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Abstract

As a popular geometric representation, point clouds
have attracted much attention in 3D vision, leading to many
applications in autonomous driving and robotics. One im-
portant yet unsolved issue for learning on point cloud is
that point clouds of the same object can have significant ge-
ometric variations if generated using different procedures
or captured using different sensors. These inconsistencies
induce domain gaps such that neural networks trained on
one domain may fail to generalize on others. A typical tech-
nique to reduce the domain gap is to perform adversarial
training so that point clouds in the feature space can align.
However, adversarial training is easy to fall into degener-
ated local minima, resulting in negative adaptation gains.
Here we propose a simple yet effective method for unsuper-
vised domain adaptation on point clouds by employing a
self-supervised task of learning geometry-aware implicits,
which plays two critical roles in one shot. First, the geo-
metric information in the point clouds is preserved through
the implicit representations for downstream tasks. More im-
portantly, the domain-specific variations can be effectively
learned away in the implicit space. We also propose an
adaptive strategy to compute unsigned distance fields for
arbitrary point clouds due to the lack of shape models in
practice. When combined with a task loss, the proposed
outperforms state-of-the-art unsupervised domain adapta-
tion methods that rely on adversarial domain alignment
and more complicated self-supervised tasks. Our method
is evaluated on both PointDA-10 and GraspNet datasets.
Code and data are available at: https://github.
com/Jhonve/ImplicitPCDA.

1. Introduction

Point clouds captured under different settings can exhibit
prominent variations that cause performance drop when
neural networks are tested on a domain that is different
from the training ones. This can be troublesome if the net-

#The authors from Zhejiang University are affiliated with the State Key
Lab of CAD&CG. *Equal Contributions, TCorresponding Authors.

He Wang?

Youyi Zheng!'  Leonidas Guibas?

3Peking Univerisy

PointDA-10

GraspNetPC-10

Banana

Monitor Scissors

P

Lamp . Can
3 ;{“”
Plant Dish

Figure 1. Point clouds in the real world exhibit diverse geomet-
ric variations caused by differences in the data capture pipeline.
Given these variations, networks trained on one collection of point
clouds may incur a performance drop when tested on different
ones. Thus adaptation is needed to alleviate generalization issues,
especially for domains where the annotation is scarce.

work can not be fine-tuned due to time constraints or lim-
ited computational budget. More often, labels needed for
fine-tuning on the test domain are simply unavailable due
to high annotation cost, which is the situation we are in-
terested in and is always formulated as unsupervised do-
main adaptation (UDA) problems. In UDA, the source do-
main comes with rich annotations, while the target domain
has no annotation at all. The key to a successful domain
adaptation lies in two folds. First, the two domains have to
be (statistically) aligned, either in the point cloud space or
in a feature space, so that the shared mapping to the out-
put space can now operate on the same ground across do-
mains. Moreover, the alignment between domains has to be
semantically meaningful, e.g., chairs in the source should
be aligned with chairs in the target. Otherwise, the shared
mapping can still fail in predicting the labels even if the two
domains are aligned.
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Existing UDA methods on point clouds mainly rely on
two mechanisms to align the domains. One is to per-
form domain adversarial training and enforce the features of
point clouds from both domains to be indistinguishable by
domain discriminators. Since adversarial training is unsta-
ble and easy to get stuck at degenerated local minimas, there
is little guarantee that the alignment would be semantically
meaningful. For example, adversarial training could distort
the geometric information in the point clouds by eliminat-
ing too many variations while aligning the domains. In this
case, the alignment can result in negative adaptation gains.
An extra layer of difficulty is that the alignment process
could be highly sensitive to the architecture of the discrim-
inators for point clouds as shown in [32], thus making the
alignment more uncontrollable.

The other mechanism is to perform domain alignment
through learning self-supervised tasks. The underlying mo-
tivation is that a well-designed self-supervised task can fa-
cilitate learning domain invariant features since the task it-
self is shared across domains. A diverse set of carefully de-
signed self-supervised tasks are proposed, which focus on
predictive tasks where the self-supervised labels are gener-
ated by augmenting or modifying the original point clouds.
For instance, rotation angle classification [40] and deforma-
tion regression [1]. Compared to domain adversarial train-
ing, self-supervised learning enables explicit control over
the invariants been learned by adjusting the self-supervised
tasks. Consequently, one can also regularize the alignment
process through this knob.

We take the latter approach, but we resort to a self-
supervised task where the supervision comes from the point
clouds themselves, instead of manually designed classifica-
tion labels. Specifically, we ask for a latent space that en-
codes the underlying geometry of the point clouds through
implicit functions. As the geometry is explicitly modeled
and preserved, these latents or implicits should maintain
sufficient information for the main task and help prevent
mismatch in semantics caused by distortions during the
alignment. Due to the lack of shape models, we propose
an adaptive unsigned distance field that enables training the
implicits for arbitrary point clouds, especially for the ones
that are sparse and irregularly sampled. After the initial
round of adaptation, we follow the literature and apply self-
training with pseudo labels in the target domain to further
close the gap. We experiment on two major point cloud
datasets, PointDA-10 [22] and GraspNet [9], to report the
performance of the proposed method and evaluate the ef-
fectiveness of each component. Our contributions are:

e The first method leverages implicit function learn-
ing as a self-supervised task for unsupervised domain
adaptation on point clouds.

* Effective training strategies to make our method robust
to diverse artifacts exhibited in the point clouds.

* State-of-the-art performance on two major datasets,
PointDA-10 [22] and GraspNet [9]. Moreover, we are
the first to report results on GraspNet.

2. Related Work
2.1. Deep Learning on Point Clouds

To handle the irregularity and permutation-invariance
of point clouds, various methods have been proposed.
PointNet [20] and PointNet++ [21] use max-pooling as a
permutation-invariant local feature extractor and the latter
gathers local features in a hierarchical way. DGCNN [33]
considers a point cloud as a graph and dynamically updates
the graph to aggregate features. Recently, Point Trans-
former [37] adopts transformer for point cloud process-
ing which achieves state-of-the-art performance in several
benchmarks.

2.2. Unsupervised Domain Adaptation

Extensive works have been proposed to perform UDA
on 2D images, which can be classified into two categories,
i.e., the methods based on domain-invariant feature learn-
ing and methods for learning domain mapping. The former
ones [10, 12, 14,23,25,30] minimize the discrepancy be-
tween two distributions in the feature space, while the lat-
ter ones [3, 11, 29] directly learn the translation from the
source domain to the target domain using neural networks,
e.g., CycleGAN [39]. [28] expand 2D translation to depth
images by proposing a differential contrastive learning strat-
egy for preserving underlying geometries. Despite their dif-
ferences, domain adversarial training is widely exploited in
these methods. Several useful techniques are also proposed,
for example, pseudo-labeling [24], and batch normalization
tailored for domain adaptation [16].

Though lots of efforts have been made on 2D images or
depth, UDA on 3D point cloud is still in its early stage. As
discussed in Sec. 1, UDA on point clouds can be roughly
divided into two categories. The first category [22] directly
extends domain adversarial training used in 2D images to
3D point clouds to align features on both local and global
levels. However, unlike previous works on the 2D domain,
adversarial methods on 3D point clouds can not balance
well between local geometry alignment and global semantic
alignment. Most recent works in UDA on point clouds fall
in the second category, i.e., focusing on designing suitable
self-supervised tasks on point clouds to facilitate learning
domain invariant features, which we discuss in detail in the
following subsection.

Apart from UDA on object point clouds, several methods
are proposed to address specific domain gaps on LiDAR
point clouds, where the common factors are depth miss-
ing and sampling difference between sensors. Both [38]



Figure 2. Overview of the proposed framework for unsupervised domain adaptation on point clouds. The two pathways (supervised and
self-supervised) in our framework are marked with different colors. The supervised pathway takes as input the point clouds from the source
domain and calculates the cross-entropy loss with ground-truth labels. The self-supervised pathway takes point clouds from the source and
target domains and calculates the self-supervised loss with the proposed adaptive unsigned distances between sampled points and the input
point clouds. Note, in the self-paced self-training stage, the classi er is also trained with pseudo labels.

and [26] use CycleGAN [39] to generate more realistic Li- 3. Method

DAR point clouds from synthetic data, i.e., Sim2Real for ) . .

minimizing feature distances between the source and target Ve tackle unsupervised domain ad?\lpt%tlon (UDA) on
domains. Complete & Label [36] leverages segmentation POINt clouds for classi cation. LeP 2 R™ ° be a point
on completed surface reconstructed from sparse point cloudt!oud consisting of the spatial coordinatesNofpoints in

for better adaptation. ST3D [35] presents a task-speci ¢ "€ 3D space. Accordingly, leb® = fP # Y?g be the

self-training pipeline with curriculum data augmentation, ~ POINt clouds and their ground-truth labels from the source
domain. Similarly,D' = fP !g is the collection of target

domain point clouds whose labels are missing. Our goal is
to train a network ,i.e.,Y = ( P) using the labeled point
clouds from the source domain so that it can work well on
the target point clouds without further labeling.
Thekeyis to align the point clouds from both domains,

] - and at the same time, ensure that the correspondessee is
tasks to align the two domains. DefRec [1] proposes yaniically meaningfyli.e., the point clouds of the same
deformation-reconstruction and [15] extends it into @ c4teqory are expected to be aligned after the adaptation.
learnable deformation task to further improve the perfor- 5ne can apply domain adversaries for aligning domains,
mance. [2, 27] shufe and restore the input point cloud pqever, the alignment is hard to control and may result
to improve discrimination. [4, 8, 40] further combine self- , hegative adaptation gains due to dif culties in adver-
learning strategies and their proposed self-supervised taskssayig| training. We resort to the strategy of utilizing self-
Besides, [3, 40] present self-supervised tasks to align fea-gheryised tasks that are shared across domains for align-
tures at both local and global levels. ment in a multi-task fashion. This enables an explicit con-
trol of the meaningfulness of the alignment by selecting an
appropriate self-supervised task. There are two pathways in
our framework, as shown in Fig. 2. Teain taskis per-
?ormed by and n,ie., = m ,with an encoder
that extracts features from the point clouds angdthe main
task head (classi er). Likewise, theelf-supervised task
performed by (shared with the main task pathway) and

s, Which can be trained on both domains. Next, we detail
each of the proposed components and their training.

2.3. Self-Supervised Learning on Point Clouds

Previous works design various kinds of self-supervised

However, there are two main issues with these meth-
ods. Some of them can not be applied to more challenging
datasets where object point clouds are not aligned and ar
heavily occluded, resulting in ambiguity in the rotation pre-
diction [8, 19, 40] and restoring [2, 27] tasks. Besides, by
aligning high-level features [1, 15,27, 40], i.e., in semantic
space, they could lose valuable information of the underly-
ing geometry, which limits their applicability to more gen-
eral geometric processing tasks. Motivated by these two
observations, we design a ta§I§ where the point clpud it'd3.1. Self-Supervised Geometry-Aware Implicit
self generates the self-supervision on the two domains an
features are aligned to preserve geometric primitives. The Implicit representations are capable of preserving com-
aligned features can further be used for high-level seman-plex details for given shapes [6, 18]. Instead of high-quality
tic extraction, making our method more general for various shape reconstruction, we leverage the implicit representa-
main tasks. tion space for aligning point clouds from different domains
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