requires us to choose a set of cameras at
each time instance. For each time instance, we must solve the minimal hitting
set problem. Each face has a set of cameras which see it. The set of faces to be
covered at time t form a collection of sets of cameras. We must choose a set
of cameras which cover all the sets in the collection. Since, we are solving this
problem many times, cameras are chosen using the following method. At t = 0,
all cameras are assigned a weight of 0. First, all the cameras in the collection are
sorted in increasing order according to their weight. From the minimum weight,
we find the camera which appears in the most sets (i.e. sees the most faces). This
camera is chosen and its weight is increased by 1. It is removed from the list and
the procedure is repeated until all the sets are removed. The re-weighting gives
preference to cameras which have been chosen fewer times.

7 Simulation Experiments

In this section, we investigate the performance of the algorithm through sim-
ulations. The geometric preprocessing was implemented in CGAL [5] and the
optimization was done using the CVX [6] package in MATLAB. The four lay-
outs shown in Figure 4(a)-(d) were tested. Layout 1 and 2 are rectangular rooms
with differing camera layouts. Layout 1 corresponds to a real camera deploy-
ment of 16 webcams. Layout 2 has 14 cameras placed more evenly around the
room. Layouts 3 and 4 are larger with multiple occlusions. Although there are
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more cameras in the latter layouts (31 and 17 respectively), the coverage is
not as dense as in the first two cases. The extent of the coverage is shown in
Figure 4(e)-(h) where more densely covered areas are lighter in color. For each
layout, we compare the results in terms of load balancing between cameras and
the total amount of energy spent.

The results summarized in Table 1 were obtained by setting the probability of
evasion to 0.01. We compare optimizing the 2-norm and the ∞-norm by bounding
the detection probability on individual faces (||p||2(1); ||p||∞||(1)), the special
case of solving for one parameter (||p||∞(2)) and the deterministic algorithm. The
first three columns show the the 2-norm, the 2-norm normalized by the number
of cameras, and the ∞-norm of the probability vector respectively. With the
probability vector set to the solution, the maximum probability of evasion along
the minimum exposure path was computed and is shown in the fourth column
of the table. The exception is the deterministic scheme which has a probability
of evasion of 0. In all 4 layouts, the deterministic scheme used the cameras much
more than any of the probabilistic schemes, illustrating the price of setting PE

to 0.
In Layouts 1 and 2, locally enforcing the minimum detection probability at

each face results in overcoverage. The resulting maximum PE was at least an
order of magnitude smaller than the desired 0.01. At the same time the total
energy used (||p||2) is at most twice the amount used in the optimal single
parameter case. In Layout 3, the performance of the three probabilistic schemes
is comparable. The overcoverage is minimal because most of the area is sparsely
covered and most of the paths are of similar length. Layout 4 is lies somewhere
between. The maximum PE is still an order of magnitude smaller than the single
parameter case, but all other values are comparable.

These results show that the optimization technique provides very good per-
formance giving quite low probabilities of evasion with each camera taking only
a small number of frames. Unfortunately, the approximation in the local enforce-
ment of constraints using Theorem 1, makes it difficult to set the true probability
of evasion to a desired value. This means that some experimentation is necessary
if we do not want overcoverage in the network. The effect of the optimization on
coverage be seen in Figure 4(i)-(l). This shows the cost of paths from the source
to the destination over the space when the probabilities are set to the 2-norm
solution for Layouts 2 and 3. For Layout 2, the coverage becomes much more
uniform than in the case of one parameter, while Layout 3 exhibits almost no
change.

The notion of load balancing is important because it prevents certain cameras
from being overused. A good metric of load balancing is obtained by comparing
the average value of the probability vector to its ∞-norm. The average value is
given by ||p||2/N in Table 1. The single parameter case obviously has a ratio
of 1 in all cases. The other algorithms did nearly as well. For method (1), the
maximum was always less than twice the average. Given a particular layout it
may not be desirable to achieve perfect load balancing as there may be some
cameras which inherently need to do more sensing than others. The deterministic
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(a) Layout 1 (b) Layout 2 (c) Layout 3 (d) Layout 4

(e) L. 1 (f) L. 2 (g) L. 3 (h) L. 4

(i) L. 2(1) (j) L. 2 (2) (k) L. 3 (1) (l) L. 3 (2)

Fig. 4. (a)-(d) 4 example layouts. (e)-(h) Coverage maps for the 4 layouts. The lighter
the color of a point, the more cameras cover that point. (i) The minimum total cost from
the source to the destination for layout 2 with all the cameras set to one probability.
The darkest region is the minimum cost path. (j) The minimum total cost path with
the prob. from the approx. optimizaion (k) and (l) The same for layout 3.

algorithm also performed well. However, when there were disjoint faces covered
by one camera, it was impossible prevent turning one camera on multiple times.

8 Conclusions and Further Work

We have presented an algorithm for detection where cameras take frames with
an assigned probability rather than continuously monitor the space. The camera
probabilities can be optimized over a desired convex cost function with relatively
few constraints. Once the probabilities are set, no further coordination is required
between the nodes. Experimentation shows that although each camera samples
infrequently and independently, global guarantees are made on the detection
probability.

From the experimentation, we see that locally enforcing the probability of
evasion at each face results in overcoverage. Whether it is feasible to efficiently
encode the minimum cost over all paths when cameras have variable probabilities
is an open question. Furthermore, we assumed that the main energy cost in
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Table 1. Results for the 4 layouts. (1) refers to the approximate technique; (2) refers
to the optimal ∞-norm value; Det.is the deterministic algorithm

Layout Method ||p||2 ||p||2/N ||p||∞ Max PE

||p||2(1) 0.0608 0.0152 0.0262 0.0005
||p||∞(1) 0.0785 0.0196 0.0262 0.000021 ||p||∞(2) 0.0320 0.0080 0.008 0.01

Det. 0.0675 0.2166 0.4545 -
||p||2(1) 0.0512 0.0137 0.0193 0.001
||p||∞(1) 0.0646 0.0173 0.0193 0.000122 ||p||∞(2) 0.0344 0.0092 0.0092 0.01

Det. 1.387 0.3707 0.3722 -
||p||2(1) 0.1921 0.0345 0.0357 0.0094
||p||∞(1) 0.1947 0.0353 0.0353 0.00933 ||p||∞(2) 0.1954 0.0351 0.0351 0.01

Det. 1.400 0.3501 0.3510 -
||p||2(1) 0.0817 0.0198 0.0228 0.0009
||p||∞(1) 0.0871 0.0211 0.0228 0.00084 ||p||∞(2) 0.0614 0.0149 0.0149 0.01

Det. 0.7717 0.1038 0.5729 -

acquiring frames was in actually sampling the frame. Taking the cost of powering
on and off into account introduces correlation between the detection probabilities
over time complicating the problem significantly.
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