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Abstract— Tracking posterior estimates for problems with data
association uncertainty is one of the big open problems in the
literature on filtering and tracking. This paper presents a new
filter for the on-line tracking of many individual objects with
data association ambiguities. It tightly integrates the continuous
aspects of the problem (locating the objects) with the discrete
aspects (the data association ambiguities). The key innovation is
a probabilistic information matrix that efficiently encodes identity
information by linking world entities with internal tracks of the
filter, enabling it to maintain a full posterior over the system amid
data association uncertainties. The filter scales quadratically in
complexity, just like a conventional Kalman filter, avoiding the
exponential explosion of the association space. We derive the
algorithm formally and present large-scale simulation results.

I. INTRODUCTION

Tracking many objects is of great importance in many
real-world applications, including flight control systems, large
scale sensor networks [6], camera networks, and so on [2].
One of the key challenges in this domain pertains to the
fact that multi-object tracking combines both continuous and
discrete inference: continuous, because the objects that are
being tracked move through continuous spaces, and discrete
because of the inherent data association problems of assigning
measurements and object identities to individual tracks.

The literature has extensively studied both aspects, although,
as we argue, with unsatisfactory results for the discrete aspects
of the problem. The continuous aspect of the problem is
usually handled using Kalman filters [21] or the various
nonlinear variants thereof [7], [11], [8], [22]. However, the
discrete data association is still not solved in ways that scale
satisfactorily to large systems.

It is easily seen that the full posterior under unknown data
association grows exponentially. This is because at each fixed
time step there might exist O(N!) different ways of associ-
ating the measurement vector entries with the objects in the
environment (N denotes the number of objects). A common
approximation is the popular multi-hypothesis KF [15], [1],
which selects a fixed subset of the most likely K among
those hypotheses. Unfortunately, MHKFs are subject to the
curse of dimensionality. It is easy to show that the appropriate
number K may grow exponentially in NV, in order to meet
any reasonable error bound. This is because each of those
hypotheses corresponds to a specific presumed data association
assignment for all the objects in the filter. For the same reason,
the popular paradigm of particle filters [14], [5] suffers from
this exponential blow-up, because each particle is based on a
fixed, non-probabilistic commitment for the data association
variables.

This paper proposes a new Kalman filter for tracking N
objects, which retains a full posterior over data associations
yet avoids this exponential complexity. The representation
of this tracker is factored into a continuous Kalman filter,
and a discrete data association matrix. Thus, the identity
management Kalman filter (IMKF) maintains three parameters:
a conventional mean p and covariance X, but also a novel
quadratic data association matrix 2.

The IMKF bypasses the problem arising from unknown
data associations by maintaining internal “tracks.” Each such
track might correspond to multiple objects in the environment,
at different points in time. The probabilistic correspondence
between the internal tracks and the objects in the environment
is encoded in the identity association matrix ). This matrix
maintains a posterior in information form, which is a non-
normalized logarithmic form of the data association proba-
bilities. The advantage of this form is that (under mild ap-
proximations) it encodes the otherwise exponential distribution
over the exponentially many ways to assign internal tracks to
objects in the physical world, into a much simple quadratic
matrix.

In deriving the IMKF, we make a number of approximations
to escape the otherwise inherent exponential complexity of
the true posterior. The key approximation lies in the fact
that we use a maximum likelihood data association track for
updating the continuous KF parameters; however, the discrete
data association probabilities are then updated in the full
Bayesian posterior form. Another approximation occurs when
updating the data association matrix. Here we approximate a
set of marginals using Jensen’s inequality, which is essential
for avoiding an exponential expansion of the posterior. While
these approximations are significant, they appear not to harm
the filter’s ability to generate useful full posteriors over the
objects being tracked under data association uncertainty. As
experimental results illustrate, our filter effortlessly scales to
large values of N (e.g., N = 3,000, which makes for a
Kalman filter with 12,000 dimensions), a size where previous
filters fail.

The identity management Kalman filter (IMKF) is related
to a rich body of prior work. The idea of using association
matrices in information form goes back to [20], [17]; however,
neither of these papers address the continuous tracking prob-
lem, and as a result the discrete methods are somewhat ad hoc.
It is also related to the Joint Probabilistic Data Association
filter (JPDA), which encapsulates data association ambiguity
in its continuous filter updates (which IMKF does not do).
Unfortunately, if there is a large amount of ambiguity in
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the data association decisions, JPDA estimates will have an
inflated uncertainty in the continuous state estimates of the
objects; the same is the case for the particle filter version
of JPDAs [16]. We find that the resulting posteriors quickly
become unusable in tracking applications with large identity
uncertainties. Very recent work uses MCMC algorithms to
give a provable approximation algorithm for JPDA [12], but
such techniques are still quite expensive computationally. The
IMKF is the first method that scales to large N and can
cope with massive data association uncertainty, yet maintains
a focused posterior estimate.

Although we do not address the distributed computation
aspects of the IMKF in this paper, an especially attractive
feature of the filter in such settings, such as wireless sensor
networks, is that it permits the local accumulation of identity
evidence along each track by distributing the columns of
the identity matrix into the network, obviating the need for
expensive normalizations in the style of [19]. See [20], [17]
for further discussion.

Finally, it should be noted that there exist alternative, non-
filter methods for computing tracking posteriors with multiple
objects [13], [4]. These methods require that all data be stored
and are hence not executable online.

The remainder of this paper is organized as follows. We
begin with an intuitive description of the IMKF in Section II.
Section III reviews a standard and a maximum likelihood
Kalman filter. Section IV introduces the theoretical-IMKF
(TIMKEF), an inefficient filter that illustrates the main idea of
the IMKF. Next in section V we describe the IMKF itself.
Experimental results are provided in Section VI, followed by
the paper’s conclusion.

II. INTUITIVE DESCRIPTION

To describe the benefits of the identity management Kalman
filter (IMKF) intuitively consider the situation in Figure 1.

We are tracking N = 4 objects. At time ¢ = 0 there is
no ambiguity in our system, and the position of objects A,
B, C, and D are known. At time ¢ = 1 we encounter two
data association ambiguities — between objects A and B, as
well as C and D. That is, the measurements received at t = 2
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Figure 2. All 8 motion paths are consistent with measurements through
t = 2. An MHT maintains all 8 options and selects option 6 as correct after
the measurements at t = 3

are equally consistent with objects A and B crossing paths
as well as with not crossing paths (for example, the mea-
surements might not have contained any identity information,
and the position information was consistent with both models
of motion). The paths of objects of C and D are similarly
ambiguous.

At time ¢ = 2 a 3-rd data association ambiguity occurs
between the middle two objects (notice these object identities



are unknown). At time ¢ = 3, measurements containing
identity information indicate the locations of objects C and A.
These measurements contain enough information to resolve all
ambiguity.

A multiple hypothesis tracker (MHT) correctly resolves the
ambiguity by storing 23 = 8 distinctive hypotheses. After t =
1 the following possibilities are equally likely. [ABCD, BACD,
ABDC, BADC]. After t = 2 the following 8 possibilities
are possible. [ABCD, BACD, ABDC, BADC, ACBD, BCAD,
ADBC, BDAC] (see figure 2). After the measurements at
t = 3 are taken into account, only the hypothesis BCAD is
consistent, and the MHT concludes this is the correct state.

The IMKF provides the power of the MHT, while main-
taining an O(N?) complexity, as opposed to O(N!). Just
like the Kalman filter, the identity management Kalman filter
(IMKF) maintains NN tracks. These tracks are parameterized
by a {¥, u} pair. And just like the KF, the IMKF integrates
continuous pose/velocity estimated into the most likely track.
However, the key difference is that the IMKF also maintains
an identity management matrix. This matrix is illustrated in
Figure Ic. Each entry in this matrix specifies the “amount of
evidence” we have that a specific track corresponds to a spe-
cific object (in a yet-to-be-specified form). In the beginning,
we might have strong information that track 1 corresponds to
object A, track 2 to object B. 3 to C, and 4 to D. This is
expressed by the matrix

100 0 0 0
0 10 0 0
Q) = 0 0 10 0 (D

0 0 0 10

At time t; data association ambiguities obscure the paths
of tracks 1 and 2, as well as 3 and 4. The IMKF responds
by “averaging” the corresponding tracks together (the exact
formula for this averaging is given below).

93 93 0 0

93 93 0 0
Q1) = 0 0 93 93 @)
0 0 93 93

At time t5 data association ambiguities cause more ambi-
guity. The IMKF responds by “averaging” tracks 2 and 3

9.3 86 86 0

_ 93 86 86 0
9(2) - 0 86 86 93 : )
0 86 86 93

At time t3 measurements strongly indicate the location
of objects C and A. The IMKEF efficiently incorporates this
information by simply adding a number (in this case 5) to the
corresponding entry in 2. The exact calculation of this number
is discussed below. Thus

93 86 136 0
_ 93 86 86 0
QB) = 0 136 86 93 |- @

0 8.6 86 9.3

The most likely track-to-identity assignment is retrieved
from (2 by selecting the N entries, one from each column and

row, that have the largest combined sum. In (4) these entries
are in bold. Notice this indicates the assignment [B C A D],
the correct assignment. The IMKF has correctly resolved the
3 data association ambiguities.

Notice that data association ambiguity strategies that are
entirely local to the track level will not completely resolve
the ambiguities from our example. For example, consider the
strategy of each track keeping a distribution of its identity.
After the data association ambiguity at time t¢;, track 1
could be A or B. Since track 1 is not measured at ts3, the
measurement at t3 does not directly resolve this ambiguity.

III. STANDARD KALMAN FILTERS
A. Basic Problem

The problem is to track N objects in a closed world.

We let x;(t) donate the position of the i-th target at time ¢.
We assume the target objects obey the following linear motion
model:

l‘i(t + 1) = Fi(t)a:i(t) + Gl(t)ul(t) + Ui(t) R &)

where Fj;(t) and G;(t) are matrices and v;(t) is a random
vector with covariance matrix V;(t).
At each time step, we receive N measurements of the form:

where H;(t) is a matrix and w;(t) is a random vector with
covariance matrix W;(t).

We assume a 1-dimensional state-space per object, no state-
space cross-correlation between the objects being tracked,
u;(t) = 0V i,t, and all of F, G, V, H, and W are
constant over time and across objects. Extensions to more
general settings are straightforward.

To simplify notation, we will sometimes drop the time
argument when it is clear from context.

B. Kalman Filter with Known Data Association

The well-known Kalman Filter maintains a [p;, ;] pair for
every object being tracked. These two parameters implicitly
define the following Gaussian pdf

plai) = det(2m2) Fexpl— 5 (@ — ) 'S @i — )} (D

As evident from above p; is the mean of this Gaussian, and
Y; 1s the covariance matrix.

The Kalman filter is updated recursively by the following
well-known update equations [10]:

pi(t) fi(t) + Ki(t)(zi(t) — Gia(t)),  (8)
Si(t) = (I—Ki()H)Si(t), )
with i;(t) = Fips(t—1), (10)
and ;(t) = EX(t—-1)E'+V, (11
and  K;(t) Si(OHF(HSOHE W)™t (12)

In the above I is the Identity Matrix and K is known as
the Kalman gain.



C. Kalman Filter with Maximum Likelihood Data Association

In this section, we introduce data association uncertainly
into the tracking problem. We then describe a variant of the
Kalman Filter which uses the well-known maximum likelihood
data association algorithm.

Above, we implicitly assumed the correspondence between
measurements and objects was known. In general, there are
N! different ways N objects can be associated with N
measurements. We call this unknown correspondence between
objects and measurements the data association problem.

We represent these N'! different data association possibilities
by N! permutation matrices which we number C; through
Cn1. The ij-th element of C(t) is 1 if and only if in the data
association represented by Cj measurement z;(t) originated
from object x;(¢). Additionally, we let k(j) represent which
object measurement j originated from under data association
Cj. And, we let c;(t) represent which object measurement
z;j(t) originated from at time ¢.

It is convenient to use vector notation to refer to all N
objects at once. We let X (¢) = [z1(t)...xn(t)]T, and Z(t) =
[21 (t)...ZN (t)]T.

We assume that the entities each have a signature and
the measurements contain some identity information. We let
zI(t) be the identity information for measurement z;(¢) and
ZE(t) be the vectored version. We assume the distributions
p(zi(t)|c;(t)) are known for all 7. Note, this implies we also
know p(Z7 (H)]Ci(t)).

We let p(C(t)) be the probability that the data association
C(t) is correct. This probability can be calculated by:

p(Cr(1)) o p(Z(1)|Cr(t), X (1)p(Z" (1)|Cr(t), X (1), Z(1))
o< p(Z()|Ck (1), X (£))p(Z" (1)|Ck (1)) (13)

At the same time p(Z(t)|Cx(t), X (t)) can be calculated as
the product of the N relevant single measurement probabili-
ties.

N
p(Z(B)[Ck (), X (1) = [] p(zn(®)lcrin) (£), 2riny (£)) (14)
Similarly,
N
p(Z'®)ICk(t), X (1) = [] p(zh(®)lckn) (t), 2k, (1) (15)

Since multiplication is communicative, the probability of
any data association is proportional to a product of N terms.
Thus we have (dropping the time index t)

N
p(ck) X H p(zn|ck(n)7 mk(n))p(zﬂck(n)a xk’(n)) (16)

n=1

Each term p(zy|ck(n), T(n)) can be efficiently calculated,
since all relevant distributions are Gaussians.

P(2nlCr(n)s Th(n)) < eXp(dm (2n, f(n)))
. 1 _
with i (20, ftkn)) = =5 (20 = Hiny i) (W + HSH') !

(20 — Higmy i) " (17)

The quantity d,, (2, uk(n)) is called the Mahalanobis dis-
tance.

It is computationally advantageous to take the logarithm of
(16), which both changes the product to a sum and removes
the exp in (17). Hence

N
log(p(Ck)) = const + Z:(dm(zn7 Ken) +10g p(2ilcr(n))) (18)

n=1

One standard way to handle data association uncertainty is
to assume the most likely data association is correct. Finding
the most likely data association can be done in O(N?) using
a bipartite graph matching algorithm [3]. Let C.(t) represent
the most likely data associations at time ¢.

The Kalman Filter update equations using the most likely
data association are identical to those presented in the last
section, except the the measurement vector must be permuted.
Below we present the update equations for the maximum
likelihood KF in vector form: ju(t) = [p1(t)...un(t)]T and
N(t) = diag([o1(t)...on(t)]T. F, G, V, H, and W are all
similarly extended.

p(t) = p)+ KO(C(0)Z(t) = Gat)),

%(t) (I = K(t)H)X(t),

19)
(20)

i(t), 2(t), and K(t) are analogous to the non-vectored
versions.

IV. INEFFICIENT THEORETICAL IMKF (TIMKF)

The maximum likelihood data association filter has a draw-
back — it could have selected the wrong data association.
This makes the MLKF (as well as multiple-hypothesis tracker
variants that keep the K best data associations) inherently
brittle.

The Identity-Management Kalman Filter (IMKF) is a real-
time algorithm for tracking that overcomes this fragility. In this
section, we explain a computationally infeasible IMKF, which
we call a theoretical IMKF (TIMKF). In the next section, we
develop an efficient version of this filter.

The key change to our state representation is this: instead
of each [u Y] pair representing the distribution of a single
fixed entity, each pair could represent any of the entities. The
IMKF implicitly maintains a distribution over the N! ways
these [ X] pairs could be mapped to real object identities. We
call this uncertainty between entities in the filter and object
identities in the world the identity mapping problem.

We represent the N! possible identity mappings at time
t by the N! unique permutation matrixes, indexed as M,
to Mpyy. The ij-th element of My(¢t) is 1 if and only if
[t (t), X,(t)] define the distribution of z;(t). The TIMKF



maintains p(M;(¢)) through p(Mnn)(t) explicitly. Clearly,
Formally, the TIMKF maintains the parameters

[, %, p(My), .., p(Mpy)]. The TIMKF implicitly

maintains the following pdf (a mixture of V! gaussians):

ey

where S;(t) = det(27r2(t))_%exp{—%(X(t) — Mi(t)p(t)”

Mi(#)2(0) " MF (X = Mi(®)u()} 22)

These changes have added complexity to the Kalman Filter.
However, by explicitly modeling the identity mapping prob-
lem, the TIMKF can tolerate data association uncertainty. We
explain below.

A. TIMKF Exact Posterior after Measurement Update

As the TIMKF’s maintained posterior is a mixture of, at
most, V! gaussians, the TIMKEF is not able to maintain the true
posterior (which grows exponentially in time). The TIMKF
must thus make an approximation at every time step. We derive
the TIMKF updates recursively. That is, we start by assuming
the distribution the TIMKF maintains at time ¢ — 1 is correct.
Due to data association ambiguity, the true distribution (which
the TIMKF cannot maintain) at time ¢ will have ! times as
many mixture components as at time ¢ — 1.

In deriving the TIMKF update equations, we will first
explicitly calculate the exact distribution of X (¢), which we
denote as p.(X(t)), assuming the TIMKF was correct at
time ¢ — 1 (this intractable distribution will in general have
N2 mixture components). Then we will find a good way to
approximate this exact distribution with the parameters the
TIMKF can maintain.

Correspondence Variables

M(t) D(t)
C(t) Measurements,

Figure 3. Our 3 correspondence variables. C(t) is the tradition measurement-
to-identity data association. M (t) relates the internal IMKF tracks to the
entities and is called the identity mapping. D(¢) gives the internal track-to-
measurement correspondence. Specifying any two of the three determines the
third.

In deriving p. (X (t)), it is convenient to consider an alterna-
tive way of thinking about data association. We can consider
instead track-to-measurement associations. As the name sug-
gests, a track-to-measurement association is a correspondence
between internal tracks of the TIMKF ([u; X;] pairs) and
measurements. For every identify mapping there is a different

data association mapping that leads to the same track-to-
measurement association. Obviously, there are N! different
track-to-measurement associations. We refer to them as D1 (¢)
to Dpi(t). The probability that the k-th track-to-measurement
association is correct is p(Dg(t)).

Recall from equation (21) that the TIMKF implicitly main-
tains an V! mixture distribution of X (with the Gaussian
corresponding with each identity mapping weighted by its
probability). Also recall that at each time step there are N!
different data association possibilities. However, given the
assumed identify mapping P;(t — 1) was correct as well as
the track-to-measurement association D;(t), the measurement
update is simply the standard Kalman Update given in section
II-C. We define R(i,k,t) as the distribution arrising from
updating S;(t — 1) with the Standard KF update assuming
track-to-measurement association D (t).

Thus, the exact distribution of X (¢) after incorporating Z(t)
is:

Pe(X(1) = D> p(Mi(t — 1)p(Di(8)) R(i, kyt) . (23)
% k

This exact distribution has N!? mixture components, and
the TIMKF can only maintain /N! mixture components. The
ideal TIMKF parameters at time ¢ would minimize the distance
between the true distribution and the maintained distribution
in some metric of interest.

For tractability reasons, we split TIMKF update problem
into two portions. We first select the new positions for the
tracks (updating p and ), and then choose the best identity
mapping given these tracks.

B. TIMKF p and % update

To update the tracks, the TIMKF uses the standard KF
update assuming the most likely data association.

u(t) (24)
2(t) (25)

Recall that ;1 and ¥ implicitly define S; though Sy, by
equation (22). The remaining problem is to select the proper
identity mapping distribution, [p(Mj (t) though p(Mp(¢)].

C. TIMKF Identify Mapping Update

The maintained distribution of the TIMKF at time ¢ will
be a mixture of V! gaussians. The means and variances of
these guassinas are defined by p and X, whose update was
given in the previous sectoin. As discussed above, the true
updated distribution is a n? mixture distribution. The identity-
mapping update at time ¢ selects the weights on the maintained
distribution so it approximates the true updated distribution.

To calculated a probability of a particular identity mapping
at time ¢ (i.e. the “weight” on one of the maintained mixtures),
we take a weighted sum of how similar each of the N!2
mixtures of the updated true distribution are to the maintained
mixture of this particular mapping. We let ¥ (¢, j, k,t) repre-
sent how much the mixture R(j,k,t) contributes to identity
mapping ¢ at time ¢. Thus:

< updated as eq. (19),
< updated as eq. (20).



p(Ml(t)) = Zzp(Dk(t))p(Mj(t - 1))\I}(i7j7 k,t)
ko J

with W (i, j, k, t) = p(M;(t)| D (t)), M;(t — 1)) (26)

To compute ¥ (4, j, k,t) we assume the corresponding mix-
ture of the true distribution R(j, k,t) is a “measurement” of
all N entities with mean p and variance Y. We then calculate
the probability of this measurement, assuming the entities
were distributed according to S;(t). We compare this to the
likelihood of the “measurement,” assuming the entities are
distributed by each other possible S (t).

This calculation is of the same form as the data association
calculation of section II. We let s;(n,t) be the distribution of
nth entity of S;(¢) and r(n,j, k.t) be the distribution of the
nth entity of R(j, k,t). We let d,,,(sq(n,t),r(n, j, k,t)) be the
Mahalanobis distance between s, (n,t) and r(n, 7, k,t). Then,
suppressing t.

.. ENdm(sz(n)vr(n7jvk))
log ¥(i,j,k) = n .
BV IR = S S (s, )

D. Identity-Mapping Refinement

27)

Data association ambiguity causes uncertainty in the posi-
tion of the objects being tracked. (The true posterior grows
exponentially every time step). Identity information in the
measurements helps reduce this uncertainty.

The TIMKF uses this identity information to update the
identify mappings. Using Bayes rule, the update is:

p(Mi(t) — Y 'p(Z7(t)|Mi(t)p(Mi(t)),  (28)
with ¥ = Zp(Zp(t)\Mj(t))p(Mj(t))- (29)

V. IMKF

Algorithm 1 Summary of IMKF

u(t) « Standard MLKF update

Y(t) < Standard MLKF update

Calculate T' by examining plausible data associations
Q(t) = exp T log Q(t — 1) /* Identity-Mapping Update */
Q(t) — Q(t) + log(&(t)) /* Mapping Refinement */

The TIMKEF is intractable for two main reasons. One,
it requires explicitly maintaining a distribution over the N!
identity mappings, and thus requires O(N!) storage. Two, the
update rules eq (26) and eq (27) require considering O(N!)
computation. Below, we show how the IMKF overcomes these
challenges.

A. Overcoming Storage Intractability

To overcome the storage intractability of the TIMKEF, the
IMKEF stores the track-to-identity probabilities in the N x N
information matrix €(t). The idea of an information form

filter is not new [17], [20]. ©(¢) implicitly stores the identity
mapping probabilities (M7 (t) through Mp(t)) by:

1
—exp trM; ()T Q(t),

L) = 5 (30)
N!

where Y = Zexp trM;(6)TQ(t) . @31
j=1

Intuitively, the ij-th element of Q(t) represents the strength
of our evidence that track ¢ is associated with identity j. This
was illustrated in the introductory example. Obviously, (t)
with only N? terms cannot express every distribution over
the N! identity-mappings. However, it is often a very good
approximation, please see [17] for details.

B. Overcoming Computation Intractability

Eq (26) and (27) give the identity-mapping update rule ex-
plicitly for all V! possible mappings. As discussed above, the
IMKEF stores the identity mapping in information form in the
Q(t). In [17], it is shown that under a Jensen approximation,
the update of (¢) is:

Q) = expTlogQ(t—1) (32)

Where T'(t) is a N x N transition matrix. In words, the
abth entry of T'(t) describes how much the marginal of the
identify of track a at time ¢t — 1 will contribute to the marginal
of track b at time {.

Each element of T'(¢) is a sum of the relevant identity-
mapping probabilities, (given by eq (27)). The summation
over N! different data associations is made tractable by only
considering plausible data associations. These associations are
found by examining the simple circuits on a certain directed
graph. See [18].

Calculating (i, j, k) exactly requires O(NN!) computation,
due to calculating the denominator of (30). However, in
general U(i,j, k) can be approximated quickly because the
Mahalanobis distance between the distributions s;(n) and
r(n, j, k) is often small. In particular, recall that both s;(n)
and r(n, j, k) arise from a KF update. If they share neither a
common prior nor a common measurement, the Mahalanobis
distance between the posteriors is likely small. See [18] for
details.

C. IMKF Identity-Mapping Refinement

The Identity-Mapping Refinement step can be implemented
exactly (see [17] for derivation.) We let £(¢) be a N x N
matrix with the ij-th element equal to the probability that the
identify measurement associated with track ¢ originated from
object j. Then:

Qt) — Q(t) +log(&(t)) -

Again intuitively, the IMKF refinement update utilizes the
identity information in the measurements to update the pos-
terior to reduce the uncertainty added by data association
ambiguities.

(33)
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VI. RESULTS

We tested the scaling of our approach on synthetic data.
Here we significantly outperform a particle-filter based ap-
proach.

We also applied our algorithm to a recent DARPA-designed
tracking problem, which is being used in the DARPA ACIP
program as the main challenge problem. This problem contains
over 3,000 moving objects moving in a realistic fashion. The
entities being tracked do not follow a simple motion model,
but rather move in a complex environment completing useful
tasks. For example, a simulated delivery truck starts at a
warehouse and moves to a retail store following roads. We
choose this data set because it enabled us to test our approach
on a very large data set N = 3,000 that was much better than
a random simulation. Results given are averaged over 50 runs.

For each entity tracked, we kept both positional and velocity
state-information (thus we had a 4 dimensional state-space).
We set F' to assume a constant velocity model, with a relatively
large noise term (V") to account for the turns and accelerations
actual entities take periodically.

We perform quite well on this data. We consider an object

Urban Environment of DARPA Challenge Data

Figure 6. Illustration of Urban Environment in DARPA Challenge Data
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Figure 7. Comparative results on Challenge Data

to be correctly tracked if a track’s closest ground-truth entity
(measured by the L2 metric in position only) matches the most
likely identity of this track. When tracking 200 entities, we
have an error of 4%, lower than the 10.5% for the MHT with
200 hypotheses, and much lower than the standard kalman
filter, which has above a 90% error rate. The last figure shows
that the Identity Management Kalman Filter has low error even
when tracking 3,000 entities.

The results on the DAPRA challenge data seem to validate
our intuition given in section 1. When entities interact in a way
that causes data association ambiguities, the {2 machinery of
the IMKF enables it to retain enough information to quickly
recover. MHT have no such safety mechanism, and thus they
do not recover quickly.

VII. SUMMARY

We have presented a new filter called the identity man-
agement Kalman filter (IMKF) for tracking large number of
objects under uncertain data associations. The IMKF maintains
three statistics, a mean and a covariance familiar from the
conventional Kalman filter, as well as an identity mapping
matrix that associates internal tracks with physical objects in
the real world. By augmenting the KF with such an identity
mapping matrix, the IMKF can maintain full posteriors over
the combinatorial space of associations between the internal
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filter tracks, and the objects in the world. The form of
this matrix makes the update efficient, and it collapses an
otherwise exponential probability distribution into quadratic
space. While the underlying idea of the information matrix for
data association is not new, the IMKF implements this idea for
the first time in the context of full continuous tracking. This
paper gives the mathematical derivation from first principles,
and discusses the key approximations necessary to obtain such
a compact filter.

In experimental results we find that the IMKF can solve
tracking problems with orders of magnitude more objects than
previously possible, even when significant identity uncertainty
is present. We believe that the IMKF provides a solution to
the outstanding problem of developing multi-object tracking
algorithms that scale to very large state spaces.

Obviously, the description of the IMKF in this paper is
limited in many ways. For example, it does not address objects
entering or leaving the area of concern or the problem of
false alarms. Also the derivations in this a paper assume linear
system dynamics and linear measurement models. We believe
these extensions are relatively straightforward, and will be
analogous to the rich literature on nonlinear filtering.

We also observe that as N becomes large, the matrix €2
naturally becomes sparse. This suggests that for large NV, the
essential update steps can be implemented in O(N) time.
Further work investigating this O(N) solution could yield
interesting results.
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