
Iso-Contour Queries and Gradient Descent with Guaranteed
Delivery in Sensor Networks

Rik Sarkar∗ Xianjin Zhu∗ Jie Gao∗ Leonidas J. Guibas† Joseph S. B. Mitchell‡

∗ Department of Computer Science, Stony Brook University. {rik, xianjin, jgao}@cs.sunysb.edu
† Department of Computer Science, Stanford University. guibas@cs.stanford.edu

‡ Department of Applied Mathematics and Statistics, Stony Brook University. jsbm@ams.sunysb.edu

Abstract—We study the problem of data-driven routing and
navigation in a distributed sensor network over a continuous scalar
field. Specifically, we address the problem of searching for the
collection of sensors with readings within a specified range. This
is named the iso-contour query problem. We develop a gradient
based routing scheme such that from any query node, the query
message follows the signal field gradient or derived quantities
and successfully discovers all iso-contours of interest. Due to the
existence of local maxima and minima, the guaranteed delivery
requires preprocessing of the signal field and the construction of
a contour tree in a distributed fashion. Our approach has the
following properties: (i) the gradient routing uses only local node
information and its message complexity is close to optimal, as
shown by simulations; (ii) the preprocessing message complexity
is linear in the number of nodes and the storage requirement
for each node is a small constant. The same preprocessing also
facilitates route computation between any pair of nodes where the
the route lies within any user supplied range of values.

I. INTRODUCTION

Wireless sensor networks have shown great potential for pro-
viding dense monitoring and sensing capabilities with modest
cost and management effort. In many typical sensor network
applications, sensors are densely deployed in a physical envi-
ronment to provide good coverage at fine sensing resolutions.
Existing work has established many fundamental mechanisms
for sensor deployment to ensure coverage [1]–[4] as well as
energy efficient networking functions to collect data from these
nodes.

There are two fundamental aspects of sensor networks that
differentiate them from other types of wireless networks. First,
it is the data from the sensor nodes, rather than the network
nodes themselves, that is of most interest to the users. While
many wireless networks, such as wireless LANs, cellular net-
works, and ad hoc mobile networks, focus on supporting low-
latency end-to-end communications and maximizing the system
throughput, sensor network designs are often tailored towards
their target application and are bound tightly to the physical en-
vironment that they are supposed to monitor/sense. In the most
prevailing applications of environmental monitoring, sensors
measure readings of the physical space, such as temperature,
pressure, chemical concentration, and many others. Such phys-
ical quantities often exhibit continuity properties over space
and/or time. Thus the smoothness of the physical signal field,
and the spatial correlation of discrete sensor data, naturally
suggest possibilities for data compression and exploitation for
efficient system design.

A second unique property of sensor networks resides in
their great potential in allowing seamless interaction between
users and the physical world. In many civilian and military
applications, the users operate in the same space in which the
sensors are embedded. This allows novel applications in which
real-time sensor data is quickly delivered to users of interest for
appropriate response and actions. All of this eventually leads
to a smart environment that could revolutionize the way we
observe, interact with and influence the physical world.

In this paper we look at the iso-contours of a scalar signal
field represented by sensor data, together with a local gradient
descent routing scheme, with which the users can navigate in
this signal field with guaranteed success.

Iso-contour related queries. For a continuous field, an iso-
contour at an isovalue x is the collection of points with value
equal to x. In a discrete sensor network, this is often approx-
imated by the collection of sensors with readings sufficiently
close to x. The iso-contours encode spatial structures of the
signal field, such as boundaries of the ‘hot’ regions that indicate
overheating or a fire, or pollution dissemination that may
require special treatment. The signal field can also be the energy
map or traffic load on the networked sensors, and thus the iso-
contours are related closely and provide information about the
general health of the network or its traffic bottlenecks.

A few papers have studied compression, approximation and
aggregation of iso-contours with space-efficient data structures,
when sensors report their data along an aggregation structure
to the base station [5]–[7]. In this paper we are interested in
in-network data processing and the usage of iso-contours for
navigation in the signal field. Consider a scenario in which
sensors and users (such as rescuers or patrol officers) are
embedded in the same physical space. Users with hand-held
devices communicate with nearby sensors to obtain directions
to places that require attention or service, indicated by the
sensor data being within a specified range. We consider the
following two routing and navigation functions:

• Iso-contour query: from a query node q, find the iso-
contours at value x, or count/report iso-contour compo-
nents at given value/range.

• Value-restricted routing: find a path from a source node s
to a destination node t with all values on the path within
a user-specified range. This can be used for navigation of
packets in the network (e.g., avoiding sensor nodes with



low energy level), or navigation of objects in the physical
environment (e.g., avoiding traffic jam).

For both problems, we are looking for efficient solutions
without flooding all the nodes. The paper is tailored by the
iso-contour query as it best demonstrates the basic idea, with
which the value-restricted routing can be answered easily.
Gradient descent routing. The most intuitive solution for
iso-contour queries is to use gradient descent, by exploiting
the natural continuity of the signal field. Starting from the
query node q, the query message can be greedily guided either
downhill or uphill, depending on the comparison of the value at
q and the target value x. This greedy descent routing is simple
and requires only local knowledge. Thus it has been explored
in a number of settings for low-cost data-centric routing [8]–
[12]. Greedy descending/ascending can typically lead the query
message to one iso-contour, unless the query message reaches
a local minimum or local maximum, in which case the query
gets stuck. Indeed, using simple gradient descent for an iso-
contour query has a serious defect: the signal field may have
multiple peaks and valleys, and greedy descending discovers
at most one iso-contour, and is not able to discover all of the
iso-contours due to the existence of local optima.

local maximum local minimum saddle point
query node descending path query trail

q

x
C

D
E A

C

G
F

A

B

H

E

G
H

F

D

B

Fig. 1. The level sets of a signal field and the contour tree spanning all
the critical points (in the right). The figure also shows some descending
paths connecting the critical points.

Figure 1 shows an example of a potential field by drawing
its level sets. Red colors mean hot and blue colors mean cold.
We also show all the local maxima, minima and saddle points.
A greedy gradient routing from a query node q looking for a
desired level contour will follow the local gradient and climb
up the mountain. Once the query reaches the desired level it
can locally trace out one contour, e.g, the contour on the left
peak in the figure. However with only local information the
query does not know whether there are other peaks and if so
where they are.

The difficulty here is that the greedy gradient routing is
completely local, while iso-contours reflect the global topology
of the signal field. This is a general problem in navigation with
a potential field, as has also been studied in robotics: with only
information about the local potential one lacks the big picture
of the signal field which is important for guaranteed success.
In particular, the collection of critical points (local maxima,

minima and saddle points) represents the global topology of the
signal field. Thus, in order to make the local greedy descend
algorithm always work, one needs to augment it with a compact
representation of the critical points and their relationships.

Our contribution. We propose to investigate distributed algo-
rithms to pre-process the iso-contour structures of the signal
field by what is called the contour tree [13], using which a gra-
dient routing scheme can successfully discover all iso-contours.
In short, a contour tree is a tree on all the critical points of the
signal filed and captures the topology of the iso-contours. It is
a special case of the Reeb graph in Morse theory [14]. Take
Figure 1 as an example, the right figure shows the topological
contour tree consisting of eight vertices, corresponding to two
local maxima, three local minima, and three saddle points. A
contour tree captures how the connected components of the
iso-contours merge/split as we increase/decrease the isovalue.

We propose an algorithm for the construction of the contour
tree in a fully distributed manner. The basic idea is similar
to the centralized construction [13], [15]–[17]. But we need
to account for numerous robustness issues due to local noise
and degeneracies, and lack of global coordination. We use
distributed sweeps [18], initiated at local maxima and minima to
identify the saddle points and nodes on the saddle contour. Next
an information dissemination phase following the contour tree
structure distributes necessary information for gradient descent
routing. The preprocessing involves all together four rounds of
sweeps of the signal field and has a linear message complexity.

The invariant we maintain on a node p is the max/min
value in the interior and exterior of the iso-contour component
through each point p. This represents only a small constant
storage requirement at each node. For iso-contour queries, the
gradient descent routing alternates between two operations (i)
at a node on some saddle contour, it checks the split/merged
contours and send one or two (if necessary) messages to the
new connected components. (ii) at other nodes, the query
message either follows an iso-level or follows gradient ascend-
ing/descending path to reach the desired contour. The gradient
routing only uses information stored at a node itself and every
routing step is justified, in the sense that there will definitely be
a contour discovered for each query message. Thus no effort is
wasted. Our simulations show that the gradient routing achieves
comparable message complexity, when compared with the
minimum spanning tree covering the iso-contour components,
which is at most twice the length of the minimum Steiner tree,
the optimal solution if the global knowledge about the entire
signal field were available.

At the same time, the same contour tree permits a scheme
for restricted value routing, and a labeling scheme such that
validity of a restricted value route request can be determined
simply from the labels of the source and destination nodes.
Intuitively, the spatial structures of the signal field are entirely
captured by the contour tree, and low values paths in the field
can be mapped to a low value path on the tree.

Lastly we note here that in this paper we only consider a
static signal field, because the problem for a static signal field is



already quite challenging. In practice, as the signal evolves over
time we can periodically execute the contour tree construction
phase. The maintenance of the contour tree for a time-varying
signal field will be future work.

II. CONTOUR TREES AND GRADIENT ROUTING

Given a continuous signal field F , the iso-contour (aka. level
sets) at an isovalue x is the collection of points p with value
F(p) = x, and may have multiple connected components. We
denote by C one connected component of an iso-contour and
by C(p) the connected component containing node p.

As we decrease the isovalues from the global maximum to
the global minimum, the connected components on the iso-
contours may merge together, split, emerge, or disappear. These
changes happen at critical points, such as local minima, local
maxima and saddle points. The contour tree captures such
topological changes of the iso-contours. In a contour tree, each
node corresponds to a critical point, and an arc in the contour
tree connects two critical points. In particular, as we start from
+∞ and decrease the isovalue,
• at a local maximum, a contour component emerges;
• at a local minimum, a contour component vanishes;
• at a saddle point, two contour components merge into one

or one contour component splits into two (see Figure 2).
In the first case, there are two branches of the iso-contour
eminating from the saddle point, representing the two
components. Such a saddle point is called a merge saddle
(with respect to decreasing isovalues). The second case
with respect to decreasing isovalues is called a split saddle.
(For increasing isovalues, split saddles and merge saddles
are interchanged.)

p

p

(i) (ii)
Fig. 2. ⊕ indicates a local maximum. ª indicates a local minimum.¯ indicates a saddle point. Dark colors mean larger values. When
we start from ∞ and decrease the isovalue, at a saddle point, (i) two
contour components merge into one; (ii) one contour component splits
into two.

It has been proved that the merging and splitting of contour
components are indeed represented by a tree. Further, without
degeneracy (no two saddle points have the same values), a local
maximum or a local minimum has degree 1; a critical point has
degree 3. To visualize, we place the vertices of a contour tree,
i.e., the critical points, at the height levels of their values. A
merge saddle has a ‘Y’ shape and a split saddle has an inverted
‘Y’ shape. Then we can map contour components in an iso-
contour at value x to the points obtained by cutting the tree at
level x. The contour component through a saddle is mapped to
the saddle vertex on the tree. Thus, at a point p in the signal
field, if its contour component C(p) is mapped to a point on arc

α in the contour tree, then we say p is on arc α. In Figure 1, the
iso-contour at the query value x has two components, the left
contour stays on the arc AC and the right one stays on the arc
BC. If we embed the contour tree in the domain by representing
each edge with a monotonic path connecting the corresponding
critical points, it can be verified that this mapping is continuous
and the contour tree is a retract of the original domain under
this mapping.

In a sensor network the continuous signal field is sampled
by discrete sensors. To compute the contour tree in the discrete
setting, we have the following challenges:

Local identification of critical points. In a continuous signal
field, a critical point p is a point with all partial derivatives
vanishing at p. In a sensor network we can easily identify the
local maxima and local minima. A local maximum (minimum)
has all the neighboring values no greater (smaller) than itself.
However, it is not easy to identify saddle points, which have
larger and smaller values in its neighborhood in an alternating
way. When we do not have sensor locations or do not have
accurate locations (say, the neighbors may switch their angular
ordering), identifying a saddle point robustly is not straight-
forward. In our algorithm, the saddle points are discovered
along with the construction of the contour tree, as the nodes
where the contour components merge.

Distributed construction of the contour tree. The con-
struction of the contour tree of a piecewise linear mesh has
been studied before [13], [15]–[17], [19]. The best algorithm
achieves a running time of O(n log n) on a piece-wise linear
surface with n vertices and can even be made to be output
sensitive [16], [19]. However, these algorithms are centralized
and are not appropriate for low-cost in-network processing in a
distributed sensor network. We propose a distributed algorithm
that involves four passes of sweeps, to be explained in details
in subsection II-B. Thus the construction costs roughly 4n
message transmissions. After the preprocessing phase gradient-
based routing with guaranteed success for iso-contour queries
can be performed at any node in the network.

Handling noises and plateau regions. An important practical
issue regarding contour trees for a sensor network is that the
sensor data is a noisy approximation of the underlying smooth
signal field, due to sensor inaccuracy, hardware noise, etc. Thus
there could be many more local maxima and minima in the
sensor data than the the original (unknown, smooth) signal field.
We propose two methods to handle this. First, we will locally
simplify a contour tree by using topological persistence [20].
Small bumps will be chopped off. Second, we will not keep the
entire contour tree at each node but rather only keep enough
information for gradient routing. Thus, local optima due to
noises in the measurement only influence a small neighborhood
and are ‘invisible’ to queries from far away regions.

A. Notations

Before we describe the algorithm, we first state conceptually
what we want to achieve with the contour tree construction
and what we want to store at each node. An example of a



contour tree is given in Figure 3 (i). A node w on an arc AB
has a contour component C(w) in between C(A) and C(B).
The contour component C(w) decomposes the entire signal
field into two components, the interior and the exterior, corre-
sponding to the two subtrees when w is removed. The interior
contains the critical point A, which is reachable from C(w) via
a gradient ascending path. We call A the ascending saddle. The
exterior contains the critical point B, which is reachable by a
gradient descending path. B is called the descending saddle.
Not every node has both ascending/descending saddles. Now

B

w

A

P2

p

P2

p

P1

P2

P1
S

(i) (ii) (iii)

Fig. 3. (i) A contour tree and the interior of C(w) shown in the bounded
region; (ii) merge tree; (iii) split tree.

we will state what is needed to store at each node for gradient
descent routing with success.

At a node w (not on the contour component of a saddle), we
will store four values:
• I+(w), I−(w) correspond to the maximum and minimum

value in the interior of C(w);
• E+(w), E−(w) correspond to the maximum and mini-

mum value in the exterior of C(w).
This information is to guarantee that when we send a query
message either uphill or downhill, we know for certain that
there exist some contours for which we are looking.

For the consideration of easy navigation with the contour
tree, each node also keeps information about the contours that
split off/merge together at their ascending merge saddle or
descending split saddle. Take point p on the arc P2A and
its descending split saddle A in Figure 3 (i) as an example.
The contour component C(A) is the union of two contours
C1(A) and C2(A) splitting up soon. Thus we keep at each
node u ∈ C(p),
• the maximum/minimum values of the interior/exterior of

both C1(A) and C2(A);
• gradient descending pointers leading to C1(A) and C2(A).

This information helps us decide before we reach a saddle
contour, whether it is worth visiting one or two of the contour
components that split off of it and if so, how to get there.

To summarize, each node only keeps a small constant amount
of information. Next we will explain how to get this informa-
tion. In the rest of this paper we assume a dense deployment
of sensors in which each node u has an value F(u). The nodes
have a communication graph G that models the pairs of nodes
who can directly communicate with each other. We assume no
two sensors have the same values, if they do, ties are broken
by their IDs (the one with higher ID is considered larger).

B. Sweep to identify saddle points
The construction of the contour tree and the spread of

information about the peaks/valleys of the signal field are

conducted by a sweep algorithm, similar to the one in [18].
Without loss of generality, we explain the details with the sweep
top down. A node has its higher (lower) neighbors as the subset
of neighbors with value strictly higher (lower) than itself.

Each sweep is initiated and labeled by a critical node (a
maximum, minimum or a saddle node). A node identifies itself
as a local maximum if it discovers that all its 1-hop neighbors
have value no greater than itself. It then initiates a sweep top
down. The sweep algorithm runs in a distributed fashion on
all the nodes. A node has two possible states, swept and not
swept. Each local maximum node initializes itself as a swept
node. When a node has all of its higher neighbors in the swept
state, it changes itself to be swept. The nodes who participate
in the sweep do not need to be synchronized and advance the
sweep frontier with their local knowledge.

In the sweep initiated by a local maximum p, the sweep
message carries the tuple (p,F(p)), i.e., the node ID and value
of p. Each node being swept will keep this information, as well
as from which nodes it received this information. We define a
descending path as a path in which each node has a value no
greater than its precedent. During the sweep the information
about a local maximum p is propagated along descending paths
from p. In addition, each node swept learns ascending pointers
which eventually lead to the local maximum.

If a node gets two sweep messages from different local
maxima, this indicates that two contour components start to
merge. Thus a saddle should be identified. Since the nodes
advance the sweep frontier in a distributed fashion, it may
happen that two nodes at the same time both receive the sweep
messages from two peaks. Thus we will need to define a saddle
rigorously and resolve the ambiguity.

Definition 2.1. We define a node to be a merge saddle node if it
is the one with highest iso-value with two descending paths from
different critical points (other merge saddles or local maxima),
i.e., it receives two sweep messages from different critical points.

Notice that this definition is recursive in nature. A merge saddle
is precisely the first node when two contour components merge,
as shown below.

Lemma 2.2. For a merge saddle q of two critical nodes p1, p2,
if we remove the sensors with values strictly smaller than F(q),
and obtain a subgraph G′, then q is the cut node of G′ (removing
q will result in two or more disconnected components.).

Proof: First, define L1 (L2) as the set of nodes in G′ with
ascending paths to p1 (p2). We claim that L1 and L2 has only
node q in common. If otherwise, q 6= q′ ∈ L1 ∩L2. Since q′ is
a node in G′, q′ has a higher value than q. Now this contradicts
with the definition that q is the saddle node.

Now we argue that once q is removed from G′, then the
set of nodes L1 is disconnected from L2. Suppose otherwise,
that there are two nodes x1 ∈ L1, x2 ∈ L2 and a path P
connecting them that does not go through q. This path P must
use nodes other than those in L1 ∪L2. Now take the first node
on P coming out of x1 that is not in L1 ∪ L2, denoted by y1.
Without loss of generality we can also assume that y1 is just



next to x1 (otherwise take x1 to be the preceding node of y1).
Now we must have F(y1) > F(x1), since y1 is not in L1.
Now take an ascending path from y1, it will lead eventually to
either a local maximum or a saddle, denoted by p3. Thus the
node q cannot be a merge saddle with p1, p2, since there will
be another saddle of p1 and p3, which is at least higher than
node y1 and q. This shows a contradiction.

We also remark that with a top-down sweep we do not
identify the saddle when one contour component splits into two
– the split saddles will be discovered when we do a bottom-up
sweep from local minima, in a completely symmetric fashion.

Now we show how the merge saddle node is identified in a
robust and efficient way. A node who is not a local minimum
and first receives two sweep messages from different peaks
P1, P2 will promote itself to be a potential merge saddle
S(P1, P2). In a distributed setting we need to worry about
two issues: (i) two nodes u, v (or more) may become potential
merge saddles S(P1, P2) for the same two peaks. In this case
only the real saddle node (the one with highest isovalue) should
survive. (ii) it may happen, if the sweep frontier does not
proceed in the same speed, that the lower saddle may be
discovered before the higher saddle, as shown in Figure 4.

sweep frontier

P3

C(S2)

P2

P1

S1

S2

C(S1)

Fig. 4. If the sweep from P2 proceeds faster and reaches S1 before it
reaches S2, then S1 will notice it is a potential saddle for S(P1, P2).
The correct contour tree should have the saddle S1 to be the merge
saddle for P1, S2.

The two problems will be resolved by the traversal of
contour component, described below. Once a node u becomes
a potential saddle for two peaks p1, p2, it starts to traverse the
contour component C(u), defined as,

Definition 2.3. The contour component C(u) for a node u is
defined as the set of nodes that have values above F(u) and
have a lower neighbor lower than F(u). If u is a merge saddle
for two critical points p1, p2, then C(u) is partitioned into
two components C1(u), C2(u) (sharing only node u) that have
ascending paths to p1, p2 respectively.

Fig. 5. A merge saddle (shown as the triangle) and its contour
component (in red).

Thus a potential saddle node u sends the tuple (p1, p2) to the
nodes in C(u). To resolve the first issue that several potential
saddle nodes compete for the real saddle, the traversal message

from u is suppressed if it hits a node x with a traversal message
from a winning potential saddle u′ (with higher value) for the
same two peaks. x stops forwarding the message from u. Thus
the traversal from u will stop because it either visits all the
nodes in C(u) or if u loses to some other potential saddle.

During the message dissemination, a backward pointer is
cached at each node in the traversal. Thus a tree rooted
at u, named T (u), is established and used for information
aggregation and for u to learn about whether it wins and
becomes the real saddle, or whether it loses the competition.
In particular, a leaf w in this aggregation tree will return to
its parent ‘loser’ if w has another winning traversal message,
otherwise return the sweep message it has received. If a node is
not yet swept, it waits for its sweep message before it reports
back. An interior node in the aggregation tree returns to its
parent the union of the messages from its children. Now the
potential saddle node u becomes the real saddle for p1, p2, if
(i) it does not get the ‘loser’ message from its aggregation tree;
(ii) all nodes in C(u) are swept by p1 or p2.

The new saddle q will start with a new top-down sweep and
they propagate the tuple (q,F(q),M(p1, p2)), where M(p1, p2)
indicates that q is the merge saddle of two critical points p1, p2.
All the nodes in C(q) are considered swept by q and the new
sweep moves forward.

Notice that the sweep from a merge saddle q is distinct
from the sweeps from p1, p2. In fact, the merge saddle q and
all the nodes who receive the traversal message from q do
not forward the sweep from p1 or p2 anymore. In the case
when a node w has already forwarded the sweep from p1

or p2 by the time it gets the traversal message, it simply
participates in the new sweep of q. Notice that again we do not
require synchronization. The old sweeps from p1 and p2 cannot
propagate very far from C(q), since q stopped participating;
thus, q’s lower neighbors cannot possibly be swept, and so on
and so forth.

If the merge saddle q also happens to be a local minimum
(in a setting with low discrete resolution), q is in fact a merge
saddle, a split saddle, and a local minimum all by itself. One
trouble this may potentially cause is that the old sweeps from
p1 and p2 may propagate without being dragged behind by q,
since q does not have lower neighbors. The system however,
will eventually arrive at the correct state, since the sweep from
saddle q will overwrite the old sweeps from p1, p2.

The traversal also resolves the second issue mentioned above.
In particular, S1 cannot win before the saddle S2 successfully
identifies itself and proceeds with its sweep — this is because
S1 will only get its aggregated message when all the nodes
in C(S1) have been swept, and S2 and its descendants cannot
be possibly swept before the saddle S2 is done. During the
aggregation phase for S1, S1 will learn about the sweep
messages on C(S1). A subtle issue is that some nodes in
C(S1) may considered them swept by P2 and report P2 back
to S1. Thus S1 learns that some of the nodes are swept by
S2 = M(P2, P3) and some nodes are swept by P2 or P3 alone.
Now S1 un-sweeps the nodes only swept by P2 or P3 and will



only proceed to be the real saddle for P1, S2 when all the nodes
are swept by P1, S2. In this case S1 is initially proposed to be
a saddle for P1, P2 but eventually becomes a saddle of P1, S2

when it wins.
To summarize, If there are two nodes both identifying

themselves as a merge saddle, then the one with lower value
will be swept and corrected (i.e., removed) eventually.

Lemma 2.4. With the algorithm above, there cannot be two
nodes both identifying themselves as the merge saddle of two
critical nodes. Thus the algorithm defines a unique contour tree
structure.

After the top-down sweep, we have identified all merge
saddles. By symmetry, we perform another sweep bottom-up
initiated by local minima. Thus, after both sweeps we identify
all saddle points and all nodes on the contour components of
these saddles, thereby obtaining inherently the entire contour
tree structure.

C. Construction of the contour tree

In this section we will extract the combinatorial contour tree
after the saddles are identified. Notice that during top-down
and bottom-up sweeps we have identified the merge tree (on all
local maxima/minima and merge saddles) and the split tree (on
all local minima/minima and split saddles). We will combine
them to the contour tree such that each critical node learns its
parent/child on the tree. Figure 3 (ii) (iii) shows the merge tree
and split tree, respectively.

We use descending and ascending paths to discover the
contour tree. Starting from a merge saddle p = M(P1, P2),
we follow ascending paths towards P1, P2 respectively. If the
ascending path towards P1 reaches P1 before it hits any other
critical contour level, then p will consider P1 its parent in
the contour tree. If the ascending path towards P2 hits a split
saddle contour S, then p will consider S as its other parent in
the contour tree. Similarly p also sends a descending path and
identify its child in the contour tree. The operations for a split
saddle, maximum/minimum are very similar and not repeated.

The operations require that an ascending path does not cross
a split saddle contour without noticing it. This is guaranteed
by the definition of a contour component. Suppose that in an
ascending path x has value F(x) < F(q), with q as a split
saddle node, and the next node on the path y has value F(y) ≥
F(q). Thus x must be on the saddle component C(q), because
x has a value below F(q) and has a neighbor y above it. This
guarantees that the contour tree will be detected precisely as
the combination of the merge tree and the split tree.

D. Information dissemination

With the contour tree constructed, we will need to dissemi-
nate information such that each node w learns

1) the maximum/minimum value, I+(w), I−(w), inside the
interior of its contour component C(w);

2) the maximum/minimum value, E+(w), E−(w), inside
the exterior of C(w).

This is done by information dissemination along the contour
tree. By symmetry, we first explain how a node w learns
about the maximum value inside the interior/exterior of its
contour component. Suppose that w is on an arc AB. Recall
that the interior of C(w) corresponds to the subtree containing
the ascending neighbor A, when C(w) is removed. Thus the
maximum of the exterior (interior) of C(p) for a local minimum
(maximum) p is its own value.

We explain the basic operation by using the contour tree. For
an arc e, the removal of w ∈ e leaves two subtrees T1 and T2,
the maximum value in T1 is sent through the arc, by a sweep, to
T2, and vice versa. In particular, we specify the dissemination
rules at saddle points. See Figure 6. First, examine a merge

E+
3

I+
2

max(I+
1 , I+

2 )

max(I+
1 , E+

3 )
p

max(I+
2 , E+

3 )

I+
1

E+
1

max(I+
3 , E+

1 )

max(E+
1 , E+

2 )I+
3

max(I+
3 , E+

2 )

E+
2

p

(i) (ii)

Fig. 6. Information dissemination on (i) merge saddle; (ii) split saddle.

saddle p with two incoming arcs e1, e2 and one outgoing arc
e3. Suppose by induction that the maximum is already learned
and propagated along the arcs e1, e2, e3 to saddle p, as shown
by I+

1 , I+
2 , E+

3 in the figure. The contour component C(p)
has two components C1(p), C2(p), corresponding to the nodes
with ascending paths along e1 and e2 respectively. Now for a
node w,
• if w ∈ C1(p), w sends E+

1 = max(I+
2 , E+

3 ,F(w)) along
the bottom-up sweep of e1;

• if w ∈ C2(p), w sends E+
2 = max(I+

1 , E+
3 ,F(w)) along

the bottom-up sweep of e2;
• if w ∈ C(p), w sends I+

3 = max(I+
1 , I+

2 ) along the top-
down sweep of e3.

This says that the nodes on C(q) will initiate a sweep bottom-up
along e1 and e2, and a top-down sweep along e3 and propagate
information as shown in Figure 6(i) accordingly. At a split
saddle, information propagates in a similar way as shown in
Figure 6(ii). We do not repeat here.

Notice that we do not need close synchronization among
these sweeps. In particular, the bottom-up sweep on e2 in
Figure 6(i) can start when both I+

1 and E+
3 are done, even

if the sweep I+
2 is not finished yet.

The information dissemination phase is initiated by the local
minima and local maxima. A local minimum p initiates a
bottom-up sweep with value E+(p) = F(p). A local maximum
p initiates a top-down sweep with value I+(p) = F(p). Along
each arc there are at most two sweeps in different directions.
In addition, the dissemination of both the minimum and the
maximum can be integrated in the same sweep so that the total
cost for this phase is roughly 2n.

For navigation purposes, we will also disseminate informa-
tion such that a node traveling in a gradient ascend path can
easily find ways to each of the two peaks that will split up on
the upcoming merge saddle p (so that we do not need to reach
the saddle to decide). Specifically, each node on C1(p) records



its hop count within C1(p) from the saddle p. This is called its
index. For a node w with p as its ascending merge saddle, if
w has higher neighbors with ascending pointers to p1, then w
has an ascending pointer to p1 and its index is the minimum
of the indices of those higher neighbors. A node may have
ascending pointers to both p1, p2, for example, the saddle node
p itself and all the nodes with ascending paths to p. Similarly
we disseminate the descending pointers along the ascending
paths from a split saddle until the next critical contour. This
information sweep can be combined with the previous sweep
thus it does not incur extra cost.

To summarize, the total communication cost is bounded
by the cost of sweeps, and the cost of traversing the saddle
contours. In the ideal case when the saddle contours do not
severely overlap and the sweeps are stopped in time by the
saddle contour traversal, both the sweep cost and the saddle
contour traversal cost are a constant factor of the network size.
The construction cost in practice is evaluated in simulations.

E. Handing noises

With real sensor data, the signal field may have noises, caus-
ing lots of local optima. In practice we will de-noise the signal
field by simplifying the contour tree during construction, to
improve the construction efficiency. At a saddle node q, we will
check the values of the two peaks p1, p2. Say F(p1) > F(p2).
If F(p2) − F(q) < ε and q is at least γ hops away from p2,
with ε and γ as upper bounds on the height and size of a bump
to be considered as noises, we consider p2 insignificant and
chop it off. See Figure 7 (i). At the saddle q, q will detect that
p2 is too small, thus it will be chopped at the value of F(q)
and the sweep of p1 will take over.

p1

q

p2
p1 p2

q

p2

q

p1

(i) (ii) (iii)
Fig. 7. (i) a bump considered as noise and flattened; (ii) too high to be
a noisy bump; (iii) too wide to be a noisy bump;

The above operations effectively ‘smooth out’ the signal
field, guided by local geometric measures. This can substan-
tially simplify the contour tree in a noisy data field. The
gradient routing for iso-contour queries will miss at most some
small components, whose sizes are controlled by ε and γ.

III. ISO-CONTOUR QUERIES

A. Gradient Descent Routing for Iso-contour Queries

The invariant we constructed so far enables an efficient gra-
dient routing for iso-contour queries with guaranteed success.
The gradient descent algorithm uses only the information stored
at a node and its immediate neighbors.

Starting at q we first check whether x is beyond the range
of the signal field, in which case we do not travel even one
step and immediately return ∅. Effectively, this is by checking
whether I+(q) < x and E+(q) < x, or I−(q) > x and
E−(q) > x. If not, we know that there must be some non-
empty iso-contours at level x and we use a greedy gradient

algorithm to find them. The main idea is to send the query
message along the contour tree, possibly splitting at internal
branches, and discover all components of the iso-contour of
interest. At the query node q,

• If I+(q) ≥ x ≥ I−(q), then q initiates a query message
to follow the gradient uphill.

• If E+(q) ≥ x ≥ E−(q), then q initiates a query message
to follow the gradient downhill.

We first explain the ascending query message from q. If a query
message hits a node w with isovalue x, it will then start a
traversal along the contour component C(w). This is done by
the same algorithm as explained earlier. At the same time, we
also need to check at w whether it is worth getting even higher
up — it is possible that at the interior of C(w) there are still
contours of value x. Again this is done by checking a higher
neighbor of w, say v, whether I+(v) ≥ x ≥ I−(v).

For an ascending query message at a node w, suppose w
stays on an arc with p being an ascending merge saddle. Then
we will check for two parents of p, denoted by p1, p2, whether
we will need to ascend on one peak or both of them. Luckily
this information has been disseminated for all the nodes on
this arc. Thus w will check the value range within the interior
of C1(p), C2(p) respectively. If the query value x falls in the
range, w will initiate an ascending query message for it. See
the red query in Figure 8 as an example of two query messages,
one for each peak.

p1 p

p2

q

q′

Fig. 8. Examples of two queries.

For an ascending query message towards say peak p2, if
w has ascending pointers to p2, this query message is simply
delivered by gradient ascent routing, as the query from q′

shown in Figure 8. If not, then the query message will follow a
contour at a random value (below F(p) and above F(w)) and
follow the index-decreasing path, in order to cross the ridge
and discover some ascending paths to p1. The descending query
message is delivered in a symmetric manner looking for contour
components at x. We may go a random number of hops further
after ascending pointers are discovered, in order to avoid always
using the nodes on the ridge. To summarize,

• The gradient routing algorithm is completely local and
distributed and successfully finds all contour components
at a given query level.

• Every step of the routing algorithm is justified, we send a
query message only when we are sure there is something
to be found. So no message will end up in vain.

• The routing scheme does not have to go through the
saddles or follow critical contours, thus does not overload
those nodes.



We note that this iso-contour query is the most basic query
of a family of queries on iso-contours. Other iso-contour
queries include: reporting the number of contours at value x, in
particular, is there a single contour component? Range-limited
queries (count/report contours within a value range)? These can
be handled with either the iso-contour query as a subroutine,
or by using a similar gradient routing algorithm. We omit the
details here as the extension is relatively straight-forward.

B. Value restricted routing

The contour tree can be used for value restricted routing:
given a source s and destination t, find a path P from s to t such
that at every node x on P , a ≤ F(x) ≤ b, abbreviated as a ≤
F(P) ≤ b. Recall that the contour tree can be considered as a
retraction R which maps every point on a contour component
to a point on the arc in the contour tree. Thus we have:

Lemma 3.1. For any path P between points s and t, the image
R(P) in the tree contains the unique path P ′ in the tree between
R(s) and R(t).

Theorem 3.2. A value restricted path exists in the network if
and only if a value restricted path exists in the contour tree.

Proof: In the following, we assume F(s),F(t) ∈ [a, b],
since otherwise the request is clearly invalid. First, a path P ′
in the contour tree implies a path in the network. Since the tree
is a retract of the domain, a path P ′ in the tree is also a path in
the network. Also it is possible to traverse from s to R(s) and
from t to R(t) along C(s) and C(t) respectively. Appending
these to P ′ gives the required path.

For the other direction, a path P in the network implies a path
in the tree. Let P ′ be the unique path between R(s) and R(t).
Then by lemma 3.1, P ′ ⊆ R(P). Since ∀p,F(R(p)) = F(p),
we have max(P ′) ≤ max(R(P)) = max(P ) and min(P ′) ≥
min(R(P)) = min(P ).

The results have a number of implications. The contour
components on path P ′ on the contour tree are ones that any
path from s to t in the network must intersect. In moving from
s to t along any path, we can keep record of number of times
each component appears, or simply push and pop them on a
stack. The ones remaining in the stack at the end constitute
the path P ′. Thus, a value restricted path can be obtained by
deforming any path connecting source and destination.

To answer the value restricted routing problem in a sensor
network, if we disseminate the entire contour tree to every node,
the a route in the network can be found in a greedy manner by
following the contour components connecting the source and
destination. If we do not store the entire tree at every sensor,
we can develop a node labeling scheme, such that by using
the labels of source and destination we can tell whether a path
exists or not.

Given a contour tree with m vertices, we first do a balanced
decomposition of the tree. For any tree there is a cut node,
whose removal will leave subtrees each of size no more than
2/3 of the total vertices. Repeatedly partition each subtree to get
a balanced decomposition of depth log m. The label of a node

u will be the concatenation of the IDs of all the cut nodes along
the path from u to the root of the decomposition tree, as well as
the max/min value of the paths from u to these cut nodes. Thus
the size of the label is O(log m). For any two nodes s and t, by
their labels, we can immediately find the lowest level cut node
w shared by them. The path between them will necessarily go
through w. Thus by taking the union of the range of the paths
from s, t to w, we get the value range of the path connecting
s, t in the contour tree.

With the labels pre-computed, each node p in the contour
component will store the labels of its ascending and descending
critical points. Thus one can use the labels of source and
destinations to answer the value restricted routing requests.

IV. SIMULATIONS

We implemented the algorithm for constructing contour tree
and for answering iso-contour queries with gradient routing.
Our simulations do not take into consideration many impor-
tant networking details, e.g., packet loss, delay and channel
contention. This set of simulations is a proof of concept and
aims to verify the correctness of the algorithm and evaluate the
feasibility of the approach on the algorithmic level.

MAX 

MIN 

SADDLE 

SADDLE 

(i) (ii)
Fig. 9. (i) Elevation map of West Reno (obtained from usgs.gov). (ii)
The critical points discovered by our contour tree algorithm with a
2500 node sampling.

Unless specified otherwise, the simulation setup consists of
1600 nodes, deployed in a 16 units by 16 units square region
with unit disk graph as the communication model. Nodes are
deployed in a perturbed-grid distribution, where each node is
assigned a random position within its grid square. The average
number of neighbors per node is about 21. The sensors sample
from a continuous signal field shown as in Figure 10 (i).
A. Preprocessing cost for contour tree construction

We first evaluate the cost of contour tree construction. We
vary the number of nodes with the same signal field and count
the total number of messages, assuming a broadcast medium.
In our implementation, a random node on the sweep frontier
is selected to become swept. The number of messages grows
linearly in the number of nodes as shown in Figure 10 (ii). The
constant factor is about 6 ∼ 7.
B. Cost of iso-contour queries

We compare the cost of gradient routing versus a global
solution of using the minimum spanning tree to connect the
query node q and all the nodes on the iso-contour at value
x, which is a 2-approximation of the minimum Steiner tree,
the optimal (minimum cost) solution if the full knowledge of
the signal field is available. We take 300 random queries with



0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Nodes

T
ot

al
 C

om
m

un
ic

at
io

n 
C

os
t

0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30

40

50

60

70

80

90

100

Ratio of Cost with MST

P
er

ce
nt

ag
e 

of
 Q

ue
rie

s

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

100

Number of Messages

P
er

ce
nt

ag
e 

of
 n

od
es

(i) (ii) (iii) (iv)

Fig. 10. (i) The continuous signal field sampled by the distributed sensors; (ii) The message complexity of contour tree construction; (iii) The
CDF of the ratio of our query cost v.s. the cost of MST; (iii) The CDF of the node load distribution.

q randomly selected within the field of deployment and the
query value x randomly chosen between the global minimum
and global maximum values. For each query, we take the ratio
of our query cost versus the cost of MST (both in terms of
number of hops). We calculated the cumulative distribution,
i.e., the percentage of queries for which the ratio is below x,
in Figure 10 (iii). Roughly all cases have a ratio below 2 and
80% of the queries have a ratio below 1.4.

C. Load balancing

In the same setup as the previous section, we plot the load on
every node involved in the query procedure. A node is involved
if it is on the routing path or is on the iso-contour to be queried.
The maximum message load on any node is 148, the average
message load is about 48.7. The load distribution is shown in
Figure 10 (iv), in which 90% of the nodes have a message load
of below 70.

V. CONCLUSION AND FUTURE WORK

In this paper we presented the distributed construction of
a contour tree and its application in iso-contour queries by
gradient routing with guaranteed delivery. Our future work is to
update and maintain the contour tree for a time-varying signal
field [21].

Acknowledgement. We would like to thank the support from Stony
Brook CEWIT center. X. Zhu, R. Sarkar and J. Gao would like to
acknowledge support though NSF CAREER Award CNS-0643687. J.
Mitchell would like to acknowledge support by NSF CCF-0431030,
CCF-0528209, CCF-0729019 and by Metron Aviation, under subcon-
tracts from NASA Ames. L. Guibas would like to acknowledge NSF
grants CNS-0626151, CCF-0634803, and Army grant W911NF-07-2-
0027-1.

REFERENCES

[1] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava,
“Coverage problems in wireless ad-hoc sensor networks,” in Proc. of
INFOCOM 2001, vol. 3, 2001, pp. 1380–1387.

[2] S. Kumar, T. H. Lai, and J. Balogh, “On k-coverage in a mostly sleeping
sensor network,” in MobiCom ’04: Proceedings of the 10th annual
international conference on Mobile computing and networking, 2004, pp.
144–158.

[3] X. Bai, S. Kuma, D. Xua, Z. Yun, and T. H. La, “Deploying wireless
sensors to achieve both coverage and connectivity,” in MobiHoc ’06:
Proceedings of the seventh ACM international symposium on Mobile ad
hoc networking and computing, 2006, pp. 131–142.

[4] H. Zhang and J. C. Hou, “Maintaining sensing coverage and connectivity
in large sensor networks,” Wireless Ad Hoc and Sensor Networks: An
International Journal, vol. 1, no. 1-2, pp. 89–123, January 2005.

[5] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek, “Beyond av-
erage: Toward sophisticated sensing with queries,” in Proc. Information
Processing in Sensor Networks (IPSN), April 2003, pp. 63–79.

[6] X. Meng, L. Li, T. Nandagopal, and S. Lu, “Contour maps: Monitoring
and diagnosis in sensor networks,” Computer Networks.

[7] S. Gandhi, J. Hershberger, and S. Suri, “Approximate isocontours and
spatial summaries for sensor networks,” in IPSN’07: Proceedings of
the 6th international conference on Information processing in sensor
networks, 2007, pp. 400–409.

[8] M. Chu, H. Haussecker, and F. Zhao, “Scalable information-driven sensor
querying and routing for ad hoc heterogeneous sensor networks,” Int’l J.
High Performance Computing Applications, vol. 16, no. 3, pp. 90–110,
2002.

[9] J. Liu, F. Zhao, and D. Petrovic, “Information-directed routing in ad hoc
sensor networks,” IEEE Journal on Selected Areas in Communications,
vol. 23, no. 4, pp. 851–861, April 2005.

[10] J. Faruque and A. Helmy, “RUGGED: RoUting on finGerprint Gradients
in sEnsor Networks,” in IEEE Int’l Conf. on Pervasive Services (ICPS),
July 2004.

[11] J. Faruque, K. Psounis, and A. Helmy, “Analysis of gradient-based
routing protocols in sensor networks,” in IEEE/ACM Int’l Conference
on Distributed Computing in Sensor Systems (DCOSS), June 2005.

[12] F. Ye, G. Zhong, S. Lu, and L. Zhang, “GRAdient broadcast: A robust
data delivery protocol for large scale sensor networks,” ACM Wireless
Networks (WINET), vol. 11, no. 2, March 2005.

[13] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore,
“Contour trees and small seed sets for isosurface traversal,” in Proc. 13th
Annu. ACM Sympos. Comput. Geom., 1997, pp. 212–220.

[14] J. W. Milnor, Morse Theory. Princeton, NJ: Princeton University Press,
1963.

[15] M. de Berg and M. van Kreveld, “Trekking in the alps without freezing
or getting tired,” Algorithmica, vol. 18, pp. 306–323, 1997.

[16] H. Carr, J. Snoeyink, and U. Axen, “Computing contour trees in all di-
mensions,” in Proceedings of the eleventh annual ACM-SIAM symposium
on Discrete algorithms (SODA), 2000, pp. 918–926.

[17] S. P. Tarasov and M. N. Vyalyi, “Construction of contour trees in 3D
in O(n log n) steps,” in SCG ’98: Proceedings of the fourteenth annual
symposium on Computational geometry, 1998, pp. 68–75.

[18] P. Skraba, Q. Fang, A. Nguyen, and L. Guibas, “Sweeps over wireless
sensor networks,” in IPSN ’06: Proceedings of the fifth international
conference on Information processing in sensor networks, 2006, pp. 143–
151.

[19] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote, “Simple and optimal output-
sensitive construction of contour trees using monotone paths,” Comput.
Geom. Theory Appl., vol. 30, no. 2, pp. 165–195, 2005.

[20] H. Carr, J. Snoeyink, and M. van de Panne, “Simplifying flexible
isosurfaces using local geometric measures,” in VIS ’04: Proceedings of
the conference on Visualization ’04, 2004, pp. 497–504.

[21] H. Edelsbrunner, J. Harer, A. Mascarenhas, and V. Pascucci, “Time-
varying reeb graphs for continuous space-time data,” in SCG ’04: Pro-
ceedings of the twentieth annual symposium on Computational geometry,
2004, pp. 366–372.


