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DCL: Differential Contrastive Learning for
Geometry-Aware Depth Synthesis

Yuefan Shen , Yanchao Yang , Youyi Zheng , C. Karen Liu , and Leonidas J. Guibas

Abstract—We describe a method for unpaired realistic depth
synthesis that learns diverse variations from the real-world depth
scans and ensures geometric consistency between the synthetic
and synthesized depth. The synthesized realistic depth can then be
used to train task-specific networks facilitating label transfer from
the synthetic domain. Unlike existing image synthesis pipelines,
where geometries are mostly ignored, we treat geometries carried
by the depth scans based on their own existence. We propose
differential contrastive learning that explicitly enforces the un-
derlying geometric properties to be invariant regarding the real
variations been learned. The resulting depth synthesis method is
task-agnostic, and we demonstrate the effectiveness of the proposed
synthesis method by extensive evaluations on real-world geometric
reasoning tasks. The networks trained with the depth synthesized
by our method consistently achieve better performance across a
wide range of tasks than state of the art, and can even surpass the
networks supervised with full real-world annotations when slightly
fine-tuned, showing good transferability.1

Index Terms—Deep learning methods, deep learning for visual
perception, transfer learning.

I. INTRODUCTION

UNPAIRED realistic depth synthesis is important in trans-
ferring annotations for geometric reasoning tasks from

simulation, where labels can be automatically generated, while
label generation in the real world is expensive. There exist
many works on realistic image synthesis based on generative
adversarial networks, yet, there are only a few on realistic
depth synthesis. Traditional methods on realistic depth synthesis
either model the real depth variations with an empirical noise
model or add random noise and dropout to corrupt the synthetic
depth. Thus, their capability to capture diverse real variations is
limited. On the other hand, learning-based real depth synthesis
methods add noise and missing regions to the synthetic depth
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Fig. 1. Synthetic to real depth synthesis. Left: clean depth map; Middle: syn-
thesized depth map by CUT [2], Coupled [4] and DCL (ours); Right: reference
real-world depth from ScanNet [5]. Corresponding point clouds are displayed
in the second row. Note our method captures missing regions and sensor noise
similar to that exhibited in the real-world one. Moreover, our method preserves
the underlying geometry as demonstrated in the point clouds, e.g., ours has much
fewer out of surface points and distortions.

Fig. 2. Overview of our method. The depth synthesis network comprises φ
(encoder) and ψ (decoder). Optionally, ψ can take auxiliary information from
the aligned RGB image through an image encoder θ. The three loss terms are
described in Section III.

maps by transformation networks usually trained in an adver-
sarial manner. Despite the ability to reduce the distributional
shift between the synthetic and real domains, the underlying
geometric properties are not well preserved and are always
subject to undesired distortions, affecting the label transfer effi-
ciency for downstream geometric reasoning tasks (see Fig. 1).

We treat geometric properties as first-class citizens since
depth maps are 2.5D representations of the scene, and the
geometric properties carried in depth maps deserve their own
existence. Moreover, we propose differential contrastive learn-
ing to learn the real-world depth variations to minimize the
distributional shift between domains and explicitly enforce the
underlying geometry to be consistent for efficient transfer be-
tween domains. As illustrated in Fig. 3, the proposed differential
contrastive learning first computes differences between features
extracted at different spatial locations within each feature map
of the depth (the synthetic one and its transformed version).
The resulting differential features are then arranged into positive
and negative samples following the terminology used in [1], [2].
More explicitly, two differential features computed at the same
pair of spatial locations are considered positive; otherwise, those
computed at different pairs of spatial locations are considered
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Fig. 3. Differential Contrastive Learning. Given a synthetic depth map ds

and the transformed noisy depth map d̂r, feature maps f l and f̂ l are extracted
from the l-th layer of the encoder φ. Differential features are then computed
and arranged into positive and negative samples depending on their pairwise
spatial locations, e.g., differential features with the same row number are positive
samples.

Fig. 4. Visual comparison on depth enhancement. From left to right: input real
depth scan, Simulation [38], CUT [2], Coupled [4], DCL (ours) and ground-truth.

negative. Positive and negative samples are then used to compute
the InfoNCE loss [3], which serves as the training loss, namely,
the differential contrastive loss for learning depth synthesis.

The motivation of our approach derives from the observation
that geometric characteristics can always be captured in the
differential forms [6], e.g., surface normal. So we explicitly ask
the corresponding differential features computed from the depth
to be as invariant as possible against the synthesis procedure,
which is then ensured by how we select positive and negative
samples in the proposed differential contrastive loss. The result-
ing unpaired depth synthesis framework can be used for learning
realistic variations from any depth sensor of any type, while
preserving the geometric properties. Moreover, our approach is
task agnostic, so the synthesized realistic depth maps, together
with synthetic labels, can be used for training any downstream
tasks.

We evaluate the quality of the synthesized depth across a
broad spectrum of downstream tasks, including depth enhance-
ment, normal estimation, pose estimation, grasping, and se-
mantic segmentation. The task models trained with the depth
map synthesized by our method consistently achieve the best
performance when tested on real-world data without fine-tuning.
Our work makes the following contributions: 1) a framework that
explicitly models geometric consistency for depth synthesis; 2)
a mechanism that prevents geometric distortion by contrasting
the feature differences instead of the features themselves; 3) an
extensive study of state-of-the-art synthesis methods on a wide
range of downstream tasks while achieving top performance.

II. RELATED WORK

Image generation and translation: Image generation maps
a random noise sampled from a prior distribution to images
satisfying a predefined distribution. Many works have been

proposed to generate diverse and realistic images based on gen-
erative adversarial networks (GAN) [7]. Please refer to [8] for a
detailed overview. Image translation aims to transform images
from one domain to another, in either paired [9] or unpaired [10]
settings. Image translation can help reduce domain gaps [11]
when it is enforced to preserve task-relevant information [12].
Cycle-consistency is widely used as a regularizer for style trans-
fer [10]. Recently, contrastive unpaired translation (CUT) [2]
proposes contrastive losses on the patch-level features to enforce
the similarity of the input and output image features. Besides
the vast development on image-to-image translation [13]–[15],
little effort has been devoted to depth-to-depth synthesis, where
the translation has to align not only the domain noise but also
preserve the underlying geometry that is crucial for downstream
geometric inferences based on depth.

Contrastive learning: Based on the InfoNCE loss [3], con-
trastive learning has been shown effective for self-supervised
representation learning [1]. The critical ingredient of contrastive
learning is the selection of variations to which we would like
the learned representations to be invariant [16]. Our primary
task is not to learn representations that share the invariance of
the downstream tasks. Instead, we learn realistic variations of
depth and utilize contrastive learning to take care of geometric
properties that should be invariant to the synthesis process.

Point cloud generation: 3D point cloud generation is closely
related to 2.5D depth map synthesis. A variational auto-encoder
with multi-resolution tree networks is used in [17] to generate
point clouds, and [18] studies various GANs and proposes a
Gaussian mixture model in the latent space of an autoencoder.
Instead of transforming random noise, [19] maps a set of 2D grid
points to the target point cloud through deep grid deformation,
and [20] proposes hierarchical modeling of shapes and points
using continuous normalizing flows. At the scene level, [21]
generates synthetic point clouds via a virtual lidar in simulation.

Depth synthesis: To inject realistic noise into synthetic depth
maps, [22] proposes an empirical noise model of the depth sen-
sor’s transmitter/receiver system, which captures sensor-specific
noise and may not generalize to different ones. Similarly, [23]
explicitly models sensor noise, material properties, and surface
geometry for depth synthesis, but is limited to single CAD
models. One can also add random Gaussian noise and dropout
to synthesize additive sensor noise and missing regions [24],
[25]. Furthermore, [26] applies adversarial training to synthesize
realistic hand pose images, and [27] synthesizes holes with a
network trained to predict missing regions from RGB images.
Similarly, [4] learns the hole prediction from real RGBD images,
but relies on image translation to bring synthetic images to the
real domain such that the learned hole prediction model can be
applied on synthetic RGB images. One can also apply domain
adaptation for depth-based predictive tasks [28], [29]. However,
these methods do not generate realistic depth maps. Our method
focuses on realistic depth synthesis, and the synthesized depth
maps can be used for any tasks that take depth as input. Even
though our method can be used in conjunction with domain
adaptation methods when specific tasks are known, we treat
realistic depth synthesis as our primary goal and evaluate the
quality of the synthesized depth maps using specific geometric
reasoning tasks.

III. METHOD

Let d ∈ RH×W be a depth map, and optionally I ∈ RH×W×3

be the corresponding color image. Suppose we have a synthetic
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(clean) dataset Ds = {(ds, Is)} and a real-world (noisy) dataset
Dr = {(dr, Ir)}. Both of them contain pairs of aligned depth
maps and color images. However, there is no pairing between
Ds and Dr, a typical setting of unpaired image synthesis or
translation. Our goal is to learn a mapping between the synthetic
depth map ds and the real depth map dr, using only unpaired
datasets Ds and Dr. The overall architecture of our method
is illustrated in Fig. 2. Note that the aligned color images are
auxiliary, without which our method still runs, and we elaborate
in the following.

A. Depth-to-Depth Synthesis

We first illustrate our method using only depth maps for
simplicity. We then detail how color images can be incorporated
as auxiliary signals to facilitate the synthesis procedure. Let φ
be an encoder, and ψ be a decoder, together they constitute the
transformation network:

d̂r = ψ(φ(ds)) (1)

with d̂r be the synthesized (noisy) depth map conditioned on the
clean depth map ds. To enforce statistical similarity between
the synthesized depth map d̂r and the real depth map dr, we
can apply a discriminator network D to minimize the domain
discrepancy by adversarial training:

Ladv = Edr∼Dr logD(dr) + Eds∼Ds log(1−D(d̂r)) (2)

Since Eq. (2) only helps to reduce the distributional shift,
but does not guarantee the consistency of the generated con-
tent [26], [30], CycleGAN [10] resorts to cycle consistency
to constrain the transformation. On the other hand, contrastive
unpaired translation (CUT) [2] eliminates the cycle consistency
by applying contrastive loss on features from multiple layers of
the encoder to preserve the image content. Even though it works
for image-to-image translation, we observe heavy distortions
on the underlying geometric structures of the synthesized depth
maps, which hinder the transfer from synthetic domains to real
domains.

B. Differential Contrastive Learning

We aim for a transformation ψ ◦ φ that can capture the com-
plex noise phenomenon in real depth, and, at the same time,
preserve the underlying geometry of the clean depth maps for
better transfer on geometric reasoning tasks.

Since we ask for geometric invariants of the synthetic depth
maps, we choose to work with the InfoNCE loss [3] due to
its effectiveness in capturing invariants for self-supervised rep-
resentation learning [1], [31]. However, the type of invariants
that will be learned with the InfoNCE loss depends mainly on
the mechanism to choose positive and negative samples. For
example, in [1], an image and its color distorted version are
considered as a pair of positive samples, whereas this same
image and another different image are considered as negative
samples. With this sampling strategy, the features learned will
be invariant to color distortions but still be discriminative for
image identities.

Inspired by the fact that geometric properties can always be
captured by their differential forms [6], we propose to impose
an explicit constraint on the underlying geometry of the scene
through differential contrastive learning shown in Fig. 3. Let
f l = φl(ds), f̂ l = φl(d̂r) be the feature maps extracted from
the l-th layer of the encoder φ applied on the synthetic depth

map ds and the synthesized depth map d̂r. Also, let f li be the
feature vector from f l at the spatial location i. We apply the
following sampling mechanism to collect positive and negative
pairs:

positive : (∇f̂ lij = f̂ li − f̂ lj ,∇f lij = f li − f lj) (3)

negative : (∇f̂ lij = f̂ li − f̂ lj ,∇f lik = f li − f lk) (4)

where j, k are different spatial locations sampled around i
following a Gaussian. Note that each sample consists of two
differential vectors (synthetic and synthesized) computed either
at the same pair-wise locations (positive) or different pair-wise
locations (negative) (see Fig. 3). Given the InfoNCE loss:

Lnce(∇f̂ lij ,∇f lij , {∇f lik}k �=j)

= − log
exp(∇f̂ lij · ∇f lij/τ)

exp(∇f̂ lij · ∇f lij/τ) +
∑

k exp(∇f̂ lij · ∇f lik/τ)
Our differential contrastive loss is defined as:

Ldc = Eds∼Ds

∑

l

∑

i,j

Lnce(∇f̂ lij ,∇f lij , {∇f lik}k �=j) (5)

here (i, j, k′s) can be randomly sampled to avoid enumerating
the entire grid. The key insight is that, we want the differential
features to be similar (invariant) before and after the transfor-
mation, i.e., the depth values may be altered due to the noise
or missing regions learned from real depth maps; however, the
underlying geometric structures captured by the differentials
should be similar.2 In other words, the proposed differential
contrastive loss explicitly enforces the consistency between ge-
ometric structures of the synthetic and synthesized depth maps,
while leaving enough flexibility for the transformation network
to learn real variations. Note, differential contrastive losses over
feature maps from multiple layers of the encoder φ are also
computed, making it possible to capture both local and global
geometric properties.

Given that a global shift in the depth values might be differ-
entiated away and thus can not be detected with the proposed
differential contrastive loss, we apply an identity loss on the real
depth map dr to prevent potential global shifts in the range of
the synthesized depth:

Lidt = Edr∼Dr ‖ψ(φ(dr))− dr‖1 (6)

which is theL1 loss between a real depth map and its transformed
version. The final training loss of the proposed differential
contrastive learning for synthesizing realistic depth maps from
synthetic ones is:

L = Ladv + αLdc + βLidt (7)

where α, β are the scalar weights, which are set to 1.5 and 1.0
for all experiments.

IV. EXPERIMENTS

We evaluate the proposed depth synthesis method on mul-
tiple downstream tasks, including depth enhancement, normal
estimation, pose estimation, grasping, and semantic segmen-
tation. Our goal is to have a comprehensive understanding of

2For differentials involved in a negative pair but sampled nearby, their features
can remain similar while the differentials are pushed away.
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the capability of our method to learn the noise exhibited in
the real-world depth scans by checking the performance of the
task-specific networks trained using the synthesized depth on
real-world geometric reasoning tasks.

Specifically, the clean synthetic depth maps are first trans-
formed into noisy realistic ones in a task-agnostic manner. We
then perform evaluations on each downstream task in three
settings: 1) train a task-specific network using only the labels
from the synthetic domain, and test the network directly on a
test set from the real domain; 2) apply task-specific domain
adaptation methods, e.g., [11], [32], [33] using depth from the
synthetic and real domains, then test on the real validation set as
in 1). 3) fine-tune the previously trained task-specific networks
using a small portion of the annotations from the real domain,
and then test on the same real test set as in 1). In the first setting,
we like to check how the synthesized depth maps mimic the real
ones. In the second, we check whether our synthesis helps to
reduce the domain gaps when compared to task-specific domain
adaptation methods. In the third, we check the usefulness of the
weights from the first setting in terms of reducing the number of
labels compared to the one supervised with full real annotations.

A. Training Depth Synthesis

Datasets: For depth enhancement, normal estimation, and
semantic segmentation, we use InteriorNet [34] as the source
of synthetic data, and ScanNet [5] as the source of realistic data.
InteriorNet provides depth maps rendered from 1.7 M interior
layouts for different scenes created by professional designers.
We randomly sample 30 K depth maps from InteriorNet to form
the synthetic dataset. We further split them into a subset of 24 K
depth maps for training the depth synthesis network and 6 K
for training task-specific networks. Each sample in the synthetic
dataset consists of a clean depth map and the corresponding
annotations for the downstream tasks. Similarly, we randomly
sample 24 K real scans from ScanNet for depth synthesis, which
contains real-world depth maps from 1.5 K indoor scenes. The
raw scans are manually annotated. For task-specific networks,
we follow the filtering scheme in [35] to guarantee the data
quality and collect 7 K real depth maps, where 4 K are used for
supervised training and 3 K are for testing all baselines. Since
our goal for generating the real-world (ScanNet) training and
test sets is to check both the upperbound on real scans and how
effective the transfer is, we sample the 7 K depth maps uniformly
from a common set of scenes such that the task-specific training
and test splits do not have domain gaps caused by different scene
layouts.

For pose estimation and grasping, we use the large-scale
GraspNet [36] as our primary dataset, whose raw scans are
used as the real-world depth, and the synthetic depth maps
are rendered with the corresponding camera parameters and
CAD models. GraspNet [36] contains 48.6 K depth maps along
with annotated object labels, object poses, and ground-truth
grasps (center, gripper orientation, and width), which are used
for training pose estimation and grasp proposal networks. The
LineMOD dataset [37] is also used for pose estimation, which
contains 20 K depth maps and ground-truth object poses. The
detailed split and pre-processing of the data are described in the
evaluation sections.

Baselines: A natural depth synthesis baseline is the identity
mapping, i.e., the clean depth scans (Baseline). We also compare
with the commonly used empirical noise model [38] (Simula-
tion), and two state-of-the-art image translation methods [10]

TABLE I
DEPTH ENHANCEMENT

Scores are computed with the networks trained using only the synthesized (noisy) depth
maps and the corresponding clean depth maps. Top-performing ones are marked as bold
and * means fine-tuning with 10% of the real-world annotations.

(CycleGAN) and [2] (CUT). Moreover, we compare to [4]
(Coupled), which is the current state-of-the-art on synthetic to
real depth synthesis that separately models missing regions and
sensor noise based on both depth and color images.

Training details: Our network architecture follows that of
CUT [2], which employs an image transformation network
consisting of ResNet blocks [39]. We extract multi-scale features
from five evenly distributed layers of the encoder to compute
the differential contrastive loss. Like CUT, we apply a two-
layer MLP with 128 output units and L2 normalization on
the extracted features before passing them to the loss function.
For the competing methods, aligned color images are always
available to the transformation network, except the empirical
noise model proposed in [38], which only relies on geometry
to synthesize noise. We use an Adam optimizer for the training
of depth synthesis with differential contrastive loss (β1 = 0.5
and β2 = 0.999) with an initial learning rate of 0.0002 (same
to all downstream tasks). We set the batch size to 16 and train
up to 50 epochs. Our method can optionally incorporate RGB
images as auxiliary signals during synthesis (DCL w/ rgb).
However, due to the lack of background textures in GraspNet
and LineMOD datasets, we cannot render corresponding RGB
images as auxiliaries, thus we report the depth-only results on
them. Now we detail the evaluations on each downstream task
and report the qualitative and quantitative results.

B. Depth Enhancement

After training the depth synthesis network, we convert the
6 K synthetic depth maps to realistic (noisy) ones. We train a
depth enhancement network [35] for each of the synthesized
datasets from different synthesis methods. We also apply the
depth enhancement training loss proposed in [35] for all models,
and the training runs for 50 epochs.

When the training converges, we test each enhancement net-
work on a preserved real-world test set consists of 300 raw scans
and the corresponding clean scans generated from reconstructed
meshes. We report the scores under multiple evaluation metrics:
root mean square error (RMSE), mean absolute error (MAE),
peak signal-to-noise ratio (PSNR), and structural similarity in-
dex measure (SSIM) following [4]. The first two measure the
accuracy of the enhanced depth maps, and the latter two measure
the structural similarity of the enhanced depth maps compared
to the ground truth.
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TABLE II
NORMAL ESTIMATION

Normal estimation on real depth scans. Networks are trained with synthesized depth
and corresponding normal maps. Top-performing ones are marked as bold and * means
fine-tuning with 10% of the annotated real-world data.

As shown in Table I, our method consistently achieves smaller
error and higher structural similarity compared to other methods.
As expected, the empirical noise model (Simulation) [38] gener-
ally performs worse than the learning-based methods. Note that
CUT [2] performs even worse than Simulation.3 We conjecture
that CUT may capture biased real noise. Hence, its performance
is not even as good as the empirical noise model that randomly
adds noise without looking at the real scans. We include the
score from a purely supervised model that is trained on a separate
training set of 3000 real depth scans to provide a reference on
the desired real domain performance.

We also fine-tune the networks trained with the synthesized
depth using 10% of the annotations from the real-world training
set that is used to train the supervised baseline in Table I. As ob-
served, the model trained with the synthesized depth from DCL
surpasses the supervised baseline on all metrics, which confirms
that the network parameters learned using our synthesized depth
maps transfer efficiently to the real world. Please see Fig. 4 for
visual comparisons.

C. Surface Normal Estimation

In this part, we evaluate the quality of the synthesized depth
maps by checking the performance of the task-specific networks
on normal estimation. Performance on normal estimation can
measure how well the synthesized depth maps preserve the un-
derlying geometry since the surface normal is the cross-product
of partial derivatives. We train the same architecture used for
depth enhancement using the L1 loss between predicted normal
maps and the ground-truth for 50 epochs. We report the angular
errors and accuracy.

As shown in Table II, the empirical noise model based
method [38] (Simulation) is now consistently worse than the
baseline trained with clean depth maps (Baseline), which sig-
nals that randomly adding noise could destroy the underlying
geometry. The same phenomenon is also observed for two other
learning-based methods (CycleGAN and CUT). The normal
estimation network trained using the depth synthesized by DCL
outperforms the second-best by 3.52%, 7.73% in terms of the
median and mean angular errors, respectively. Involving RGB

3We have tuned CUT and other competing methods using grid search for their
optimal hyper-parameters.

Fig. 5. Visual comparison on normal estimation with error maps inserted. Left
to right: input real scan, the result of Simulation [38], CUT [2], Coupled [4],
DCL (ours) and the ground-truth.

images in depth synthesis (DCL w/ rgb) has slight improvements
for both depth enhancement and normal estimation. Compared
to the domain adaptation method [11], our method also achieves
higher performance. When replacing the source dataset with the
synthesized dataset from DCL in Cycada [11], we can observe
a significant improvement, demonstrating the effectiveness of
our method. We further apply fine-tuning on the pre-trained
network using 10% of the real-world annotations from the
training set of the supervised baseline. Similarly, the normal
estimation network trained using synthesized depth from DCL
achieves comparable performance with the supervised baseline.
This confirms the quality of the synthesized depth measured by
the normal estimation performance directly related to the surface
geometry. Please refer to Fig. 5 for visual results.

D. Pose Estimation

We train task-specific networks that predict poses of objects
directly from the depth scans to check how the synthesized depth
maps preserve geometric information useful for inferring poses.
To comply with the evaluation protocol proposed in [37], [40],
we crop the scans from GraspNet [36] using object masks to
obtain the input to the pose estimation network. Similarly, the
commonly used object-centric version of LineMOD [37] is used
for further evaluations. For both datasets, 10 K depth scans of
10 randomly chosen objects are preserved for training the pose
estimation networks, and the remaining 6 K depth scans are used
for training the depth synthesis networks.

We use ResNet [39] as the backbone for all pose estimation
networks. Following the literature [40], the training loss contains
a classification error, measured by a cross-entropy loss, and a ro-
tation regression error, measured by an MSE loss. In addition to
the rotation error, which directly reflects how the fine geometric
properties are preserved for pose estimation, we also report the
classification accuracy for reference.

The results are shown in Table III. As observed, the pose
estimation network trained with the synthesized depth from DCL
achieves the smallest rotation error on both datasets, e.g., it out-
performs the second-best by 6.63% and 16.39% on GraspNet and
LineMOD, respectively. In terms of classification accuracy, our
method is comparable with Coupled [4] on the LineMOD dataset
despite that Coupled uses aligned RGB images to facilitate the
synthesis procedure. Moreover, DCL outperforms Coupled by
7.02% in classification accuracy on the GraspNet dataset. Over-
all, DCL is more efficient in learning the real-world variations
while maintaining the fine geometries for inferring poses. Differ-
ent from dense prediction tasks, here we choose to compare with
latent space adversarial domain adaptation methods [32], [33].
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TABLE III
POSE ESTIMATION

Results of object pose estimation on GraspNet [36] and LineMOD [37]. The prediction
error is calculated using the rotation component. The classification accuracy is also
reported, and * means fine-tuning with 10% of the annotated real-world data.

Fig. 6. Visual comparison on object pose estimation. Left to right: input real-
world scan, object models overlaid on the corresponding color images using
the estimated pose. The first row is from GraspNet [36] and the second is from
LineMOD [37].

Again, domain adaptation using synthesized depth from DCL
achieves the highest score. Further, after fine-tuning with 10% of
the annotations from the real-world domain, the pose estimation
network trained using our synthesized depth achieves similar
performance on both datasets compared to the fully supervised
baseline. Please see Fig. 6 for visual comparisons.

E. Grasping

Grasping also relies on an accurate understanding of the
geometries from the depth scans to enable object manipulations.
We first apply the depth synthesis methods on the training subset
from GraspNet [36], which contains 25.6 K depth maps. Then
we train GG-CNN [41] on the synthesized depth to predict
the ground-truth grasp proposals. To evaluate, we choose the
three most confident grasps from the predicted proposals fol-
lowing [41]. A grasp is considered successful if its intersection-
over-union with the ground truth is larger than 0.5. Furthermore,
we report the success rate on three different testing subsets of
GraspNet, e.g., the test sets for objects seen during training,
objects similar to the training objects, and novel objects.

As shown in Table IV, the network trained using the depth
scans synthesized by DCL achieves the highest success rate
among the competing methods. It outperforms the second-best
by 1.91%, 0.74%, and 4.86% on the test split of seen, similar,
and novel objects, respectively. This shows that DCL learns
the realistic variations exhibited in the real-world depth scans

TABLE IV
GRASPING

Grasping performance on GraspNet [36]. SRSeen,SRSim and SRNovel stand for
success rates on seen, similar and novel objects, respectively. And * means fine-tuning
with 10% of the annotated real-world data.

for seen objects and generalizes better by preventing potential
overfitting to distorted geometries in the synthesized depth. Sim-
ilarly, when the grasp proposal network trained using the depth
synthesized by DCL is fine-tuned with 10% of the real-world
annotations, it outperforms the supervised baseline trained with
full annotations. Moreover, compared with directly applying
Cycda [11], the synthesized depth scans from DCL help achieve
better performance. The results on grasping confirm again that
the geometry which enables physical manipulations of the ob-
jects is well preserved by our method.

F. Semantic Segmentation

We train DeepLabv3+ [42] for 50 epochs with the cross-
entropy loss for semantic segmentation. Due to the class mis-
match between InteriorNet and ScanNet, we choose a common
set of fifteen classes for training since our goal is to validate the
synthesis networks’ performance for learning realistic sensor
noise but not to adapt for class imbalance. We also report the
performance of a purely supervised model trained with 6000
manually annotated real depth scans from ScanNet.

We use the intersection-over-union (IoU) score to measure
the quality of the predicted semantic masks. We also report
the mean intersection-over-union (mIoU) scores across different
subsets of classes in Table V. Coupled [4] now lags compared
to other learning-based methods. Our method still achieves the
best performance on most of the classes and the mean IoUs.
However, due to the imbalanced class distributions, we can still
observe a gap compared to the supervised baseline.

To check how the pre-trained weights help reduce the number
of real-world annotations needed for semantic segmentation, like
previous tasks, we also fine-tune the pre-trained network with
25% of the annotations of the supervised baseline. We report the
scores in Table V. As observed, the network pre-trained with the
depth synthesized by our method now surpasses the supervised
baseline. Moreover, we find that the fine-tuned model has higher
scores in classes that appear more frequently in the synthetic
domain, e.g., window and curtain. Please see Fig. 7 for visual
comparisons. Again, the depth scans synthesized by DCL help
achieve better domain adaptation performance than Cycada [11].
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TABLE V
SEMANTIC SEGMENTATION

Results on semantic segmentation. We report the intersection-over-union (IoU) scores for each class, and the mean intersection-over-union (mIoU) scores over subsets of the
semantic classes (mIoU-15, mIoU-12). The network trained with the depth synthesized by DCL performs well on most classes and consistently outperforms the others in terms
of mIoUs. * means fine-tuning with 25% of the real-world annotations.

TABLE VI
ABLATION STUDIES

Ablation study on the effectiveness of each term in Eq. (7). Evaluations for different
sets of the coefficient are performed on the depth enhancement task with the same
metrics as in Table I

Fig. 7. Visual comparison on semantic segmentation from real depth. Left to
right: the reference RGB image, input real scan, the result of Simulation [38],
CUT [2], Coupled [4], DCL (ours), and the ground-truth.

G. Analysis and Ablation Studies

To further understand how our proposed DCL affects the
feature learning in the synthesis procedure, we study the feature
space from the middle layer of φ. As shown in Fig. 8, given
an input and output depth map, we calculate the similarities
between feature maps and a query point feature in the input
feature map. One can see that features learned with CUT [2]
tend to be dissimilar in different positions even they have the
same underlying geometries. However, with the proposed DCL,
features have higher similarities where the underlying geome-
tries are similar. This confirms that DCL prevents undesired
distortions by not directly pushing away the features in the
differential contrastive learning process.

We perform ablation studies on each loss term in Eq. (7)
with the depth enhancement task. We train the depth synthesis
network using five different combinations of the coefficients α
(weight on the differential contrastive loss) and β (weight on

Fig. 8. Visualization of the similarities between learned features from DCL
and CUT [2]. Given a query point shown as a red dot in the input depth
((a) top) and the output depth maps ((b), top: CUT, bottom: DCL), we visualize
the feature similarity to the query point feature both for the features extracted
from the input depth (c) and the output depth (d). We also show point cloud
visualizations from the top view to examine the geometric distortions (e).

the identity loss). After training the depth synthesis network, we
train a depth enhancement network using the synthesized depth
maps from each depth synthesis network. Specific coefficients
and their corresponding scores are reported in Table VI. These
results confirm that the two terms in our proposed loss Eq. (7)
for depth synthesis are necessary and effective.

V. DISCUSSION

We have proposed an effective synthetic-to-real depth syn-
thesis method based on differential contrastive learning, which
enforces the differential features to be invariant through the
synthesis procedure. Extensive evaluations on downstream ge-
ometric reasoning tasks indicate that our method learns diverse
variations from the real-world scans and preserves the geometric
information crucial for real-world applications. Our method is
end-to-end trainable and does not need to deal with hole gen-
eration and value degeneration separately. However, since our
method is GAN-based, it currently does not guarantee to synthe-
size material-specific noise, which may need extra investigations
to show the impact. Currently, we perform experiments with
depth scans from existing datasets, yet a specifically designed
dataset with disentangled variations is needed for more detailed
analysis. Moreover, since our synthesis method is task-agnostic,
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we like to see it be used with task-specific domain adaptation
techniques to further improve real-world performance.
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