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Abstract. This paper presents a scalable distributed algorithm for com-
puting and maintaining multi-target identity information. The algorithm
builds on a novel representational framework, Identity-Mass Flow, to
overcome the problem of exponential computational complexity in man-
aging multi-target identity explicitly. The algorithm uses local informa-
tion to efficiently update the global multi-target identity information
represented as a doubly stochastic matrix, and can be efficiently mapped
to nodes in a wireless ad hoc sensor network. The paper describes a dis-
tributed implementation of the algorithm in sensor networks. Simulation
results have validated the Identity-Mass Flow framework and demon-
strated the feasibility of the algorithm.

1 Introduction

A wireless ad-hoc sensor network (WASN) is a network of sensor nodes with lim-
ited on-node sensing, processing, and communication capabilities. At the heart
of many WASN applications such as object tracking and environmental monitor-
ing is the problem of estimating non-local parameters or states of the physical
phenomenon being observed using only local information available to each node.
This problem poses unique challenges that are not addressed in a centralized
setting or fixed network:

— Scalable distributed information fusion: The global parameters or states of
interest must be estimated, updated, and maintained using only local infor-
mation.

— Sensor tasking: A sensor node may be tasked to compute or store state
information based on its relevance and utility to the current task, as well as
cost constraints.



In this paper, we study the problem of distributed multi-target identity man-
agement in WASN. The goal is to maintain information about who is who over
time given targets’ position estimates. In addition to its central importance in
many of the monitoring and surveillance applications, the problem highlights
the need for distributed information fusion and sensor tasking. The study of this
problem is an important step towards establishing a general methodology for
the design of scalable WASN algorithms.

Multi-target identity management is closely related to the multi-target track-
ing problem. The main difficulty in both problems is the exponential complex-
ity in associating target position estimates with target identities. In the past
three decades, a number of approaches have been developed for the multi-target
tracking problem, mostly for centralized computational platforms. MHT ([2])
explicitly maintains associations, or hypotheses, over time and prunes the asso-
ciations using a rank function. JPDA ([4]) computes an association matrix at
each time and updates it with a combination of all new measurements weighted
by their marginal probabilities. While widely used in practice, both MHT and
JPDA algorithms still suffer from their computational complexity, in the worst
case exponential in the number of targets or time steps. Moreover, for WASN
applications, a significant challenge lies in distributing the information and com-
putation to each node.

This paper develops an efficient distributed approach to computing and ud-
pating multi-target identity information. The main contribution of this work
is twofold. First, it introduces a new distributed representation called identity
belief matrix, a doubly stochastic matrix, that describes how identity informa-
tion of each target is distributedly represented (a row in the matrix). The key
advantage of this representation is that when the matrix is mapped to a set
of nodes in a WASN, a node could efficiently maintain possible identifies of a
target it is tracking (a column in the matrix), using its local evidence only.
Second, the paper develops a distributed algorithm for computing and updating
the cross-node identity belief matrix in a WASN. The algorithm exploits doubly-
stochasticity of the matrix to renormalize identity probability masses stored on
different WASN nodes. As soon as a piece of local/marginal evidence is available
to a node, the local belief of target identity is updated, and the information is
propagated through the network to other nodes. The computational complex-
ity of our algorithm is O(N?), where N is the number of targets, a significant
advantage over the exponential complexity of MHT and JPDA.

The rest of the paper is organized as follows. Section 2 introduces identity-
mass flow (IMF) framework to represent multi-target identity information. To
ease the introduction of mathematical materials and focus on key representa-
tional issues, the identify representation is first developed in a centralized set-
ting. Sections 3 and 4 develop algorithms to distribute the computation and map
the algorithm to WASN nodes. Section 3 describes an algorithm for updating
global identity information using local identity information. Section 4 maps the
identity representation and algorithm to a set of WASN nodes. Finally, Section
5 describes an implementation of the algorithm, and presents simulation results



that validate the correctness of the representational framework and the basic
structure of the algorithm.

2 Multiple Identity Management: A Mathematical
Framework

Consider the following problem. There are N targets moving in the region of
interest and their position-estimates are reported periodically. Assuming the
initial identities are known, the goal of the multiple identity management is
to maintain and update the identity information of all the targets as they are
moving.

Apparently, the dynamics of the target - how they are moving - seems to be
the only information available to do the job. Unlike the radar system, however,
the subset of the nodes in the sensor network are very close to the targets and
are able to sense more than position-estimate - the target signature information.
This signature information is clear and dependable in the sparse target configu-
ration, but is not informative when the targets are close to one another. Figure
1 illustrates the two target configurations, which are named as configuration of
high uncertainty(COHU) and configuration of low uncertainty(COLU), respec-
tively. The actions/decisions based on the information in COHU could be false
and it would be nice to have a representational framework that could fix the
poor actions/decisions in COHU using the better information in COLU. This
is the main motivation behind our mathematical formulation in the upcoming
subsections.
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Fig. 1. Sparse(COLU) and crowded(COHU) target configurations

2.1 Formulation

In this section, we formulate the problem of multiple identity management as
identity-mass distribution problem. The identity set I = {1,---, N} is a set of



identities of all the targets and the position-estimates of N targets at time k
is X(k) = {z;(k) € R?i = 1,---,N}.? The identity management algorithm
is supposed to compute the correct permutation of I given X (k). The natural
approach to this is to maintain all the possible permutations* at each time,
although the number of possible permutations increases exponentially. Even with
good rank functions and pruning heuristics, the number of possible permutations
can easily go unmanageably large in a very short period of time.

To overcome the above combinatorial complexity and maintain the compu-
tational complexity as constant over time, we propose the idea of Identity-Mass
Flow(IMF) to approximately represent all the possible permutations. Figure 2
(a) shows the basic idea behind our approach; Initially, a unit mass is assigned to
each identity. Whenever the new position-estimate X (k) is available, the whole
or partial masses from X (k — 1) flow into X (k) and the identities are mixed in
this way. There, however, need to be constraints regarding how masses flow to
make the resulting mixed identities physically meaningful. Figure 2 (b) and (c)
explain the two constraints. (b) says no mass can be created or destroyed during
the Identity-Mass Flow and (c) says the sum of all the masses arriving at x;(k)
is one.
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Fig. 2. Identity Mass Flow

To formulate the above idea, we define the identity belief matrix B(k) and
the mixing matrix M (k).

3 2;(k) and z;(k + 1) are not related. #’s are just random labels that come with the
position estimate.
4 In multi-target tracking community, this is also called an association.



Definition 1. The identity belief matriz B(k) is a N x N doubly-stochastic
matriz®, whose entry b;;(k) represents the amount of identity mass from i € I
that arrives at xj(k). The ju, column bs(k) of B(k) is called the identity belief
vector of x;(k).
B(k) = [ba(k) ba(k) --- bn(k)] € [0, 1]V

where

p(zi(k)’s ID is 1)

p(x;(k)’s ID is 2)

bi(k) = T e [0, 1]V

p(zi(k)’s ID is N)

Definition 2. The mizing matric M (k) is a N X N doubly-stochastic matri-

ces, whose entry m;;(k) represents the probability of x;(k) being originated from
x;(k — 1), and is statistically independent with M (1) for all 1 # k.

Given the definition of M (k) and B(k), the following theorem presents the
basic equation relating the two quantities.

Theorem 1. Let B(k) and M (k) be the identity belief matriz and the mizing
matriz at time k as defined above, then the following is true.

B(k+1)=B(k)M(k+1)

Proof. From the above definitions, the identity belief of x;(k + 1) is computed
as follows

N
bi(k+1) = my;(k+ 1)by(k) = B(k)my(k + 1)
1=1
where m;j(k 4 1) is the jy, column of M (k + 1). Therefore,

B(k+1)=B(k)yM(k+1)
and this concludes the proof.

The above theorem shows that we can recursively compute the identity in-
formation B(k) by computing M (k) from X (k) and X (k — 1) and is illustrated
in Figure 3. The details on how to compute M (k) is investigated in the next
section.

The following lemma explains how the uncertainty in the system changes
over time in this formulation.

Lemma 1.

H(B(k)) = H(B(k —1))°
where H(-) is the statistical entropy of a probability distribution.

® The doubly-stochastic matrix is a N x N non-negative matrix, whose rows and
columns sum to one.

5 To be more precise, H(B(k)) here means the entropy of any joint identity association
that can be derived from B(k).



t=k-1 t=k t=k+l

7 M (k-1) 7 M (k) i
1 a a B a 1-a
9 ia A% re-al )

[0 M-a a 1-a
s [ el

B(k-1) B(K) B(k +1)

Fig. 3. Updating B(k) using M (k)

Proof. The mixing matrix M (k) can be represented as a convex sum of permu-
tation matrices as follows

N!
M(k) = o;®;
i=1
where ZL a; = 1 and @; is the i, N x N permutation matrix. Then,

H(B(k)) = H(B(k — 1)M(k))

N!
=H() o;B(k—1);)

. =1
> H(B(k —1);)

N!
= ZaiH(B(k -1))
= I;(B(k —-1))

where the inequality comes from the strict concavity of the entropy function.
This concludes the proof.

The statistical entropy is a quantitative measure of uncertainty in the prob-
ability distribution and the above lemma shows the uncertainty on the possible
identity associations does not decrease over time. Therefore, the uncertainty will
grow until every identity association becomes equally like without any additional
information available. As we have mentioned in section 2, the target identity in-
formation is more likely to be available in COLU and the proper use of this
local information could make the uncertainty decrease in IMF formulation. The
details on how to exploit the local identity information is investigated in section
3



2.2 Computing Mixing Matrix M (k)

The mixing matrix M (k) is a collection of marginal association probabilities and
can be computed from the joint association probability” in theory. Computing
the joint association probabilities is very expensive and should be avoided in
practice. In this paper, we propose a simple heuristic with O(N?) empirical
complexity that only requires the information on how fast the targets are moving.
Let’s assume that the speed information is given as a probability density function
p(s(k)), where s(k) is |x(k) — z(k — 1)|/AT.® Then, we compute a non-negative
matrix L(k) € RV*N whose (i, ) entry is l;;(k) = p(s(k) = |z;(k) — z;(k —
1)|/AT). In general, L(k) is not doubly-stochastic and an optimization need to
be done to transform this into a doubly-stochastic matrix. We use the Iterative
Scaling algorithm to transform L(k) into a doubly-stochastic matrix. The details
on the Iterative Scaling algorithm are explained in section 3.2.

3 Multi-target Identity Update Using Local Information

In WASN, the ability to use local information efficiently is critical for distributed
algorithms since non-local information only comes at the cost of communication.
The IMF approach in multi-target identity management does provide a natural
setting for exploiting local evidences. Figure 4 illustrate this in a simple two
targets crossover scenario. Two targets are moving cross each other and their
identity masses are mixed at the intersection of the two tracks. After the mixing,
the identity belief matrix B(k) becomes un-informative - each association is
almost equally likely. When the two targets are well-separated, i.e., in COLU,
one of the nodes near the bottom target observes a local evidence® that the
bottom target is more likely to be yellow!? . This observation increases the
yellow-mass of the bottom target byeiiow pottom (k) and the rest of the elements in
B(k) can be updated from the doubly-stochasticity of B(k). Therefore, the local
information about the bottom target directly leads to the information about the
top target in a unique way.

From the above example, only a local evidence seems to be enough to update
the whole identity belief B(k) uniquely. For the general N target case, however,
the doubly-stochasticity of B(k) is not enough to guarantee a unique solution
since there are more unknowns (N?) than the number of constraints (V). There-
fore, we need more constraints or optimizations to compute a unique B(k) given
a local evidence. The upcoming sub-sections deal with this problem of comput-
ing B(k) given a local evidence in a centralized setting. Section 4 discusses the
distributed implementation of the algorithm for WASN.

" Probabilities of permutations/associations, i.e., how likely each permutation is.

8 p(s(k)) is usually stationary, i.e., does not depend on k.

9 A local evidence is the information enough to determine the whole or partial entries
in b;(k). The simple example is "x;(k) is of ID j”.

10 Lighter color in a black and white printout
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Fig. 4. Example of using local evidence: The top left ID is colored as blue and the
bottom left ID is yellow. The blue and yellow look dark and lighter grey, respectively,
in a black and white printout.

3.1 Bayesian Normalization

Before we introduce a practical solution to compute unique B(k) given a local
evidence, we study the desirable properties of the perfect solution by computing
B(k) as a Bayesian posterior belief distribution given a local evidence, assuming
the whole history of the mixing events are known. In this case, we assume that
the joint probability distribution 7(k) € {Z € RN™>1|Y", 2z, = 1,z > 0} over
all the possible N! associations at time k, from which M (k) can be derived, is
available for all k. Note that, for some k’s, 7(k)’s are deterministic and their
associated M (k) are permutation matrices. These 7(k) do not contribute in
computing the B(k) and its posterior. To consider only those random mixing
events, we define K C {0,1,---, N} be the set of time indices associated with
|w(k;)| > 2, where k; is the 4y, element in K and |- | represents the cardinality
of a set. We also introduce a sequence of random variables R; associated with
m(k;), which takes values j € {1,---,|7(k;)|} with probability of 7;(k;), i.e., jin
value in 7(k;).

Figure 5 illustrates the above formulation, where each box can be considered
as a probabilistic switch governed by R;, i.e., a specific permutation is chosen
according to the value of R; with some probability. Then, a single identity associ-
ation at time k is a point ¢ in the joint event space S = {(Ry, Ra, -+, R|x|)|R; €
(1 |m(u;)|]} with |S] = T], |7(u;)| and the probability of this event can be easily
computed due to the statistical independence assumption in section 2.1.

p((Ry,--, Rix|) = ¢)) = p(R1 = 1) - - p(Rix| = €|k)))

ey (u1) -+ T k| (U‘K‘)

Using the above equation, we can compute the posterior B(k) given a local
evidence L, which is a set of events in S satisfying the local observation, say,
ID(z;(k)) = j, using the following theorem.
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Fig. 5. Bayesian Normalization
Theorem 2. Let E;;(k) be the subset of S satisfying ID(x;(k)) = i and L be
the subset of S satisfying the local observation, then

ZglELp(El)

Proof. The proof is trivial using the Bayes’ rule.

p(bij (K)|L) = p(Eij|L) =

Now that we know how to update B(k) given a local evidence L, but the
effect of the evidence to the other columns is not obvious from the equation.
The following lemma describes how the local evidence effect the uncertainty of
the other columns.

Lemma 2. The local observation L does not increase the entropies of the columns,
i.e.

H(bi(k)|L) < H(bi(k))
Proof. See [6] for the proof.

The lemma says that the local evidence does not increase the entropy of the
other columns on the average.

The ideal solution obtained in the above theorem exhibits one very interesting
characteristic, in which there are some elements in B(k) - in addition to the
zero elements in B(k) - that are not affected by the local evidence. This can
potentially save huge amount of communication energy in practice. The following
theorem formally presents the property of the Bayesian solution.

Theorem 3. Let by,(k) be the entry that becomes 1 from the local evidence L,
then the columns with zero at py, entry and the rows with zero at qu, entry do
not change.



Proof. Let’s first prove that the columns with zero at p;; entry do not change. If
bi(k) is such a column, then there does not exist any event in S that guarantees
a path from x,(0) to z;(k), i.e., no path originated from z,(0) reaches z;(k). The
local evidence L defines a subset of S, which guarantees the existence of at least
one path between z,(0) and z,(k). None of these paths between z,(0) and z,(k),
however, affect the paths arriving at x;(k). Due to the statistical independence
assumption on the mixing events, b;(k) does not change given the local evidence
L. The row case can be proved in the same way. This concludes the proof.

The above theorem reduces the number of variables to be updated in B(k)
given a local evidence. In addition to that, this can help the number of com-
munications required to update B(k) given a local evidence assuming that each
column b;(k) is maintained by a node in the sensor network. The details on the
distributed computation is discussed in section 4.

In addition to these rows and columns, the zero elements in B(k) do not
change given a local evidence L.

3.2 Iterative Scaling

In practice, the Bayesian formulation in the previous section is infeasible due to
its exponential complexity. This section presents the practical alternative called
the Iterative scaling. First, we present a version of the Iterative Scaling algorithm
to achieve a doubly-stochastic matrix A given a N x N non-negative matrix B.

B := A;

B_old := A;

for k = 1 to maximum_number_of_iteration
for i = 1 to number_of_row

row_sum := 0;

for k = 1 to number_of_column
row_sum := row_sum + B(i,k);

end

for j = 1 to number_of_column
B(i,j) := B(i,j)/row_sum;

end
end
for i = 1 to number_of_column
column_sum := O;
for k = 1 to number_of_row
column_sum := column_sum + B(i,k);
end
for j = 1 to number_of_row
B(j,i) := B(j,i)/column_sum;
end
end

if |B - B_old| < error



terminate;
end
B_old := B;
end

Basically, the algorithm divides each element in 4z, row(column) by the sum
of the iy, row(column) and repeats the normalization until the error margin is
small. The following observations are made from the numerical simulations and
we list them here without proofs.

— The algorithm converges to a unique doubly-stochastic matrix given an ini-
tial matrix.

— The ordering of row/column normalization does not affect the convergence.

— The total number of iteration is not affected by the size of the matrix.
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Fig. 6. Typical convergence of iterative scaling: The flat part of the plots are due to
the Matlab precision limit.

From these observations, the Iterative Scaling algorithm scales as O(NN?). The
proof of the complexity result remains as an immediate task for future research.
Figure 6 shows an example of the convergence behavior of the algorithm. Three
different sizes of matrices (10x 10, 100x 100, 1000 x 1000) are generated randomly
using Matlab rand(-) function, in which each entry is generated according to
the uniform probability density over [0 1]. The plot shows that the Iterative
Scaling method has fast convergence and the size of a matrix does not affect the
convergence ratio. What seems to affect the convergence rate is how different



the (scaled) initial matrix from being the doubly-stochastic matrix, although we
do not have a proper quantitative measure for this at this point. This is why
the larger matrices in the above figure converges a little faster than the smaller
ones, since all the row/column sums of the larger matrices are close to 0.5N due
to the Law of Large Numbers and effectively close to a doubly-stochastic matrix
after scaling.

To benefit from the theorem 3, the Iterative scaling algorithm should be able
to deal with the non-square matrix with the fixed row/column sums. Let r and
¢ be N x 1 vector of row and column sum satisfying >, ¢; = >, r;, then we can
modify the above pseudo code as follows.

B(i,j) = B(4i,j)/row_sum*r(i);

oo

~

.
.

.

~
|

= B(j,i)/column_sum*c(i);

4 Distributed Implementation in WASN

The basic quantity to be distributed is B(k), the belief matrix. One way of dis-
tributing B(k) is to let each node in the sensor network maintain its own version
of B(k). This method is very robust and fault-tolerant due to the information
redundancy in the system. However, this idealistic distribution is infeasible and
non-scalable for the following the reason. To update the information, each node
need to compute its version of M (k), which requires information from at least
one of the other nodes. This is exactly the scenario in the landmark paper [14],
where per-node throughput goes to zero as the number of nodes goes to infinity
even under optimal routing and power control scheme. Therefore, the idealistic
distribution of each node maintaining B(k) is impossible and this argument is
true for all the algorithms of sensor networks that estimates the global quantity.

To overcome this problem, we adopt and extend the approach in [16] and
[17], where a leader-based single target tracking in WASN is introduced. The
basic idea is that, only a small number of nodes called leaders are active and
respounsible for maintaining/updating the information of interest. When the lead-
ers are no longer the good subset of nodes for the information, they handoff the
information to the other nodes based on a utility function and the nodes receiv-
ing the information become the new leaders. In this approach, whereabout of
the information is easily maintained at the risk of the reduced robustness and
fault-tolerance.

Applying the leader-based approach to our algorithm, each column b;(k) of
B(k) and its position estimate z;(k) is maintained by each leader. When the
mixing happens, the local version of M (k) can be easily computed by the
leader. When a leader node observes a local evidence about the ID of its target,
say ID(xz;(k)) = j, then the leader needs to talk to some of the other leaders, who
also think what they are tracking can be of the same ID. This type of multi-cast

11 Tn the two target mixing, only non-zero entries in the 4y, and j¢, columns of M(k)
are required to update b; and b; and they are locally computable.
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Fig. 7. Flowchart of the distributed algorithm for the multi-target identity manage-
ment

communication in network is usually dealt by a group management protocol,
which maintains and updates the different groups in the network according to a
predefined membership. In our case, the i;, group is the set of the leader that
have non-zero probability at i;, entry of their b(k) and we assume there exists a
good (or optimal) group management protocol for our purpose. Figure 7 shows
the main procedures and their relations of the distributed algorithm that each
node is running,.

5 Experimental Results

We make the following assumptions for the simulation.

— Each node can sense the positions of the targets within its sensing range.

— Each node can talk to all the nodes within its communication range.

— Initially, the number of the targets are known to the initial leaders.

— Each node has a signal processing module for the signal classification and
the module performs better in COLU.

— Each node knows the relative positions of all the nodes in the communication
range.

The initial leaders are manually selected for the simulation, although it’s
possible to detect them as long as their initial positions are well separated. Each



leader updates its belief vector b; (k) using the local version of M (k) and handoffs
the information to the next leader, which is selected based on its geographical
location. The signal classification module of the leaders will keep collecting the
information and initiates the identity normalization process by talking to the
other leaders that are in the same group when the identity information from the
signal classification is better than b;(k) and some threshold.
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Fig. 8. Simulation Example

Figure 8 shows the three screen shots from the simulation of the algorithm.
Four targets - one tank and three dots - are moving along the straight lines for 10
seconds. The tank signature is much different from those of the other three, so it
can be identified with high probability in COLU. This local identity information
about the tank is the only available information and used to normalize the
belief b;(k) of the other leaders. The four leaders are colored differently and
their corresponding beliefs are displayed with the same color. Figure 8 (a) is
the initial configuration of the targets and their associated leaders. (b) shows
that the belief b;(k) of each leader gets uncertain after some number of mixing
events at t = 7 and the leaders are no longer sure of the identities of the targets.
(c), however, shows the beliefs get much better after the normalization using
Iterative Scaling algorithm given local identity information.

In figure 9, how the identity uncertainty of each target evolves during the
simulation is depicted using the entropy of each identity belief b; . The increases
in the uncertainty are due to the mixing events and the decreases are by the
local evidences. The two pieces of the local evidence on target 1 have reduced
the uncertainties of all the other targets in this example, since the identity mass
from the target 1 is mixed with all the other identities during the mixing events.
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Fig. 9. An example of how uncertainty of each belief changes. The target numbers
correspond to the track numbers in the previous figure.

6 Summary and Future Work

We have developed a scalable distributed algorithm for the multi-target identity
management problem, first presented as a mathematical framework for a cen-
tralized setting, and then mapped to a distributed WASN. Simulation results
have demonstrated the effectiveness of the framework and the efficiency of the
algorithm.

Since the target identity computation is at the heart of many WASN track-
ing and classification applications, the work presented here is an important step
towards building a comprehensive system for distributed inference in sensor net-
works. As our future work, we plan to relax some of the assumptions and models
used in our framework. For example, we may exploit a signal processing model
for target source separation, localization, and signature classification to obtain
additional target identity information when targets are in close proximity of each
other, and incorporate the ability to handle dynamic addition and deletion of
targets. A more theoretical task is the convergence proof for the normalization
step given multiple local evidences regardless of their chronological order.
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