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Abstract— Maintaining the identities of moving objects is an important
aspect of most multi-object tracking applications. Uncertainty in sensor
data, coupled with the intrinsic combinatorial difficulty of the data
association problem, suggests probabilistic formulations over the set of
possible identities. While an explicit representation of a distribution over
all associations may require exponential storage and computation, in
practice the information provided by this distribution is accessed only
in certain stylized ways, as when asking for the identity of a given
track, or the track with a given identity. Exploiting this observation, we
proposed in [1] a practical solution to this problem based on maintaining
marginal probabilities and demonstrated its effectiveness in the context
of tracking within a wireless sensor network. That method, unfortunately,
requires extensive communication in the network whenever new identity
observations are made, in order for normalization operations to keep
the marginals consistent [2]. In this paper, we have proposed a very
different solution based on accumulated log-likelihoods that can postpone
all normalization computations until actual identity queries are made. In
this manner the continuous communication and computational expense of
repeated normalizations is avoided and that effort is expended only when
actual queries are made of the network. We compare the two methods
in terms of their computational complexities, inference accuracies, and
distributed implementations. Simulation and experimental results from
a RFID system are also presented.

I. INTRODUCTION

A wireless sensor network (WSN) is a large scale distributed
system consisting of small, untethered, low-power nodes capable of
sensing, processing and communicating. WSNs are unique in their
ability to monitor phenomena widely distributed in space and time,
such as microclimate variations in a forest, earthquake vibration
monitoring in buildings, machine control and diagnosis in factories,
traffic monitoring in highways, etc.

In many of these scenarios it is infeasible to have the WSN
simply collect all potentially relevant data. Instead, it is far more
efficient to be able to query the network as the need for particular
kinds of information arises. Such queries can often be formulated
as distributed inference problems, where the goal is to estimate a
global quantity or state of interest X, given local pieces of evidence
provided by the sensor nodes. Furthermore, this inference should be
probabilistic in nature, due to the inherent noise in sensor readings
and the uncertainty associated with physical phenomena. In this
setting, it is very important to capture the information structure of the
problem and the dependencies between the local and global variables
of the problem. For example, say we are tracking a large chemical
plume in a region R using a WSN, and also assume that we know
the total amount 7' of the chemical involved. If a sensor locally
determines the quantity of the chemical, say, ¢ in a subregion r, then
we also know that there is 7' — ¢ of the chemical in the complement
region R — r, thus updating the global information.

In this paper, we study the problem of tracking identities of
multiple moving objects within a WSN — what we call the identity
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management problem. The significance of identity management lies
in that it can overcome incorrect identity swapping due to sub-
optimal data association algorithms using only local object identity
information, as shown in Figure 1." This problem has an interesting
information structure — local evidence about the identity, say, ¢ of
an object implies all the other objects cannot have identity ¢. This
exclusion among identities defines a mathematical relation among
identities of moving objects and allows us to exploit local knowledge
to update global information.
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Fig. 1.  Identity swapping due to sub-optimal data association and its
correction using local identity information at a sensor

In our earlier work [1], we proposed a practical solution to
the above problem which, for N moving objects, maintains N>
marginal probabilities of each track having each identity and nor-
malizes/updates these probabilities whenever new local evidence be-
comes available. This normalization requires communication among
nodes in the WSN in the vicinity of the objects and can potentially
affect the performance of the WSN by draining node energy quickly.
We would prefer a method that computes probabilities only at a user’s
request, since renormalizing probabilities all the time is wasteful of
energy. In the current work we seek to maintain different quantities,
which can be converted to probabilities at a user’s request, but do
not require normalization otherwise, as evidence is being collected.
In other words, we seek to accumulate information in a lazy fashion,
from which the desired probabilities can be derived on demand. This
is the crux of the identity management approach in this paper.

The main contributions of the paper are as follows. First, we in-
troduce a general mathematical framework for identity management,
including a formulation in which no information is lost. Our previous
work [1] turns out to be an approximation to this optimal strategy.

IThe data association problem is known to be NP-hard.
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Second, we propose another feasible approximation to the optimal
identity management problem that allows us to evaluate probabilities
in a lazy fashion and retains practical storage and computational
complexities. Finally, we demonstrate the effectiveness of our method
through simulations and real experiments with a real-time people
tracking system augmented with RFID readers.

II. OPTIMAL IDENTITY MANAGEMENT

We are interested in maintaining identities of N moving objects,
such as people or cars, using only local evidence from sensor nodes
in the WSN. We first define the notion of the identity state X of the
N objects in this setting.

Definition 1: The joint identity state of the N objects is X =
(z1,--+ ,xn~), where x; is the marginal identity state for the jip
object. The quantity x; can have a value z; = ¢ € {1,---,N},
indicating that the j:; physical object has an identity ¢. No two
different objects can have the same identity.

According to the above definition, X can take on N! different
permutations — X € Sy, where Sy is the symmetric group on N
elements.” Sy can be represented by the set of all N x N permutation
matrices — 0-1 N x N matrices with exactly one 1 in each row and
column, each of which represents an identity assignment between a
physical object and an identity. For example, two joint states X =
(z1 = L,z = 2,23 = 3), X' = (1 = 2,20 = 1,23 = 3) in
the N = 3 case can be represented as the following permutation
matrices.

1 0 0
X:($1:1,SE2:2,I3:3) — |0 1 o =1

0 0 1

01 0
X/:(l’1:27332:1,333:3) — 1 0 0 :I(LQ)

0 0 1

where [ is an identity matrix and I(; 2y is an matrix obtained by
swapping 1:, and 2., columns of I. Throughout this paper, we will
use (z1,---,xN) or permutation matrices to denote instances of an
identity state X.

We define a joint probability distribution over all N! identity
assignments, p(X), X € Sny. When objects are moving in a sensor
network, there are two kinds of events that modify this distribution
— mixing events and local evidence events, as shown in Figure 2.
Intuitively, a mixing event happens when two object locations are
so close that their identities are no longer distinguishable. This will
increase the uncertainty of identity assignments in p(X). A local
evidence event happens when a sensor node makes measurements on
the identity of a specific object® and updates p(X) using Bayes rule.
A local evidence event reduces the entropy of p(X) in general. Our
goal is to maintain p(X) on-line while these two types of events are
occurring. The two events will be precisely defined in the following
sections.

For the sake of brevity, in the sequel we may drop the word “event”
and talk simply of a “mixing”, or of a “Local evidence”.

A. Mixing
Mathematically, a mixing corresponds to a convolution operation

between a joint probability distribution p(X) and a mixing probabil-
ity distribution m(X).

2The symmetric group Sy is the set of all permutations on N objects
under permutation composition.

3In a WSN setting, objects may pass near sensor nodes which can then
determine their identity, either through signal classification techniques or
directly, as in the case of RFID tag readers.

p(X) at time k

Fig. 2. How p(X) evolves while objects are moving (mixing events) and
sensors are sensing (local evidence events)
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Definition 2: Suppose the identities of ¢, and j.; objects are
mixed — due to their geographical proximity, nearby sensors cannot
distinguish them. The joint identity distribution p(X) is updated using
the convolution,

pxm (X =x)= Z p(s)m(zs™)

SESH
where
l—a X=1
0 otherwise;

here o denotes the mixing probability, I is the N x N identity matrix
and I; ;) is its (4, j)-transposition.
Therefore, the above convolution can be simply written as

prxm (X =)= (1-a)p(z) + ap(xlij) - (1

According to the above definition, the following is true.
Lemma 1: The statistical entropy of the joint identity distribution
can only increase after a mixing.

H(q(X)) = H(p(X))
Proof: The above convolution operation can be represented as
the following matrix multiplication:

=My,

where P’ and ¢ are N!x 1 vectors representing the two distributions
and M is a N!x N! mixing matrix, in which each row (and column)
has only two non-zeros values, o and 1 — «. Since M is a doubly
stochastic matrix, we can re-write the right side of the above equation
as a convex combination of the (N!)! permutation matrices. Using
the concavity of the statistical entropy function, it follows that:

H(T7) = H(Y adlp)
> ZaH (IL7)
= iazH(?)
_H®).

This concludes the proof. [J d

The claim of the above lemma, that the uncertainty never decreases
with mixing, certainly agrees with our intuition that mixing only adds
uncertainty. After repeated mixings, the identity state distribution
converges to the uniform distribution.
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B. Local Evidence

A local evidence is a piece of information on the identity of an
object and can be though of as a likelihood function. We will use the
following sensor measurement model for identity sensing.

Definition 3: The likelihood of an identity measurement Z on the
i¢n, Object at a sensor node is defined as follows.

o 0.9 T =1
p(Z = (i,5)|X) = ay
01/(N—1) z;#1

From the above definition, given a set of local evidence

events Zi,---,Zy, Bayes rule derives the posterior distribution
p(X|Z1,- -+, Zk) as follows:*

P X|Z=12, -, Zk) x p(X)p(Z1|X) - p(Zk|X) .

C. Identity Management as Discrete Bayesian Filtering

The two operations on p(X) defines a discrete Bayesian filter
on p(X), completely analogous to the usual continuous Bayesian
filtering — the mixing (convolution) corresponds to the prediction
step in the continuous filtering and the local evidence corresponds to
the observation or likelihood incorporation step. The only difference
is that the prediction step in discrete Bayesian filtering happens spo-
radically and the state X takes discrete values, while the prediction
step in the continuous case happens at every time step.

Now, we consider a case where we have both local evidence
and mixing together. For example, say we are given events mi(X),
Z1, Z2, m2(X) in that order (here m denotes mixing and Z local
evidence events). The posterior can be computed as

P(X) o< {po(X) »mi(X)}p(Z1]X)p(Z2| X)] x m2(X) .

The above computation , unfortunately, is practically infeasible due
to the exponential complexity of the two operations — convolution
from a mixing is O((N!)?) and Bayesian normalization from a local
evidence is O(N!). Therefore, we need to approximate the joint
distribution p(X) together with the two operations, so that we
can implement them in a WSN. In [1], we proposed a practical
approximation based on the marginal probabilities. In the upcoming
sections, we will introduce another practical approximation based on
log-likelihoods, the so-called information matrix based approach.

III. INFORMATION MATRIX APPROACH
A. Information filtering

The information matrix approach is based on the idea of infor-
mation filtering [3]. As in the previous approach [1], we maintain a
N x N matrix, now called the information matrix L, whose (i, j)
element /;; is the sum of log-likelihoods over past observation that
object 4 has identity j. Specifically, if Z* is a sensor measurement at
time t, then

lij = ZlOg(p(Zt = (kv.j)"rj = Z))v ke {17"' ’N}'

In other words, the information matrix is obtained by adding log(.9)
to (i,7)en element and log(N'—il) to all the other elements in j;p
column whenever there is a measurement Z(; ;) — assuming that L
is initialized as a zero matrix.

A striking property of information matrix is that the NN! joint
likelihoods I(X = II;) can be recovered from an information matrix

4We assume measurements are conditionally independent given X, i.e.,
p(Z1, Z2|X) = p(Z1|X)p(Z2]X).

L, which is just a collection of N? log-likelihoods. For example,
suppose L and X = IIj are given as follows,

lin Lz L
L= 1|l la2 lIl23
l31 lz2 33

01 0
d,=|1 0 0
00 1

Then the following is true.

log(I(X =1Ix)) =log(p(Z = (2,1)[IIx)
+1log(p(Z = (1,2)1Lk)
+1log(p(Z = (3,3)[11k)
=lo1 +li2+I33.

Using matrix algebra, we can simplify the above equation for joint
likelihoods as follows:

(X =T1,) o< exp(Tr(IT{ L)) ,

where Il is k¢, permutation matrix and Tr(~) is a matrix trace
operation — the sum of the diagonal elements. If the prior distribution
is uniform, then the joint distribution p(X) is simply the normalized
joint likelihoods.

I, exp(Tr(TII{ L))
Sl Y exp(Tr(IIFL)) -

Another interesting property of the information matrix is that there
are infinitely many information matrices that encode the same joint
distribution.

Property 1: Adding a constant to each element of any of the rows
or columns of an information matrix does not affect its underlying
joint likelihoods.

Proof: Suppose C' is a matrix, whose ., column (or row) is ¢
and all the other elements are zero. Then,

Iy o< exp(Tr(IT; (C + L)))
= exp(Tr(ITx C)) exp(Tr(1T; L))
= exp(c) exp(Tr(ML L))

The likelihoods I, do not change when all [; are scaled by the same

factor exp(c) — they will be normalized anyway. This concludes the

proof. [J g
Due to the above property, we can simplify /;; as follows.

lij = nij(log(.9) — 10g(N'—i1))7

where n;; is the number of Z(; ;) measurements observed thus
far — the counts of Z(; ;). This gives another interpretation of the
information matrix — as a collection of counts of evidence.

B. Local Evidence and Information Matrices

As we have seen before, incorporating local evidence Z(; ;) into
an information matrix is trivial — we just add log(.9) — log(5=5) to
the (4, 7)¢n element of L and there is no need to re-normalize.

C. Mixing and Information Matrices

Let L, and L, be information matrices corresponding to distribu-
tions p(X = IIx) and ¢(X = II) = pxm (X = Il), respectively.
We will use the mixing ratio @ = % in the sequel for simplicity,
so after mixing p(Ilx) = p(IlxI; ;). From the definition of mixing
in joint space, we can write down the following equation, whose
solution is the new information matrix L, after mixing:

S ATy = 5 PO R L)
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To compute L4, we need to solve a set of (1\2") equations given
below to take into account the normalization constraint.

q(IL) _ exp(Tr(IT;, Ly)) _ p(Im) + p(Hm 1 5)
q(Tx) p(Ily) + p(In I 5))

B exp(Tr(IIF Ly))
where m # n and m,n € {1,---, N!}. If we further simplify the
above equation by taking logs on both sides, we get:

p(ILn) + p(Ilm I(z‘,j)))
p(Iln) + p(ln 1 5)
The left side of the above equation is just a linear combination of

elements of L, and the right side is a constant. Therefore, we can
write a matrix equation with proper vectorization

i
T =7,

Te((IL, — TL)L,) = log(

. |
where @ is a (1\2]

(1\2”) x 1 vector. However, there is no exact solution in general for
this overdetermined set of equations. The least square solution can
be used as an approximate solution, although it is not practical due
to the prohibitive amount of computation — the pseudo inverse of a
(V') x N? matrix must be computed.

The above discussion suggests that we need more constraints
in order to facilitate the derivation of the information matrix after
mixing. Specifically, let us assume that after a mixing event between
the 7¢r, and j;5 objects, in the information matrix:

e Only the i, and j;;, columns are modified.

o The i;;, and j;, columns will be the same after the mixing.
The first assumption reduces the number of unknowns and also
seems reasonable — why change the other columns when mixing
involves only two objects? We introduce the second assumption that
the probabilities of a permutation II; and its transposition ITjI(; j)
will be the same after mixing, since the information matrix with the
two identical columns has the following property.

Property 2: For an information matrix L, whose ¢, and jip
columns are the same, its joint likelihood I(IIx) and I(IT. I(; ;)
are the same.

Proof: The log-likelihood of Il is the sum of l., entries at
positions where there are 1’s in IIj. Since Il and Il [, (,5) are the
same except that their ¢¢;, and j;, columns have been swapped, the
difference of the two log-likelihoods is given as follows,

log(I(T1x)) — log(I(TTx 1 (i 5)))

_
) x N2 matrix, 1 is a N? x 1 vector, and 7 is a

=0,

since the 4;, and ji, columns of L are the same. [J O

Under these two assumptions, the number of the unknowns in the
updated information matrix is only N. Let us consider the simple case
of N = 3 to see how these assumptions can simplify the computation
of L after a mixing. L;, and L; are exponential versions of L, and
L, respectively. (If; = exp(li;)) and their elements are given as
follows. Again, note that only the d;’s are unknowns:

ar b1 di di <
L; = a2 b2 C2 s L; = d2 d2 Cc2
as b3 Cc3 d3 d3 C3

From equation (2), the following holds, assuming that the mixing
is between the 7., and j:p columns.’

di d2 c3 = (a1 b2 c3 + a2 b1 ¢3)/2,
di d3 c2 = (a1 b3 c2 + a3 b1 c2)/2,
d2 ds c1 = (a2bzci +asbaci)/2.

SThese set of equations satisfy the normalization constraint on equation (2).

Taking logs on the both sides, we get

log(dy) + log(d2) = log((a1 b2 + a2 b1)/2),
log(dl) + log(dg) = log((a1 bs + a3 bl)/2) s
log(dz2) + log(ds) = log((az bs + a3z b2)/2) .

The above set of equations always has a unique solution [d; d2 ds
so we now have a perfect local mixing rule for N < 3 that involves
only the ¢;n and j;, columns of the information matrix.

To extend the above solution to the general case N > 3, suppose
that the i, jen columns of L7 are [a1---an]”, [b1---bn]"
respectively, and that d = [d; - - - dn]” is the new merged column
of Ly for both ¢ and j. Now consider the following equation for
merging a and b for all (1; ) pairs of (m,n) combinations.

log(dm) + log(dn) = log((am bn + bm an)/2).

The above equation can be rewritten as a matrix equation as follows.

}T

>

where
o B =[log(d1)---log(dn)]%,is a N x 1 vector
o ¥ =1[-log((am - bn +bm-an)/2)---]", isa (§) x 1 vector

e Pisa (]; ) X NN matrix where each row has two ones at the

myep and nyp, positions respectively, and zeros elsewhere.

In general, the system (3) is an overdetermined set of equations
and does not have a solution. Therefore, we propose to use a least-
square approach to obtain an approximate solution, which will be our
mixing rule for the information matrix:

B=Ply, )

where Pt = (PTP)~'PT is the pseudo inverse of P. Thus, the
computational complexity of the mixing for information matrix is
O(N*).

Theorem 1: The information matrix approach is optimal for N <
3. For N > 4, the information matrix approach is sub-optimal due
to the approximate mixing in (4).

D. Inference Using the Information Matrix

For tracking applications, we are mostly interested in the marginal
probabilities p;; of the ji, object having the 7., identity. To compute
marginal probabilities, N! joint probabilities need to be computed
first. Computing joint probabilities, however, requires O(N>N!)
operations, which is not feasible. Therefore, we used the Metropolis
sampling algorithm [4] as a heuristic to estimate these marginal
probabilities. Simulation results in section V-A confirm that the
Metropolis algorithm with reasonable number of samples approxi-
mates the marginal probabilities well.

IV. COMPARISON OF THE BELIEF MATRIX AND INFORMATION
MATRIX APPROACHES

In this section, we compare the information matrix with the
previous approach based on marginal probabilities in [1] in terms
of both computational complexity and distributed implementation.

A. Storage and Computation

In terms of representation, both approaches require O(NN?) storage
since they use N x /N matrices as their data structures. For mixing
operations, the belief matrix approach requires O(N) computation,
while the information matrix approach requires O(N*). For incor-
porating local evidence, the information matrix approach requires
O(1) computation, while the belief matrix approach requires O(N?)
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computations in practice. One can see there is a tradeoff between the
two approaches in terms of computational complexity — the belief
matrix has a simpler mixing operation, while the information matrix
has a simpler evidence incorporation operation.

B. Communication Cost

The aforementioned computational complexities, however, do not
represent the realistic costs of these operation in actual implemen-
tation due to the additional communication cost incurred by the
belief matrix approach. Let us first briefly describe how these two
approaches can be implemented in a purely distributed fashion in a
WSN and what the assumptions are.

The sensor network we consider has the following characteristics.
Sensor nodes are stationary and know their own geographic locations.
Each node can exchange messages only with its neighbors, which is
the set of nodes one wireless hop away from itself. New objects
appear only at the boundary of the network. When nodes at the
boundary of the sensor network detect an object, a node in the vicinity
is selected and spawns a software agent whose job is to track and
accumulate information about that object. As the object moves within
the WSN, the agent hops from node to node so as to stay close to
the object.

Under this setting, each column of these matrices can be main-
tained by a single agent. Since mixing under both approaches updates
only two columns of the belief and information matrices, only the
two agents involved in the mixing need to talk to each other to
update their columns. This is just local communication, since mixing
happens only when two objects are very close. To update information
given local evidence, however, the agent with local evidence needs
to send the normalization message to other relevant agents using a
group management protocol [2] for the belief matrix approach. For
the information matrix approach, the agent only needs to add the
log-likelihood (log(.9) — log(w1)) to the proper element of the
column.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results from simulation
and a real tracking system with an RFID system.

A. Simulation

Figures 3 and 4 summarize simulation results where we compare
three different approaches — using the marginal belief matrix, the
information matrix with exact inference and the information matrix
with approximate inference. Each representation is used for the
tracking and identity management of objects as mixing and local
evidence incorporation events take place. In each of our simulations,
we process fifty events where the ratio of the number of mixing to
evidence incorporation events is fixed. We then record the difference
between the inferred marginal distribution of identities to objects
from our approximation method to the true marginal probability
distribution summed out over the true joint (N!)-size distribution.
Figure 3 shows simulations for a system that managed the identities of
three objects and identities. The x-axis represents the ratio of mixing
to local incorporation events, and each data point corresponds to the
average difference of the true marginal probabilities to the inferred
marginal probabilities over one hundred random simulations. Figure 4
shows the results when our system managed six identities and objects.

Observing the results of our simulations, the information matrix
with exact inference and the belief matrix perform comparably,
meaning their relative errors are approximately equal when compared

3 objects

+ Belief matrix
0.351 o Information matrix H
¢ Information matrix with Metropolis

0.31 b
13
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Ratio: # mixings / # evidences
Fig. 3.  Comparison of the three approaches: Marginal belief matrix, Infor-

mation matrix with exact inference and Information matrix with approximate
inference
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Fig. 4. Comparison of the three approaches: 6 objects

to the true marginal probabilities. The information matrix using the
Metropolis sampling algorithm performs worse, but only marginally.
Both of these observations remain valid when we increase the number
of identities and objects tracked. However, it is important to note
that the information matrix approach with approximate inference
performs much better when the ratio of the number of mixing to
local incorporation events is small. This is true and consistent with
the well known result in the Markov Chain Monte Carlo community
[4] that a sharply peaked distribution can be accurately represented
using IV log N samples for a probability distribution over Sy . Thus,
when the number of evidence incorporation events to mixing events
is high, our joint distribution over Sy is likely to be sharply peaked,
which explains why our sampling method performs better with a low
ratio of mixing to evidence incorporation events.

B. Experimental Setup: People Tracking System

Two SICK laser range finders are mounted in the Stanford Al Lab.
The laser range finders return range measurements over a 180 degree
field of view, which provides measurements for estimating positions
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of moving objects including people. Furthermore, we augmented our
people tracking system with a radio frequency identification (RFID)
system. The RFID system has eight readers that detect the presence
of unique tags for identity information. The readers, when activated,
send out radio messages to detect the presence of tags within its
radio range. Four readers are mounted in the hallways to detect all
identities entering and exiting the lab. The remaining four readers are
mounted in the lab each activated by motion sensors. Figure 5 is a
map of the lab area annotated with where the laser range finders and
RFID readers are.

C. Experiments Performed

In our experiments we had three individuals starting from different
hallways connecting to the lab, walking into the lab, interacting with
one another, and leaving the lab. Each person was carrying a RFID
tag, which was used to trigger a nearby RFID reader. Figure 6 shows
three ground-truth tracks.

¥ LaserGraph

‘ Laser sensor =+ RFID reader Laser sensing range

Fig. 5. Experimental setup in the Stanford Al lab

Figure 7 shows results after applying the identity management to
the data from the scenario in Figure 6. The two graphs on the left
show how the uncertainties of track identities measured as a statistical
entropy evolve through the mixing and local evidence incorporation
events. The = axis, y axis and z axis represent tracks, events and
uncertainty in track identities, respectively. The events axis has a
sequence of events [Initial M E E E M M E], where M stands for
mixing and E stands for evidence. The two matrices on the right are
the marginal probabilities of the two approaches after all the events,
where the i:p, jin entry of each matrix represents the probability
that object j has identity 7. As the results show, we observe that the
information matrix estimates more accurately the true probabilities
than the belief matrix. This is expected since as we proved earlier,
the information matrix exactly represents the marginals for N < 3.

Fig. 6. Experiment scenario: Three people walking in the lab over 87.79
second period. Their individual tracks are shown in different colors.

VI. DISCUSSION AND CONCLUSION

From the analysis and experiments, we come to the conclusion that
there is a trade-off when choosing between the two proposed methods

4763| 0.0545 0.4692
0.0473 0.8911] 0.0616

0.4763 0.0545 |0.4692

Belief matrix apprioach

Y J— _
V 0.0952 0.0002

0.0476| 0.8571] 0.0952

0.0478 0.0476 |0.9046

Information matrix approach

Fig. 7. Uncertainties of object identities after many mixing and evidence
incorporation events from the data in Figure 6

for approximating an exponentially-sized distribution through mixing
and local evidence incorporation events. In the WSN setting, the
weakness of the belief matrix representation is apparent in its need
to continuously re-normalize its marginal distribution after each
local evidence incorporation event. Furthermore, since this operation
requires extensive communication throughout the WSN, this repre-
sentation is energy-consuming. In this paper, we propose an alternate
method for approximating the joint identity distribution using the
information matrix. The main advantage of the new information
matrix representation over the belief matrix is how it handles local
evidence incorporation — sensor nodes process the evidence locally,
without communicating throughout the network. Thus, nodes are lazy
and perform communication only when users of the system request
information rather than whenever sensor nodes process local evidence
events, as is the case with the belief matrix representation.

Compared to the belief matrix, the information matrix performs
equally well in terms of approximating the true marginal distributions
summed over the joint distribution over possible permutation of
objects and identities, but at an increased cost of performing the in-
ference necessary to retrieve the approximate marginal probabilities.
However, we overcome this added computational cost by performing
approximate inference using the Metropolis sampling method. Thus,
inference costs using the information matrix representation are sig-
nificantly reduced. As experiments show, the difference in accuracy
between approximate and exact inference for the information matrix
is small. Thus, the information matrix representation can be the
preferable candidate for object tracking and identity management in
many WSN settings.
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