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Figure 1. ConDor is a self-supervised method that learns to Canonicalize the 3D orientation and position (3D pose) for full and partial
shapes. (left) Our method takes un-canonicalized 3D point clouds (gray) from different categories as input and produces consistently
canonicalized outputs (colored). (right) Our method can also operate on partial point clouds (missing part of shape shown only for
visualization). In addition, ConDor can also learn consistent co-segmentation of shapes without supervision, visualized as colored parts.

Abstract

Progress in 3D object understanding has relied on manu-
ally “canonicalized” shape datasets that contain instances
with consistent position and orientation (3D pose). This
has made it hard to generalize these methods to in-the-wild
shapes, e.g., from internet model collections or depth sen-
sors. ConDor is a self-supervised method that learns to
Canonicalize the 3D orientation and position for full and
partial 3D point clouds. We build on top of Tensor Field
Networks (TFNs), a class of permutation- and rotation-
equivariant, and translation-invariant 3D networks. Dur-
ing inference, our method takes an unseen full or partial
3D point cloud at an arbitrary pose and outputs an equiv-
ariant canonical pose. During training, this network uses
self-supervision losses to learn the canonical pose from
an un-canonicalized collection of full and partial 3D point
clouds. ConDor can also learn to consistently co-segment
object parts without any supervision. Extensive quantitative
results on four new metrics show that our approach out-
performs existing methods while enabling new applications
such as operation on depth images and annotation transfer.

1. Introduction
Humans have the ability to recognize 3D objects in

a wide variety of positions and orientations (poses) [40],
even if objects are occluded. We also seem to prefer cer-
tain canonical views [10], with evidence indicating that an

object in a new pose is mentally rotated to a canonical
pose [47] to aid recognition. Inspired by this, we aim to
build scene understanding methods that reason about ob-
jects in different poses by learning to map them to a canon-
ical pose without explicit supervision.

Given a 3D object shape, the goal of instance-level
canonicalization is to find an equivariant frame of refer-
ence that is consistent relative to the geometry of the shape
under different 3D poses. This problem can be solved if we
have shape correspondences and a way to find a distinctive
equivariant frame (e.g., PCA). However, it becomes signifi-
cantly harder if we want to operate on different 3D poses
of different object instances that lack correspondences.
This category-level canonicalization problem has received
much less attention despite tremendous interest in category-
level 3D object understanding [8, 11, 14, 25, 26, 31, 56].
Most methods rely on data augmentation [23], or man-
ually annotated datasets [3, 56] containing instances that
are consistently positioned and oriented within each cat-
egory [44, 48, 52]. This has prevented broader applica-
tion of these methods to un-canonicalized data sources,
such as online model collections [1]. The problem is fur-
ther exacerbated by the difficulty of canonicalizing partial
shape observations (e.g., from depth maps [36]), or symmet-
ric objects that require an understanding of inter-instance
part relationships. Recent work addresses these limitations
using weakly-supervised [15, 38] or self-supervised learn-
ing [13, 29, 43, 46], but cannot handle partial 3D shapes, or
is limited to canonicalizing only orientation.
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We introduce ConDor, a method for self-supervised
category-level Canonicalization of the 3D pose of partial
shapes. It consists of a neural network that is trained on
an un-canonicalized collection of 3D point clouds with in-
consistent 3D poses. During inference, our method takes
a full or partial 3D point cloud of an object at an arbitrary
pose, and outputs a canonical rotation frame and translation
vector. To enable operation on instances from different cate-
gories, we build upon Tensor Field Networks (TFNs) [49], a
3D point cloud architecture that is equivariant to 3D rotation
and point permutation, and invariant to translation. To han-
dle partial shapes, we use a two-branch (Siamese) network
with training data that simulates partiality through shape
slicing or camera projection. We introduce several losses
to help our method learn to canonicalize 3D pose via self-
supervision. A surprising feature of our method is the (op-
tional) ability to learn consistent part co-segmentation [6]
across instances without any supervision (see Figure 1).

Given only the recent interest, standardized metrics
for evaluation of canonicalization methods have not yet
emerged. We therefore propose four new metrics that
are designed to evaluate the consistency of instance- and
category-level canonicalization, as well as consistency with
manually pre-canonicalized datasets. We extensively eval-
uate the performance of our method using these metrics
by comparing with baselines and other methods [43, 46].
Quantitative and qualitative results on common shape cate-
gories show that we outperform existing methods and pro-
duce consistent pose canonicalizations for both full and par-
tial 3D point clouds. We also demonstrate previously diffi-
cult applications enabled by our method such as operation
on partial point clouds from depth maps, keypoint annota-
tion transfer, and expanding the size of existing datasets. To
sum up, our contributions include:

• A self-supervised method to canonicalize the 3D pose
of full point clouds from a variety of object categories.

• A method that can also handle partial 3D point clouds.
• New metrics to evaluate canonicalization methods, ex-

tensive experiments, and new applications.

2. Related Work
Canonical object representations in human perception

have been extensively studied as mental rotation [40,
47], shape constancy and equivalence [30], and canonical
views [10]. We review related work that studies or uses
canonicalization for machine perception of 3D scenes.
3D Scene Understanding: Invariance and equivariance to
3D pose in tasks such as shape classification, reconstruction
and registration was initially achieved using hand-crafted
features [17, 37, 39]. With machine learning, these features
were replaced with learned features [51,53,59], but 3D data
introduces challenges in learning invariant features [33].

Data augmentation by sampling the space of 3D poses for
each object is one way to address this problem [23] but re-
sults in longer training and larger networks. Category-level
object reconstruction methods have gained significant atten-
tion with representations ranging from voxel grids [8, 25],
implicit surfaces [31], parametric surfaces [14, 22], point
clouds [57], and depth images [61]. Almost all of these
methods rely on manually pre-canonicalized datasets like
ShapeNet [4] and ModelNet40 [56] to learn inductive biases
for effective learning [48]. Neural networks have also been
successfully used for supervised [27] and unsupervised [6]
segmentation of object parts.
3D Neural Networks: Numerous neural networks have
been proposed for processing 3D data represented as vox-
els [24, 34, 56], multiple views [45], point clouds [33, 35,
54] or meshes [16, 58]. For 3D point clouds, PointNet
and related methods achieve point permutation equivari-
ance and translation equivariance, but not rotation equiv-
ariance. Spherical CNNs [9] and Tensor Field Networks
(TFNs) [32, 49] address this limitation. We use 3D point
clouds as our shape representation and TFNs to achieve
equivariance to permutation, translation, and rotation.
Supervised Canonicalization: Supervised canonicaliza-
tion of shapes enables applications such as instance-level
camera pose estimation [42] or human pose estimation [18,
41]. It can also be useful for category-level reasoning, for
example 6 DoF pose estimation [50, 52]. However, these
methods are limited to learning from data with ground truth
canonicalization making it hard to generalize to real data.

Our method is most related to recent work on weakly su-
pervised [15, 38], or self-supervised learning of canonical-
ization of semantic keypoints [29] and point clouds [43,46].
Unlike these methods, we can canonicalize both orientation
and translation for partial shapes.

3. Background
3D Pose Canonicalization: The 3D pose of an object
refers to its 3D position and orientation in space specified
by an intrinsic object-centric reference frame (defined by
an origin and orthonormal rotation). Having a consistent
intrinsic frame across different shapes is critical in many
problems [5, 12, 32, 62]. We denote such a consistent in-
trinsic frame as a canonical frame. This frame transforms
together with the object, i.e., it is equivariant. The object
pose is constant relative to the canonical frame – we call
this our canonical pose.

In instance-level 3D pose canonicalization, our goal is
to find a consistent canonical frame across different poses of
the same object instance (Figure 2, top). In category-level
3D pose canonicalization, we want a canonical frame that
is consistent with respect to the geometry and local shape
across different object instances (Figure 2, bottom). Any
equivariant frame that is consistent across shapes is a valid



Figure 2. A canonical frame visualized for (top) the same instance
in different 3D poses, and (bottom) different instances in different
3D poses. Partial shapes with amodal frame shown in last column.

canonical frame – this allows us to compare canonicaliza-
tion with manually-labeled ground truth (see Section 6.1).
In addition to full shapes, we also consider partial shape
canonicalization for which we define an amodal canonical
frame as shown in Figure 2.
Tensor Field Networks: Our method estimates a canon-
ical frame for 3D shapes represented as point clouds. For
this task, we use Tensor Field Networks [49] (TFNs), a 3D
architecture that is equivariant to point permutation and ro-
tation, and invariant to translation. Given a point cloud
X ∈ R3×K and a integer (aka type) ℓ ∈ N, a TFN
can produce global (type ℓ) feature vectors of dimension
2ℓ + 1 stacked in a matrix F ℓ ∈ R(2ℓ+1)×C , where C
is user-defined number of channels. F ℓ

:,j(X) satisfies the
equivariance property F ℓ

:,j(RX) = Dℓ(R)F ℓ
:,j(X), where

Dℓ : SO(3) → SO(2ℓ + 1) is the so-called Wigner matrix
(of type ℓ) [7, 20, 21]. Please see [2, 32, 49, 55] for details.

4. Method

Given a point cloud X ∈ R3×K denoting a full or partial
shape from a set of non-aligned shapes, our goal is to es-
timate its rotation R(X) (canonical frame) sending X to a
canonical pose. For a partial shape Y ⊂ X we also learn a
translation T (Y ) aligning Y with X in the canonical frame.
We achieve this by training a neural network on 3D shapes
in a self-supervised manner (see Figure 3).

4.1. Learning to Canonicalize Rotation

We first discuss the case of canonicalizing 3D rotation
for full shapes. Given a point cloud X , our approach es-
timates a rotation-invariant point cloud Xc, and an equiv-
ariant rotation E that rotates Xc to X . Note that for full
shapes, translation can be canonicalized using mean center-
ing [29], but this does not hold for partial shapes.

Rotation Invariant Point Cloud/Embedding: To esti-
mate a rotation-invariant point cloud, we build on top of a
permutation-, rotation-equivariant and translation-invariant
neural network architecture: Tensor Field Networks (TFNs)
[49] with equivariant non-linearities for TFNs [32]. Given
X , we use a TFN [32] to produce global equivariant fea-
tures F ℓ, with columns F ℓ

:,j as described in Section 3.
The central observation of [32] is that the features F

have the same rotation equivariance property as coefficients
of spherical functions in the spherical harmonics basis, and
can therefore be treated as such. We exploit this property
by embedding the shape using the spherical harmonics ba-
sis and using the global TFN features F as coefficients of
this embedding. Since the input to the spherical harmon-
ics embedding and the coefficients rotate together with the
input shape, they can be used to define a rotation and trans-
lation invariant embedding of the shape. Formally, let
Y ℓ(x) ∈ R2ℓ+1 be the vector of degree ℓ spherical har-
monics which are homogeneous polynomials defined over
R3. We define a rotation invariant embedding of the shape
as the dot products

Hℓ
ij := ⟨F ℓ

:,j , Y
ℓ(Xi)⟩, (1)

where i is an index to a single point on the point cloud, and
j is the channel index as in Section 3. Both sides of the
dot product are rotated by the same Wigner rotation matrix
when rotating the input pointcloud X making H invariant
to rotations of X . The input point cloud is mean-centered
to achieve invariance to translation. Note that we can use
any functional basis of the form : x 7→ (φr(∥x∥)Y ℓ(x))rℓ,
where (φr)r are real valued functions to define H .

We use the rotation invariant embedding corresponding
to ℓ = 1 (degree 1) to produce a 3D invariant shape
through a linear layer on top of H . Note that degree 1 spher-
ical harmonics are the x, y, z coordinates of the input point
cloud since Y 1(x) = x. As we show in Appendix B, other
choices for ℓ enable us to learn consistent co-segmentation
without supervision. The 3D rotation invariant shape is
given by:

Xc
i :=

X
j

W:,jH
1
ij = W (F 1)⊤Xi. (2)

We obtain our canonical frame as described in Section 3
as R(X) = W (F 1)⊤ where W is the learnable weights
matrix of the linear layer.
Rotation Equivariant Embedding: Next, we seek to find
an equivariant rotation that transforms Xc to X . In addi-
tion to the equivariant features F , our TFN also outputs a
3D equivariant frame E which we optimise to be a rotation
matrix. E satisfies the equivariance relation E(R.X) =
RE(X) so that the point cloud E(X)Xc is rotation equiv-
ariant. Note that we could have chosen E(X) = R(X)⊤

but we instead choose to learn E(X) independently as this
approach generalizes to the case of non-linear embeddings



Figure 3. ConDor. (left) Our method learns to canonicalize rotation by estimating an equivariant pose E(X) and an invariant point
cloud Xc of an input shape X . A self-supervision loss ensures that the input and transformed canonical shapes match. (right) To handle
translation in partial shapes, we train a two-branch (Siamese) architecture, one taking the full shape and the other taking an occluded
(e.g., via slicing) version of the full shape as input. Various losses ensure that the feature embeddings of the full and partial shapes match.
We predict the amodal barycenter of the full shape T (O(X )) from the partial shape to canonicalize for position.

(e.g., with values other than ℓ = 1 in Equation (2)) which
we use for unsupervised segmentation in Appendix B.

Using E, we can transform our 3D invariant embedding
Xc back to the input equivariant embedding and compare
it to the input point cloud. To handle situations with high
occlusion and symmetric objects we estimate P equivariant
rotations and choose the frame that minimizes the L2 norm
between corresponding points in the input and the predicted
invariant shape.

4.2. Learning to Canonicalize Translation

Next, we discuss canonicalizing 3D translation for par-
tial point clouds, e.g., acquired from depth sensors or Li-
DAR. As noted, translation canonicalization for full shapes
is achieved using mean centering [29]. Thus, our approach
in Section 4.1 is sufficient for 3D pose canonicalization of
full shapes. However, partial shapes can have different cen-
troids depending on how the shape was occluded. To ad-
dress this issue, we extend our approach to additionally find
a rotation-equivariant translation T ∈ R3 that estimates
the difference between the barycenter of the full and par-
tial shape from the mean-centered partial point cloud that
translates it to align with the full shape in the input frame.

In practice, we operationalize the above idea in a two-
branch Siamese architecture as shown in Figure 3. We slice
the input point cloud to introduce synthetic occlusion. We
penalize the network by ensuring semantic consistency be-
tween the full and the partial point cloud. Furthermore, our
network predicts an amodal translation vector that captures
the barycenter of the full shape from the partial input shape.

4.3. Unsupervised Co-segmentation

A surprising finding is that our method can be used for
unsupervised part co-segmentation [6] of full and partial
shapes with little modification. This result is enabled by
finding the rotation invariant embedding H in Equation (1)

corresponding to all ℓ ⩾ 0 to produce a non-linear invari-
ant embedding. To obtain a consistent rotation invariant
part segmentation, we segment the input shape into N parts
by learning an MLP on top of the rotation invariant embed-
ding. The part label of each point in the input point cloud
is given by Si := softmax[MLP(H)i]. Results visualized
in the paper include these segmentations as colored labels.
Please see the supplementary material for more details.

5. Self-Supervised Learning
5.1. Loss Functions

A key contribution of our work is to demonstrate that
3D pose canonicalization can be achieved through self-
supervised learning as opposed to supervised learning from
labeled datasets [4, 56]. We now list the loss functions that
enable this. Additionally, we describe losses that prevent
degenerate results, handle symmetric shapes, and enable
unsupervised segmentation. We begin with full shapes.
Canonical Shape Loss: Our primary self-supervision sig-
nal comes from the canonical shape loss that tries to mini-
mize the L2 loss between the rotation invariant point cloud
Xc transformed by the rotation equivariant rotation E with
the input point cloud X . It is worth noting that Xc and
X are in correspondence because our method is permuta-
tion equivariant and we extract point-wise embeddings. For
each point i in a point cloud of size K, we define the canon-
ical shape loss to be

Lcanon =
1

K

X
i

∥EXc
i −Xi∥2. (3)

We empirically observe that our estimation of E can be
flipped 180◦ or Xc can become a degenerate shape when
the object class has symmetry or heavy occlusions. To mit-
igate this issue, we estimate P equivariant rotations Ep and
choose the one that minimizes the above loss.



Orthonormality Loss: The equivariant rotation E esti-
mated by our method must be a valid rotation in SO(3), but
this cannot be guaranteed by the TFN. We therefore add a
loss to constrain E to be orthonormal by minimizing its dif-
ference to its closest orthonormal matrix. We achieve this
using the SVD decomposition of E = UΣV ⊤ and enforc-
ing unit eigenvalues with the loss

Lortho = ∥UV ⊤ − E∥2. (4)
Separation Loss: When estimating P equivariant rotations
Ep, our method could learn a degenerate solution where all
Ep are similar. To avoid this problem, we introduce a sepa-
ration loss that encourages the network to estimate different
equivariant rotations as

Lsep = − 1

9P

X
i ̸=j

||Ei − Ej ||2 . (5)

Restriction Loss: We next turn our attention to partial
shapes. Similar to full shapes, we compute the canonical
shape, orthonormality and separation losses. We assume
that a partial shape is a result of a cropping operator O that
acts on a full point cloud X to select points corresponding to
a partial version O(X) ⊆ X . In practice, our cropping op-
erator is slicing or image projection (see Section 5.2). Dur-
ing training, we train two branches of our method, one with
the full shape and the other with a partial shape generated
using a random sampling of O. We then enforce that the
invariant embedding for partial shapes is a restriction of the
invariant embedding of the full shape X using the loss

Lrest =
1

|S|
X
i∈S

∥\O[Xc]i −
�

[O[X]
c�

i
∥22, (6)

where S is the set of valid indices of points in both X and
O(X), and the chat indicates mean-centered point clouds.
During inference, we do not require the full shape and can
operate only with partial shapes. Empirically, we observe
that our method generalizes to different cropping operations
between training and inference (see Section 6.3)
Amodal Translation Loss: Finally, to align the mean-
centered partial shape with the full shape, we estimate
the barycenter of the full shape after the occlusion oper-
ation O[X] from the partial shape only using a rotation-
equivariant translation vector T ( [O[X]) by minimizing

Lamod = ∥T ( [O[X])−O(X)∥22. (7)
Unsupervised Part Segmentation Losses: A surprising
finding in our method is that we can segment objects into
parts consistently across instances without any supervision
(see Figure 1). This is enabled by interpreting higher de-
gree invariant embedding Hℓ as a feature for unsupervised
segmentation. Our losses are based on the localization and
equilibrium losses of [46]. We refer the reader to [46]
and the supplementary document for details on these losses.
Note that [46] need to perform segmentation to enable rota-
tion canonicalization, while it is optional for us.

5.2. Network Architecture & Training

Our method is trained on a collection of un-
canonicalized shapes X , and partial shapes randomly gen-
erated using a suitable operator O. We report two kinds of
partiality: slicing and image projection (i.e., depth maps).
We borrow our TFN architecture from [32] and use the
ReLU non-linearity in all layers. We use 1024 and 512
points for full and partial point cloud. Our method pre-
dicts 5 canonical frames for every category. Our mod-
els are trained for 45,000 iterations for each category with
the Adam [19] optimizer with an initial learning rate of
6× 10−4. We set a step learning rate scheduler that decays
our learning rate by a factor of 10−1 every 15,000 steps. Our
models are trained on Linux with Nvidia Titan V GPUs –
more details in the supplementary document.

6. Experiments
We present quantitative and qualitative results to com-

pare our method with baselines and existing methods, jus-
tify design choices, and demonstrate applications.
Datasets: For full shapes, we use un-canonicalized shapes
from ShapeNet (Core) [3] and ModelNet40 [56]. For
ShapeNet, our data split [11, 46] has 31,747 train shapes,
and 7,943 validation shapes where each shape is a 3D point
cloud with 1024 points sampled using farthest point sam-
pling. The shapes are from 13 classes: airplane, bench,
cabinet, car, chair, monitor, lamp, speaker, firearm, couch,
table, cellphone, and watercraft. For ModelNet40 [56],
we use 40 categories with 12,311 shapes (2,468 test). For
partial shapes, we either randomly slice shapes from the
above datasets, or we use the more challenging ShapeNet-
COCO dataset [44] that contains objects viewed from mul-
tiple camera angles and mimics occlusions from depth sen-
sors. While all these datasets are already pre-canonicalized,
we use this information only for evaluation – our method is
trained on randomly transformed un-canonicalized shapes
X ∈ X from these datasets.

6.1. Canonicalization Metrics

Most work on canonicalization evaluates performance
indirectly on downstream tasks such as segmentation or reg-
istration [43, 46]. This makes it hard to disentangle canon-
icalization performance from task performance. We con-
tribute four new metrics that measure different aspects of
3D pose canonicalization while disentangling performance
from downstream tasks. The first three of these metrics
evaluate rotation assuming mean-centering, while the last
metric measures translation errors for partial shapes.
Instance-Level Consistency (IC): The IC metric is de-
signed to evaluate how well a method performs for canon-
icalizing the 3D rotation of the same shape instance. For
each shape in the dataset, we obtain another copy of it by



Table 1. Full shape canonicalization compared to a PCA baseline, Canonical Capsules (CaCa) [46] and Compass [43], and full (F) and
full+partial (F+P) versions of our method. We outperform methods on most categories and metrics.

bench cabinet car cellph. chair couch firearm lamp monitor plane speaker table water. avg. multi

Instance-Level Consistency (IC) ↓
PCA 0.0573 0.0350 0.0477 0.0276 0.0974 0.0628 0.0324 0.0755 0.0480 0.0502 0.0491 0.0727 0.0400 0.0535 0.0535
CaCa [46] 0.0630 0.1567 0.0426 0.0823 0.0253 0.1479 0.0084 0.0372 0.0748 0.0093 0.1540 0.0787 0.0270 0.0698 0.0395
Compass [43] 0.1030 0.0816 0.0790 0.0664 0.0791 0.0766 0.0748 0.0495 0.0638 0.0610 0.0721 0.0641 0.0430 0.0703 0.0507

Ours (F) 0.0225 0.0346 0.0191 0.0234 0.0221 0.0221 0.0081 0.0454 0.0283 0.0163 0.0787 0.0523 0.0270 0.0308 0.0394
Ours (F+P) 0.0696 0.0288 0.0230 0.0263 0.0235 0.0222 0.0084 0.0403 0.0242 0.0144 0.0678 0.0361 0.0236 0.0314 0.0329

Category-Level Consistency (CC) ↓
Ground truth 0.0980 0.1460 0.0578 0.0733 0.1191 0.0955 0.0536 0.2147 0.1088 0.0673 0.1709 0.1444 0.0915 0.1108 0.1108
PCA 0.0976 0.1055 0.0654 0.0600 0.1389 0.0937 0.0527 0.1802 0.0970 0.0731 0.1397 0.1479 0.0816 0.1026 0.1026
CaCa [46] 0.1134 0.1742 0.0730 0.1033 0.1220 0.1919 0.0493 0.1888 0.1186 0.0684 0.1840 0.1660 0.0883 0.1262 0.1132
Compass [43] 0.1654 0.1348 0.1077 0.0931 0.1522 0.1175 0.1258 0.1833 0.1266 0.1019 0.1579 0.1626 0.0942 0.1325 0.1283

Ours (F) 0.1043 0.1067 0.0575 0.0612 0.1135 0.0869 0.0525 0.1754 0.0988 0.0681 0.1504 0.1475 0.0851 0.1006 0.1035
Ours (F+P) 0.1250 0.1065 0.0581 0.0635 0.1145 0.0874 0.0500 0.1844 0.1001 0.0679 0.1477 0.1432 0.0912 0.1030 0.1005

Ground Truth Consistency (GC)↓
PCA 0.0760 0.1047 0.0208 0.0390 0.1190 0.0799 0.0261 0.1366 0.0862 0.0460 0.1280 0.1267 0.0645 0.0810 0.0810
CaCa [46] 0.0761 0.0688 0.0529 0.0667 0.0943 0.1812 0.0330 0.1592 0.0897 0.0266 0.0744 0.1401 0.0683 0.0870 0.1060
Compass [43] 0.1599 0.1586 0.0892 0.0851 0.1504 0.1160 0.1214 0.1654 0.1231 0.0975 0.1552 0.1554 0.0804 0.1275 0.1247

Ours (F) 0.0671 0.1131 0.0257 0.0511 0.0526 0.0585 0.0359 0.1399 0.0674 0.0255 0.1505 0.0779 0.0746 0.0723 0.0902
Ours (F+P) 0.1115 0.1134 0.0230 0.0553 0.0509 0.0537 0.0223 0.1274 0.0650 0.0286 0.1456 0.0738 0.0477 0.0706 0.0843

applying a rotation from R, a user-defined set of random ro-
tations (we use 120 rotations). We then compute the 2-way
Chamfer Distance (CD), to handle classes with symmetries
such as tables, between the canonicalized versions of the
shapes (with superscript c). We expect this to be as small as
possible for better canonicalization. The average IC metric
is given as:

IC :=
1

|X ||R|
X

Xi∈X

X
Rj∈R

CD[(Rj .Xi)
c, Xc].

Category-Level Consistency (CC): The CC metric is de-
signed to evaluate the quality of 3D rotation canonicaliza-
tion between different shape instances. For each shape X
in the dataset, we pick N other shapes to form a set of com-
parison shapes N . We then follow a similar approach as
IC and compute the 2-way Chamfer Distance between each
shape and its N possible comparison shapes. Intuitively, we
expect this metric to be low if canonicalization is consis-
tent across different instances. Ideally, we want to evaluate
this metric for all possible comparison shapes, but to reduce
computation time, we pick N = 120 random comparison
shapes. The average CC metric is given as:

CC :=
1

|X |N
X

Xi∈X

X
Xj∈N

CD[Xc
i , X

c
j ].

Ground Truth Consistency (GC): The GC metric is de-
signed to compare estimated canonicalization with manual
ground truth pre-canonicalization in datasets like ShapeNet
and ModelNet40. For perfect canonicalization, the pre-
dicted canonical shape should be a constant rotation away
from ground truth shape. Given the predicted canonicaliz-
ing frames R(Xj),R(Xk) for aligned shapes Xj , Xk ∈ X ,
we induce the same canonicalization on any other shape

Xi ∈ X and compute the 2-way CD between them.

GC :=
1

|X |3
X

Xi,Xj ,Xk∈X
CD[R(Xj).Xi,R(Xk).Xi].

We note that manual canonicalization, which is based
on human semantic understanding of shapes, does not nec-
essarily match with this paper’s notion of canonicalization
which is founded on geometric similarity. Nonetheless, this
metric provides a way to compare with human annotations.
Translation Error (TE): To measure error in translation
for partial shapes, we compute the average L2 norm be-
tween the estimated amodal translation and ground truth
amodal translation – this has the same form as Lamod in
Section 5.1. Note that we have the ground truth amodal
translation for our datasets since partial shapes are gener-
ated from the full shapes using an occlusion function O.

6.2. Comparisons

We report comparisons on canonicalizing both full and
partial shapes. Only the rotation metrics from Section 6.1
are relevant for full shapes since we assume input shapes
are mean-centered without translation differences [29]. We
report the TE metric for partial shape canonicalization. Out-
side of these metrics, we also report indirect evaluations of
canonicalization [43, 46] on classification.
Canonicalization Metrics: We compare our method with
baselines and other methods using our new canonicalization
metrics (Section 6.1). For this experiment, we follow previ-
ous work [11] and choose 13 categories from the ShapeNet,
training one model per category as well as a joint model
for all categories. We choose PCA as a baseline – for each
shape we compute the top-3 principal components and use
this as an equivariant frame for alignment across instances.



Table 2. Partial shape canonicalization compared to PCA and Compass*, our modification of [43]. We outperform other methods by a
larger margin than in the full shapes setting.

bench cabinet car cellph. chair couch firearm lamp monitor plane speaker table water. avg. multi

Ground Truth Consistency (GC)↓
PCA 0.0916 0.1391 0.0727 0.0879 0.1337 0.0908 0.0371 0.1985 0.0804 0.0915 0.1479 0.1087 0.1021 0.1063 0.1063
Compass* 0.1917 0.1412 0.1020 0.1066 0.1476 0.1115 0.1538 0.1735 0.1194 0.1115 0.1617 0.1709 0.0737 0.1358 0.1423
Ours(F+P) 0.1416 0.1182 0.0356 0.0685 0.0780 0.0593 0.0300 0.1501 0.0692 0.0360 0.1469 0.0662 0.0739 0.0826 0.1016

Instance-Level Consistency (IC) ↓
PCA 0.1033 0.1140 0.1149 0.0828 0.1475 0.1221 0.0517 0.1571 0.0867 0.1000 0.1182 0.1401 0.0756 0.1088 0.1088
Compass* 0.1900 0.0790 0.1183 0.0911 0.1280 0.1053 0.1440 0.1000 0.0836 0.1000 0.1134 0.1080 0.0487 0.1084 0.1247
Ours(F+P) 0.1432 0.0501 0.0349 0.0442 0.0622 0.0478 0.0221 0.0891 0.0442 0.0265 0.1086 0.0739 0.0469 0.0611 0.0792

Category-Level Consistency (CC) ↓
PCA 0.1269 0.1500 0.1253 0.1081 0.1636 0.1367 0.0691 0.2312 0.1178 0.1124 0.1677 0.1769 0.1078 0.1380 0.1380
Compass* 0.2118 0.1300 0.1438 0.1215 0.1612 0.1280 0.1688 0.1990 0.1242 0.1255 0.1760 0.1719 0.0919 0.1503 0.1647
Ours (F+P) 0.1695 0.1109 0.0632 0.0739 0.1270 0.0935 0.0546 0.2048 0.1042 0.0713 0.1666 0.1579 0.0936 0.1147 0.1234

We compare with two methods for rotation canonicaliza-
tion: Canonical Capsules (CaCa) [46] and Compass [43].

Results for full shape canonicalization are shown in Ta-
ble 1. We evaluate two versions of our method on full
shapes, one trained with only full shapes (F) and one trained
on both full and partial shapes (F+P). For the IC metric, both
our methods outperform other methods, including base-
lines, in almost all categories. PCA underperforms in the
IC metric due to the frame ambiguity. Our method outper-
forms other canonicalization methods, but surprisingly, we
find that PCA is very close. For the CC metric, canonical-
ized shapes of different geometry are compared with each
other. PCA minimizes CC metric by aligning shapes using
the principal directions, but does not result in the correct
canonical frame as shown in Section 6.2 (see supplement
for in-depth discussion). Qualitative results in Section 6.2
show that we perform significantly better than other meth-
ods. Finally, our method outperforms other methods on the
GC metric indicating that it could be used to extend the size
of existing datasets (see Section 6.4).

Next, we discuss results of partial shape canonicalization
shown in Table 2. Since no other method exists for partial
shape canonicalization, we modified the training setting of
Compass to include slicing augmentation (using O) to op-
erate similar to our F+P method (Compass*). The training
data and occlusion function are identical for all methods.
Different from full shapes, we observe that our method sig-
nificantly outperforms other methods on all three metrics
indicating that our method’s design is suited for handling
partiality. We also compute the Translation Error (TE) met-
ric averaged over all our single category models as 0.0291
while it is 0.0326 for our multi-category model. For com-
parison, all our shapes lie within a unit-diagonal cuboid [4].

3D Shape Classification: We measure 3D shape classi-
fication accuracy as an indirect metric of canonicalization
following [43]. We train models with un-canonicalized
shapes from all 13 categories. We augment the PCA base-
line, CaCa, Compass and our full shape models with Point-

Net [33] which performs classification on canonicalized
outputs. We observe that our method (74.6%) outperforms
other methods on classification accuracy: PCA (64.9%),
CaCa (72.5%), and Compass (72.2%). Please see the sup-
plementary document for comparison on registration.
Registration: We measure the registration accuracy of
our method for categories (airplanes, chairs, multi) on full
shapes in table 5. Our method does not perform well in this
task as we predict a frame E ∈ O(3) which can have reflec-
tion symmetries resulting in high RMSE, but low CD.

Table 3. Registration – Distance in terms of root mean-square er-
ror (RMSE) and Chamfer distance between registered and ground-
truth points on the ShapeNet (core) dataset for full shapes only.

RMSE↓ Chamfer (CD)↓
Method Airplane Chair Multi Airplane Chair Multi

PCA 0.616 0.695 0.715 0.050 0.097 0.054
Deep Closest Points [53] 0.318 0.160 0.131 - - -
Deep GMR [60] 0.079 0.082 0.077 - - -
CaCa [46] 0.024 0.027 0.070 0.009 0.026 0.040
Compass [43] 0.361 0.369 0.487 0.061 0.079 0.051
Ours (F) 0.254 0.314 0.496 0.015 0.026 0.040
Ours (F + P) 0.201 0.280 0.404 0.014 0.023 0.033

6.3. Ablations

We justify the following key design choices: the effect
of increasing amounts of occlusion/partiality, loss functions
(Section 5.1), and the benefit of multiple frames.
Degree of Occlusion/Partiality: We examine the ability of
our model to handle varying amounts of occlusion/partiality
for the car category. Our occlusion function O occludes
shapes to only keep a fraction of the original shape between
25% and 75% (i.e., 25% is more occluded than 75%). The
average over all metrics indicates that our method performs
optimally when trained at 50% occlusion (25%: 0.0594,
50%: 0.0580, 75%: 0.0886).
Loss Functions: We evaluate our F+P model on both full
and partial shapes trained with all losses, without the sepa-
ration loss Lsep, and without the restriction loss Lrest. We
observe that using Lsep and Lrest performs optimally with
the least average error 0.0696 across all canonicalization



Figure 4. (left) Qualitative comparison with other methods on 6 randomly chosen full shapes. (center) More qualitative results from our
method on challenging full/partial car shapes and a variety of full/partial lamp shapes (missing parts only shown for visualization). The last
row (red border) shows failure cases caused due to incorrect canonical translation for partial shapes, or symmetric shapes. (right) Rows
1–2: Application of our method in transferring sparse keypoints from one shape to another. Row 3: Canonicalization of two depth maps
from the ShapeNetCoco [44] dataset showing consistency in canonicalized shapes. All results rendered using Mitsuba 2 [28].

metrics over three categories (airplanes, tables, chairs).
Multi-Frame Prediction: We ablate on the number of
canonical frames (1, 3, 5) predicted by our method to mea-
sure its effectiveness on symmetric categories. We evaluate
on two symmetric categories, table, and lamp, and observe
(Table 4) that 3 and 5 frames perform better in most cases.

Table 4. Our method handles symmetric categories like lamp and
table by estimating multiple canonical frames.

Category lamp table

Frames 1 3 5 1 3 5

GC (full) ↓ 0.1400 0.1370 0.1274 0.0749 0.0693 0.0738
IC (full) ↓ 0.0686 0.0635 0.0403 0.0607 0.0564 0.0361
CC (full) ↓ 0.1869 0.1887 0.1844 0.1595 0.1569 0.1432

GC (partial) ↓ 0.1782 0.1711 0.1501 0.0681 0.0635 0.0662
IC (partial) ↓ 0.1376 0.1319 0.0891 0.0923 0.0936 0.0739
CC (partial) ↓ 0.2230 0.2226 0.2048 0.1705 0.1722 0.1579

6.4. Applications

ConDor enables applications that were previously dif-
ficult, particularly for category-level object understanding.
First, since our method operates on partial shapes, we can
canonicalize objects in depth images. To validate this,
we use depth maps from the ShapeNetCOCO dataset [44]
and canonicalize partial point clouds from the depth maps.
Section 6.2 (right, row 3) shows an example of depth
map canonicalization (see supplementary). Second, since
our method outperforms other methods, we believe it can
be used to expand existing canonical datasets with un-
canonicalized shapes from the internet – we show exam-
ples of expanding the ShapeNet in the supplementary docu-
ment. Finally, we show that ConDor can be used to transfer

sparse keypoint annotations between shape instances. We
utilize the unsupervised part segmentation learned using our
method to solve this task (see supplementary). Section 6.2
(right, rows 1–2) shows results of transferring keypoint an-
notations from one shape to another.

7. Conclusion
We introduced ConDor, a self-supervised method to

canonicalize the 3D pose of full and partial 3D shapes. Our
method uses TFNs and self-supervision losses to learn to
canonicalize pose from an un-canonicalized shape collec-
tion. Additionally, we can learn to consistently co-segment
object parts without supervision. We reported detailed ex-
periments using four new metrics, and new applications.
Limitations & Future Work: Despite the high quality
of our results, we encounter failures (see Section 6.2), pri-
marily with symmetric or objects with fine details (lamps)
where the canonical frame is incorrect. We also observed
that PCA often performs very well, and sometimes outper-
forms methods on full shapes (we do significantly better on
partial shapes). Our method occasionally generates flipped
canonicalized shapes along the axis of symmetry due to the
prediction of an O(3) frame. Our work can be extended to
canonicalize purely from partial shapes and perform scale
canonicalization.
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Appendix

A. Network details

A.1. Architecture

We reuse the classification architecture described in Sec-
tion 3.1 of [32] as our backbone. The architecture comprises
of three equivariant convolution layers followed by a global
max-pooling layer, and the remaining layers specialize for
classification; we drop these last layers and specialize the
network for our tasks instead. The global max-pooling layer
of [32] proceeds by first interpreting each point-wise signal
as coefficients of spherical functions in the SH basis and
performing a discrete inverse spherical harmonics transform
to convert them into functions over a discrete sampling of
the sphere. For any direction, the resulting signal is then
spatially pooled over the shape, resulting in a single func-
tion over the sphere sampling (specifically, a single map
from the sphere sampling to RC , where C = 256 as we
have 256 channels). We then apply point-wise MLPs (with
ReLU activations) on this sphere map and convert it back
to TFN-like features via forward spherical harmonics trans-
form (SHT) [32].
Spherical Harmonic Coefficients: In order to predict the
coefficients F (X) of the invariant embedding H(X), we
apply a [128, 64]-MLP whose last layer is linear and convert
to types ℓ ∈ J0, 3K via SHT.
Rotation-Invariant Point Cloud: We obtain our 3D in-
variant point cloud Xc by applying a linear layer to H(X).
Rotation-Equivariant Frame: To predict E, we apply a
[64, 3]-MLP whose last layer has a linear activation. We
then extract type 1 features with SHT, giving us a collection
of 3 equivariant 3D vectors.
Segmentation: To predict the segmentation we apply a
point-wise [256, 128, 10]-MLP whose last layer is soft-max
to get the segmentation masks S described in Appendix B.

A.2. Training Details

Cropping operator O: We introduce synthetic occlusion
in our training setting by slicing full shapes using the crop-
ping operator O. To perform a crop, we uniformly sample
a direction v on the unit sphere and remove the top K/2
points in the shape that have the highest value of xT v for
x ∈ X . Additionally, we train our model on the ShapeNet-
COCO dataset [38,44] which has pre-determined occlusion
due to camera motion, as seen in Figure 6. In order to pre-
process this data for training, we aggregate the parts in the
canonical NOCS space of every sequence to obtain the full
shape and perform a nearest neighbor search in the NOCS
space to find correspondences between the full and partial
shape.
Hyper-parameters: During training, we use a batch size



of 16 in every step for all our models. We set an L1 ker-
nel regularizer at every layer of the network with weight
0.1. We weigh the loss functions by their effect on reducing
the Canonical Shape loss Lcanon. The loss functions are
weighed as: Lcanon (2), Lrest (1), Lortho (1), Lsep (0.8),
and Lamod (1).

B. Unsupervised Co-segmentation
B.1. Predicting parts

We predict the part segments S ∈ RK×C wherein C are
the number of parts. We use the rotation-invariant embed-
ding Hℓ(X) with all the types 0 ≤ ℓ ≤ 3 to predict the seg-
mentation S. We define the following notation for normal-
ized parts A(X) and part centroids θ(X) similar to [46].:

S(X) := Softmax[MLP(H(X))]

Aij(X) :=
Sij(X)P
i Sij(X)

θj(X) :=
X
i

Aij(X)Xi,:

(8)

B.2. Loss functions

We use part segmentation to enforce semantic con-
sistency between full and partial shapes. We borrow
the localization loss (Llocalization) and equilibrium loss
(Lequilibrium) from [46] for the full shape to evenly spread
part segmentation across the shape. Additionally, we em-
ploy the following losses.
Part Distribution loss: We compute the two-way Cham-
fer distance (CD) between the part centroids and the input
shape. In practice, this helps to distribute parts more evenly
across the shape.

Ldist = CD(X, θ(X)) (9)
Part Restriction loss: The parts discovered by the network
for the partial shape should be congruent to the parts discov-
ered by the network for the full shape. We penalize the part
prediction for corresponding parts by minimizing the nega-
tive Cosine Similarity (CS) for our capsule predictions.

Lrest(part) = − 2

K

X
i∈S

CS(S(O(X))i,:,O(S(X))i,:)

(10)
Part Directional loss: To avoid part centers of the visible
parts of a shape from deviating from the part centers of the
full shape, we use a soft loss to ensure that the directional
vector between part centers are consistent between the full
and partial shape. dir(θ(X)) computes the vector directions
between every CC2 centroid pairs for C part centroids.

Ldirec = − 1
CC2

X
i∈S

CS(dir(θ(O(Xi))),dir(O(θ(Xi))))

(11)

C. Registration

Table 5. Registration – Distance in terms of root mean-square er-
ror (RMSE) and Chamfer distance between registered and ground-
truth points on the ShapeNet (core) dataset for full shapes only.

RMSE↓ Chamfer (CD)↓
Method Airplane Chair Multi Airplane Chair Multi

PCA 0.616 0.695 0.715 0.050 0.097 0.054
Deep Closest Points [53] 0.318 0.160 0.131 - - -
Deep GMR [60] 0.079 0.082 0.077 - - -
CaCa [46] 0.024 0.027 0.070 0.009 0.026 0.040
Compass [43] 0.361 0.369 0.487 0.061 0.079 0.051
Ours (F) 0.254 0.314 0.496 0.015 0.026 0.040
Ours (F + P) 0.201 0.280 0.404 0.014 0.023 0.033

We note in Table 5 that our method does not perform well
in this task as we predict a frame E ∈ O(3) which can have
reflection symmetries, we observe symmetries such as left-
right reflection for planes. Symmetries cause high RMSE
error because points are matched with their image under
symmetry which are often very distant. However, when us-
ing Chamfer Distance metric which is symmetry agnostic
our registration error decreases by an order of magnitude
achieving competitive results on this benchmark. We also
note that Ours(F+P) noticeably decreases RMSE compared
to Ours(F) as during training the frame consistency is en-
forced between the full shape and a randomly rotated partial
by the Lrest loss.

D. Ablations
We now provide detailed ablations to justify the follow-

ing key design choices: the effect of increasing amounts of
occlusion/partiality, and loss functions.
Degree of Occlusion/Partiality: We examine the ability of
our model to handle varying amounts of occlusion/partiality
for the car category in Table 6. Our occlusion function, O,
occludes shapes to only keep a fraction of the original shape
between 25% and 75% (i.e., 75% is more occluded than
25%). We observe that our method performs optimally over
all metrics when trained at 50% occlusion.

Loss Functions: We evaluate our F+P model on both full
and partial shapes trained with all losses, without the sep-
aration loss Lsep, and without the restriction loss Lrest.
From Table 7, we observe that using restriction loss Lrest

helps in canonicalization of both full and partial shapes in
categories plane, table, and chair. However, separation
loss, Lsep, helps in plane, table but not in chair. Since,
both losses help in most of the categories, we utilize them
for training our final model.
Effect of introducing occlusion on full shapes: We eval-
uate the canonicalization of full shapes using our network
trained on full and partial shapes. We observe that on aver-
age both our models Ours(F) and Ours(F+P) perform the



Test partiality Degree of partiality during training

75% 50% 25% [25%, 75%]

Ground Truth Consistency (GC)↓
75% 0.0451 0.0438 0.1420 0.0681
50% 0.0375 0.0356 0.0504 0.0296
25% 0.0388 0.0301 0.0241 0.0299
[25%, 75%] 0.0438 0.0553 0.0894 0.0558

Instance-Level Consistency (IC)↓
75% 0.0728 0.0719 0.1542 0.0797
50% 0.0452 0.0349 0.0526 0.0380
25% 0.0456 0.0333 0.0221 0.0334
[25%, 75%] 0.0719 0.0792 0.1049 0.0804

Category-Level Consistency (CC)↓
75% 0.0914 0.0895 0.1702 0.0966
50% 0.0652 0.0632 0.0731 0.0617
25% 0.0657 0.0608 0.0582 0.0606
[25%, 75%] 0.0895 0.0985 0.1216 0.0982

Average 0.0594 0.0580 0.0886 0.0610

Table 6. Degree of partiality - Partiality introduced during train-
ing (vertical) is evaluated on the canonicalization metrics with dif-
ferent fraction of partiality (horizontal). [25%, 75%] indicates
that degrees of partiality between 25% and 75% are randomly in-
troduced in the shapes. Our model trained with partiality 50%
performs better on average over all the canonicalization metrics.
[Note: 75% is more occluded than 25%. ]

same on the canonicalization metrics for full shapes. For
a few categories such as lamp, car, chair, watercraft, in-
troducing partial shapes in the training improves its perfor-
mance on the canonicalization metrics. Whereas introduc-
ing occlusion during training degrades the performance for
category bench.

E. Applications
E.1. Co-Canonicalization

Commonly used datasets in 3D vision, such as
ShapeNet [3], are manually pre-canonicalized, making ex-
pansion of such datasets expensive. Since our method per-
forms better than others on canonicalization, we believe that
it can be used to extend these datasets by canonicalizing cor-
pora of in-the-wild shapes into a common pose. Figure 5
shows the results of our model, trained on the ShapeNet
(core) dataset [3], being used to canonicalize shapes from
the (uncanonicalized) ModelNet40 dataset [56]. These
shapes can now be merged into ShapeNet by applying a
single category-wide rotation to match the obtained canon-
ical frame with the existing frame used by ShapeNet, in-
stead of the per-instance rotation that would otherwise be
required. Furthermore, these results qualitatively demon-
strate the ability of our method to generalize to datasets not
seen during training.

Figure 5. Co-canonicalizing object instances from ModelNet40
using our method trained on ShapeNet (core). (top) Canonicalized
full shapes. (bottom) Canonicalized partial shapes.

E.2. Depth Map Canonicalization

Since our method operates on partial shapes, we can
canonicalize objects in depth images. We use the depth
maps from the ShapeNetCOCO dataset, which have pre-
determined occlusion due to camera motion, and canoni-
calize partial point clouds. Specifically, we first take depth
maps and utilize them to generate groundtruth pointclouds.
We then trained and tested our model on it. Figure 6
present examples to demonstrate that our model is capable
of canonicalizing depth maps.

Figure 6. Canonicalizing point clouds obtained from depth maps
from the ShapeNetCOCO dataset.



Category → Plane Table Chair Average

Metric ↓ Ours w/o sep w/o rest Ours w/o sep w/o rest Ours w/o sep w/o rest Ours w/o sep w/o rest

GC (full) 0.0286 0.0321 0.0303 0.0738 0.0641 0.0729 0.0509 0.0430 0.0532 0.0511 0.0464 0.0521
IC (full) 0.0144 0.0187 0.0169 0.0361 0.0612 0.0411 0.0235 0.0224 0.0245 0.0247 0.0341 0.0275
CC (full) 0.0679 0.0697 0.0683 0.1432 0.1510 0.1434 0.1145 0.1150 0.1143 0.1085 0.1119 0.1087

GC (partial) 0.0360 0.0389 0.0332 0.0662 0.0523 0.0683 0.0780 0.0681 0.0850 0.0601 0.0531 0.0622
IC (partial) 0.0265 0.0324 0.0479 0.0739 0.0791 0.0805 0.0622 0.0537 0.0841 0.0542 0.0551 0.0708
CC (partial) 0.0713 0.0733 0.0765 0.1579 0.1590 0.1598 0.1270 0.1250 0.1377 0.1187 0.1191 0.1247

Average 0.0408 0.0442 0.0455 0.0912 0.0945 0.0943 0.0760 0.0712 0.0831 0.0696 0.0700 0.0743

Table 7. Ablation study to investigate the effect of different loss functions. ”w/o sep” and ”w/o rest” denote training without separation
and without restriction loss, respectively.

E.3. Annotation Transfer

Since a category-level canonical frame is consistent with
respect to the geometry and local shape of different ob-
ject instances of a category, annotations can be transferred
across instances that share the same canonical frame. Par-
ticularly, we demonstrate the transfer of sparse key-point
annotations in Figure 7. We randomly assign labels to a few
points of one point cloud in each category, which serves as
the source. We then use a remarkably simple transfer func-
tion to transfer these labels to points in each target point
cloud, making use of the predicted segmentation. To every
labeled point in the source point cloud, we obtain a direc-
tional vector originating from the centroid of the segment it
belongs to. Starting from the corresponding centroid in the
target point cloud, we move along this directional vector
and then pick the nearest point. While this scheme works
well in our case, more nuanced transfer functions may be
required depending on the application.

F. Proof of Rotation-Invariance Property of
our Embedding

Given rotation-equivariant embeddings F ℓ and Y ℓ the
tensors Hℓ(X) are rotation invariant as:

Hℓ
ijk(R.X) = ⟨F ℓ

i,:,j(R.X), Y ℓ
:,j,k(R.X)⟩

= ⟨Dℓ(R)F ℓ
i,:,j(X), Dℓ(R)Y ℓ

:,j,k(X)⟩
= ⟨F ℓ

i,:,j(X), Y ℓ
:,j,k(X)⟩ = Hℓ

ijk(X)

G. Commutative Property of Canonicalization
with the Cropping Operator

Canonicalization commutes with the cropping operator
O. For a (full) point cloud X and predicted canonicalizing
frame R(X), we prove the commutative property here, we
assume X is mean centered for simplification.

[O[X]
c
+R(X)O[X] = R(X)( [O[X] +O[X])

= R(X)(O[X]) = O[R(X)X] = O[Xc]

Figure 7. Transferring key-point annotations from one shape to
another in the same category. We annotate only the first column of
shapes and transfer key-points to all the other columns

The above commutative property enables us to a predict a
rotation-equivariant translation T (\O(X)) from the mean
centered partial shape \O(X) only that aligns the partial
shape to its corresponding points in the full shape.

[O[X]
c
+R( [O[X])O[X] ≃ [O[X]

c
+R( [O[X])T (\O(X))

= O[Xc]

H. Discussion on Canonicalization Metrics

We complement the discussion of our canonicalization
metrics with a few remarks. Our 3 metrics Instance-Level



(IC), Category-Level (CC) and Ground Truth (GC) Con-
sistency measure three aspects of canonicalization. The
instance-level metric is a measure of the ”variance” of the
canonical pose under rotation of the input. By definition
the canonical pose must be invariant to the input pose. The
GC metric provides a way of measuring canonicalization
consistency across the entire class of objects by measur-
ing how our canonicalization deviates from a ground truth
canonicalization up to a constant rotation. In the absence
of a ground truth alignment, we propose the CC metric
which compares canonicalization of different shapes within
the same class using Chamfer distance (as we don’t assume
pointwise correspondences between different shapes). The
CC metric relies on the assumption that aligned shapes of
the same category are similar to each other.

We observe in table (1) of our article that some methods
have high IC but low GC and vice versa (e.g. CaCa [46]
(cabinet), Ours (F + P) speaker). This occurs as we canon-
icalize based on geometric similarity instead of semantic
aspects of the object. The IC and CC metrics measure ge-
ometric properties of the canonicalization while GC mea-
sures semantic properties of the canonicalization according
to manually aligned shapes.

We build our metrics using the Chamfer distance as
it does not assume pointwise correspondences between
shapes, this allows measuring the canonicalization quality
of symmetric shapes where there may not be a single cor-
rect canonical orientation. However, we observe a perfor-
mance gap with our method when using distances based on
pointwise correspondences such as L2 or root mean square
(RMSE) errors as seen in Appendix C of this appendix. We
believe our Chamfer distance based metrics are represen-
tative of the quality of canonicalization and are consistent
with our visual evaluation.

I. Discussion on PCA
PCA Over-Performance on the CC Metric: We note
that the competitiveness of PCA is limited to certain ex-
periments for full shapes and multi-category experiments
only. The CC metric compares canonicalized shapes of the
same category with possibly different geometry – note that
PCA even outperforms ground truth canonicalization for
this metric. Thus a method which is optimal for GC met-
ric cannot outperform PCA in CC.
PCA Under-Performance on the IC Metric: The most
likely reason why PCA underperforms on the IC metric
is because of frame ambiguity. The PCA principal direc-
tions are defined up to symmetries of the covariance matrix
eigenspaces – the shape does not necessarily share these
symmetries. For instance, when eigenvalues are distinct,
eigenvectors are defined up to sign, causing random flips
over principal directions: e.g., an airplane can be flipped
on its back. When two or more eigenvalues are identical,

eigenvectors are defined up to rotation, e.g., in chairs, the
major component can be from the left leg to the top right
corner or bottom right leg to top left corner. Thus, PCA
canonicalization of rotated copies of a given shape may not
be equal due to symmetries of the shape, resulting in higher
Chamfer/IC error.

J. Qualitative Results
We now present more qualitative results in Figure 8, 9

to demonstrate the effectiveness of our method.



Figure 8. Parking lot for full shape canonicalization for multi-category(top), plane (middle) and chair (bottom).



Figure 9. Parking lot for partial shape canonicalization for multi-category(top), plane (middle) and chair (bottom). Note: missing parts
only shown for visualization.
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