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Abstract. The Earth Mover’s Distance (EMD) is an intuitive and nat-
ural distance metric for comparing two histograms or probability distri-
butions. It provides a distance value as well as a flow-network indicating
how the probability mass is optimally transported between the bins. In
traditional EMD, the ground distance between the bins is pre-defined.
Instead, we propose to jointly optimize the ground distance matrix and
the EMD flow-network based on a partial ordering of histogram distances
in an optimization framework. Our method is further extended to accep-
t information from general labeled pairs. The trained ground distance
better reflects the cross-bin relationships, hence produces more accurate
EMD values and flow-networks. Two computer vision applications are
used to demonstrate the effectiveness of the algorithm: first, we apply
the optimized EMD value to face verification, and achieve state-of-the-
art performance on the PubFig and the LFW data sets; second, the
learned EMD flow-network is used to analyze face attribute changes, ob-
taining consistent paths that demonstrate intuitive transitions on certain
facial attributes.

1 Introduction

Histogram-like descriptors such as SIFT [1], shape context [2], and Bag-of-Visual-
Words (BoVW) [3] have been successfully applied to various computer vision
tasks. To measure distance between two such descriptors, common choices are
the L2 distance, χ

2 distance, and K-L divergence. These distance metrics assume,
however, that the histogram bins are perfectly aligned and only account for the
difference between corresponding bins. The Earth Mover’s Distance (EMD) [4]
was proposed to mitigate this assumption. It accounts for cross-bin information,
and has been shown to output perceptually natural distances for applications
including face recognition [5], visual tracking [6], and shape matching [7].

To calculate the EMD, one needs to specify a ground distance matrix, which
defines the distance between each pair of histogram bins. The choice of the
ground distance matrix has mostly been empirical, ad hoc, and highly application-
dependent. However, inaccurate ground distances can generate suboptimal EMD-
s. At the same time, handcrafting a ground distance matrix for each specific
application based on domain knowledge is very challenging and hard to gener-
alize. For example, if we describe a face using a histogram-like descriptor based
on its affinity or similarity to a set of predefined reference identities (Sec.3.1),
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where each bin corresponds to a collection of face images of one person (Fig.1),
it is crucial to define a proper ground distance between the identities in order
to compute meaningful EMDs. However, it is difficult to hand-craft a ground
distance that agrees with the perceptual difference between these faces. As a
result, we propose here to automatically learn an optimal ground distance.

Fig. 1: Histogram-like descriptor for a given face. Learning an accurate ground distance
is crucial for good performance of EMD. Face images are from the PubFig data set.

In addition to the distance value, the EMD produces a flow-network repre-
senting how the mass in the histogram bins is transported. Little attention has
been paid to this byproduct, but the flow-network actually contains much more
information than the scalar distance value: it reveals how two histograms are
cross-matched and how one histogram is transformed into the other. In image
retrieval, if each image is represented by a histogram (such as BoVW), there
could be many histograms (images) that differ from a given histogram (query
image) by the same amount (same EMD value), but each individual flow-network
explains how one image is dissimilar to the query in its own distinctive way.

In this paper, we propose to jointly learn the ground distance matrix and the
flow-network of the EMD, so that the calculated EMD maximally agrees with
the provided training information. The problem is formulated in a bi-convex
optimization framework, which can take information from either partial ordering
of the histogram distances or labeled pairs of the samples.

Two applications of the proposed method are discussed: one uses the learned
EMD for face verification, and the other investigates the flow-networks to dis-
cover internal structures within a set of faces. These two applications clearly
show the superiority of proposed method:

1. With the supervised EMD learning algorithm, we obtain a ground distance
matrix that better reflects the true distance between histogram bins, yielding
a more accurate EMD value.

2. In addition, we obtain flow-networks that better reflect the cross-bin match-
ing between two histograms, yielding better description of their differences.

1.1 Related Work

Learning a proper distance metric is important for object recognition, image
classification, image retrieval, etc. In distance learning, the training data are
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usually provided in the form of pairwise constraints: pairs of “similar”samples,
and pairs of “dissimilar” ones. The learning algorithm then transforms the data
into a new space so that the distance metric in the new space agrees better
with the supervision data. Some approaches learn a global distance function
that satisfies all training constraints [8, 9], while others learn a local distance
function that only agrees with local training information [10, 11].

Although distance learning methods for Lp distance, Mahalanobis distance,
cosine similarity, etc., have been well studied, distance learning for EMD is large-
ly unexplored. Unlike many distance functions, the EMD is the optimal value
of a linear programming problem, and does not have an explicit form in gen-
eral. Therefore, the classic approach of transforming the samples into a new
space does not naturally apply to EMD. Cuturi et al. [12] formulated the prob-
lem as minimization of the difference between two polyhedral convex functions,
but the training data are required to be pairwise similarity values between all
training histograms. Wang et al. [13] assumed that the ground distance between
histogram bins is Mahalanobis distance, and optimized over the positive semi-
definite covariance matrix. Our proposed algorithm works in a more general
setting both in terms of the input and the output: the input can be any training
pairs of samples that are labeled as “similar” or “dissimilar”, and the output is
a general ground distance matrix rather than a covariance matrix.

There are many potential applications of the learned EMD. In this paper, we
investigate its application in face verification. Distance learning for face verifica-
tion has been studied in several ways. A mapping function was learned to map
input faces into a space in which the L1 distance approximates the semantic
distance [14]. A logistic discriminant approach and a nearest neighbor approach
were also proposed to learn the metric from labeled face pairs [15]. A transfor-
mation matrix was learned so that cosine similarity between faces performs well
in the transformed subspace [16].

Attributes are also powerful tools to describe a face. For example, categorical
attributes have been used for face verification [17]. Besides detecting presence
or absence of attributes, a ranking function was learned to predict the relative
strength of an attribute [18]. These works assigned attributes to each identity,
while certain attributes such as pose, expression, etc., are associated with in-
dividual face images. In this paper, we use the flow-network to automatically
detect the transition “direction” of certain attributes, and organize face images
into consistent paths along these directions.

2 Supervised Earth Mover’s Distance

The Earth Mover’s Distance (EMD) was introduced to the computer vision
community as a technique for image retrieval [4] . It is also known as the Mallows
distance [19] in statistical literature. In its continuous form, it is a special case
of the general Monge-Kantorovich class of transportation metrics [20, 21], also
known as Wasserstein distances. We first introduce the basic setups of EMD,
and then describe our formulation of supervised EMD learning.
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2.1 Earth Mover’s Distance

The EMD is a distance measurement between two histograms or distributions,
referred to as the source and the destination, respectively. The source histogram
p ∈ Rn is regarded as piles of earth at various locations (bins). The amount of
earth in each pile equals to the value of each corresponding bin. The destination
histogram q ∈ Rn is regarded as several holes, the values of which represent
their capacities. The EMD equals to the minimum amount of effort required to
move all the earth from the source to the destination. A ground distance matrix
D = {dij} contains elements dij that defines the cost of moving one unit of earth
from the i-th bin of p to the j-th bin of q.

To solve for EMD, a flow matrix F = {fij} needs to be found with fij
denoting the amount of earth moved from the i-th bin of p to the j-th bin of q.
A convex feasible set for the flow matrix is defined with respect to p and q as:

C (p,q) =
{
f | f = vec (F ) , F ∈ Rn×n, FT1 = q, F1 = p, fij ≥ 0, ∀ i, j

}
, (1)

where we rewrite the flow matrix F into a vector f for notation simplicity. This
feasible set ensures the nonnegativity of the flows, and enforces conservation of
the earth amount and the hole capacity. Here we only consider the case when
1Tp = 1Tq, but the un-normalized case can be dealt with by normalizing the two
histograms to have the same L1 norm, or by moving as much earth as feasible.
We also rewrite the ground distance matrix D in a vector form d = vec (D). The
EMD problem is then formulated as a convex optimization problem:

EMD(p,q) = min
f∈C(p,q)

dT f , (2)

which is a linear programming problem, and more specifically, a transportation
problem. Efficient computation of EMD has been studied extensively [22–24].

2.2 Supervised EMD Learning with Triplets

The EMD is highly influenced by the ground distance. However, in traditional
EMD, the ground distance is usually predefined as Euclidean distance, city-
block distance, etc., which can be inaccurate in many cases. Here we propose to
automatically learn the ground distance based on supervised information.

Suppose we have N triplets of histograms {(pi,qi, ri) , i = 1, · · · , N}. For
each triplet, it’s given that the distance between pi and ri is no smaller than
that between pi and qi, either by explicitly comparing the pairs, or by knowing
that pi and qi belong to the same class while pi and ri don’t. Therefore,

EMD(pi, ri) ≥ EMD(pi,qi) , ∀i. (3)

Intuitively, we’d like to learn a ground distance d so that the resulting EMD
values satisfy as many constraints as possible. However, this combinatorial prob-
lem is NP-hard. Instead, we allow slackness in each constraint:

EMD(pi, ri)− EMD(pi,qi) ≥ 1− ξi, ξi ≥ 0, ∀i, (4)
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where the non-negative slack variables ξi allows violation of constraint i with cer-
tain penalty in the objective function. Use fi to denote the optimal flow between
pi and qi, and gi to denote the optimal flow between pi and ri, Eq.4 can be
rewritten as EMD(pi, ri)−EMD(pi,qi) = dT (gi−fi) ≥ 1−ξi. We construct two
matrices using the flows from all of the N training triplets: Mf = [f1, f2, . . . , fN ]
and Mg = [g1,g2, . . . ,gN ]. The overall problem is finally formulated as:

min. ∥d∥22 + C · ξξξT1
s.t. dT (Mg −Mf ) ≥ 1T − ξξξT , ξξξ ≥ 0, d ∈ D

fi = argmin
f∈C(pi,qi)

dT f , gi = argmin
g∈C(qi,ri)

dTg, ∀i, (5)

where C is a constant that makes a trade-off between the empirical error and
the L2 norm of d, and helps to control overfitting. Vector ξξξ ∈ RN collects all
slack variables. The convex feasible domain for the ground distance is

D =
{
d | d = vec(D), D ∈ Rn×n, Dij ≥ 0, Dii = 0, ∀i, j

}
. (6)

Feasible sets C(pi,qi) and C(pi, ri) are denoted in the same way as in Eq. 1.

2.3 Supervised EMD in a More General Setting

The method proposed in Sec. 2.2 can be extended to cases where triplet com-
parisons are not available. Instead, supervision information is provided by set-
s of similar pairs {(pi,qi) , i = 1, · · · , Ns} and dissimilar pairs {(rj , sj) , j =
1, · · · , Nd}. These pairs do not share common samples, therefore cannot for-
m triplets. However, the intuition that similar pairs should have smaller EMD
compared to dissimilar pairs still holds. The algorithm finds a ground distance
matrix such that the two sets of distances, {EMD(pi,qi) , i = 1, · · · , Ns} and
{EMD(rj , sj) , j = 1, · · · , Nd}, are separated as much as possible. The problem
is naturally transformed into a max-margin problem:

min. ∥d∥22 + C
(
ξξξTf 1+ ξξξTg 1

)
s.t. dTMf ≤ −1T + ξξξTf + t, ξξξf ≥ 0

dTMg ≥ 1T − ξξξTg + t, ξξξg ≥ 0, d ∈ D

fi = argmin
f∈C(pi,qi)

dT f , gi = argmin
g∈C(ri,si)

dTg, ∀i, (7)

where the scalar t can be an arbitrary separation threshold of the two sets of
EMDs, allowing the linear classifier not to pass the origin. Mf and Mg are two
matrices formed by the flows of similar pairs and dissimilar pairs, respectively.
The slack variables are collected in ξξξf ∈ RNs and ξξξg ∈ RNd respectively.

2.4 Solving for Optimal Ground Distance

The learning-by-triplet idea has been used for Euclidean distance learning in a
convex optimization setting [10]. However, EMD itself is an optimization prob-
lem, and the overall problem here is not convex any more. It is instead bi-convex
with respect to the two sets of variables {d} and {Mf ,Mg}.



6 Fan Wang and Leonidas J. Guibas

More specifically, take the optimization problem in Eq. 5 as an example,
given the ground distance d, the problem can be decoupled into 2N independent
standard EMD problems, solving for fi and gi, respectively. Given the flows Mf

and Mg, the problem can be re-written as:

min. ∥d∥22 + C · ξξξT1
s.t. dT (Mg −Mf ) ≥ 1T − ξξξT , ξξξ ≥ 0, d ∈ D, (8)

which is a Quadratic Programming (QP) that is similar to the soft-margin SVM.
Similarly, for the the optimization problem in Eq. 7, if d is fixed, it decouples

into Ns + Nd independent linear programming problems. If the flows fi and gi

are fixed, the problem can again be rewritten as a QP:

min. ∥d∥22 + C
(
ξξξTf 1+ ξξξTg 1

)
s.t. dTMf ≤ −1T + ξξξTf + t, ξξξf ≥ 0

dTMg ≥ 1T − ξξξTg + t, ξξξg ≥ 0, d ∈ D. (9)

If the flows fi and gj are regarded as high-dimensional sample points of two
classes, the algorithm is essentially looking for a SVM classifier to separate these
two classes of samples with the largest margin.

Finally, the supervised EMD learning problem is solved using an alternating
optimization framework as below:

Input: Initial estimation of the ground distance matrix d0 using Euclidean
distance or any other suitable metric, threshold ε, and damping factor α.
k = 0;
while

∥∥dk − dk−1
∥∥
2
≥ ε do

Given ground distance dk−1, solve for the flows Mk
f and Mk

g ;

Given the flows Mk
f and Mk

g , solve for the ground distance dk using Eq. 8
or Eq. 9;
dk ← dk−1 + α(dk − dk−1);
k ← k + 1;

end while

At each iteration, dk−1 from the last update is used as the objective function
coefficients to solve for new flows Mk

f and Mk
g through linear programming

(Eq.2), whose feasible region is kept unchanged during all iterations. If ∆d =
dk−1 − dk−2 is sufficiently small, although the optimal value of the LP might
change, the optimal solutions fi and gi will be unchanged [25]. Therefore, d will
not change in the next iteration, meaning the iteration stops and the overall
algorithm converges.

The damping factor 0 < α ≤ 1 is introduced to further aid convergence and
control the trade-off between convergence speed and stability of the iterations. A
small α creates conservative but stable steps in the iterations. With a large α, the
iterations are less stable, but have higher chances to jump out of local minimum.
α is fixed as 0.1 in our experiments. It’s also possible to have a varying α that is
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large at the beginning and shrinks with iterations. The algorithm is implemented
using CVX, a package for specifying and solving convex programs [26].

3 Face Verification Using Supervised EMD

3.1 A Face Descriptor Based on Reference Identities

In this section, we apply the proposed supervised EMD algorithm to face verifi-
cation, where each face is represented by a histogram-like descriptor as described
below.

Often times, we describe someone’s facial appearance as “he looks more like
John, but not like Jack”. What our brain might be doing when recognizing a face
is comparing an unknown face with the face templates in our memories. Based
on this intuition, we utilize a face descriptor based on the similarity values of
the face to some known templates:

We first select a set of known identities, called reference identities, each rep-
resented by a set of diverse face images of one person. These sets serve as basis
to represent a new test face in the global face space. We denote the faces of
the i-th reference person as a matrix Xi, with each column being a face of this
person. The total K identities in the reference data set are denoted collectively
as X = [X1, X2, · · · , XK ]. A test face y is then reconstructed by all the faces in
the reference set with a Lp regularization term:

min. ∥y −Xααα∥2 + λ ∥ααα∥p , (10)

where we chose p = 2 since it has been shown to be robust to noise [27].
The solution of the convex optimization problem above gives an encoding

of the test face as y ≈ Xααα, where ααα = [ααα1;ααα2; . . . ;αααK ] with αααi containing the
coefficients associated with the i-th reference identity. It is observed that if y is
from the i-th class, most coefficients in αααk are close to zero for k ̸= i, and only αααi

has significant entries. The reconstruction error using only the coefficients from
the i-th identity gives a strong indication of the affinity between the face and
the i-th identity. We calculate the reconstruction error as:

ei (y) = ∥y −Xiαααi∥2 . (11)

The vector of the reconstruction errors, e (y) = [e1(y), e2(y), . . . , eK(y)], de-
scribes the relationship between the test face and each reference identity, even
if y does not belong to any of these identities.

Finally the error vector e (y) is transformed to a similarity score vector s (y)

by a Gaussian function si(y) = exp(− 1
2σ2

i
(ei(y)− µi)

2
), and normalized to have

L1 norm equal to unity, giving our final histogram-like face descriptor as illustrat-
ed in Fig.1. We chose µi and σ2

i as the mean and variance of all the reconstruction
errors for the i-th identity.

The idea of “reference identity” has been utilized before [17]. The reference
identities are pre-selected independent of the test faces. There is no specific
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restriction on the choices of the reference identities, but efforts are made to
ensure that the set contains sufficient variations of gender, race, and various face
attributes, to allow for an unbiased face representation.

3.2 Face Verification Framework

In our experiments, we extend the representation in Sec. 3.1 to multiple local
facial parts to make the reference-based representation robust to variations of
pose, illumination, expression, etc. We detect M fiducial points for each face,
representing points-of-interest such as eye corners, nose tip, and mouth corners.
The procedure in Sec. 3.1 is repeated for each fiducial point to obtain M his-
tograms for each face. The proposed supervised EMD framework (Sec. 2) is used
to learn a ground distance matrix for each of the M fiducial points, using similar
and dissimilar pairs from the training data set. In the testing phase, the super-
vised EMD values between two faces are calculated for each of the M fiducial
points, and the M -dimensional distance vector is fed into a pre-trained SVM to
decide whether or not the two faces belong to the same person.

4 EMD Flow for Face Attribute Analysis

The scalar value of the supervised EMD gives the dissimilarity between two his-
tograms, but much richer information regarding how the two histograms differ
from each other is contained in the flow-network, indicating the optimal transfor-
mation between the histograms across all bins. For example, several faces might
have exactly the same EMD to an anchor face, but the information about how
they differ from the anchor image is contained in the flow-network. Note that the
flow-network is a natural byproduct of the EMD calculation, without requiring
any extra computation. In this section, we utilize the flow-network to analyze
face attribute changes within a set of faces of a same person.

If we define a sequence as a re-ordering of {(i, j) | i, j = 1, 2, . . . , n}, a Monge
sequence is then defined as a sequence in which for every (i, j) that precedes
(i, s) and (r, j), the ground distance matrix D satisfies dij + drs ≤ dis + drj .

If a Monge sequence exists, a greedy algorithm based on the Monge sequence
will yield the optimal solution of EMD [28]. If a full-length Monge sequence
doesn’t exist, the longest subsequence satisfying the Monge condition is called a
Monge subsequence. The entries in the flow matrix corresponding to the elements
in the Monge sequence or subsequence are partially determined by the ground
distance, thus are insensitive to the actual histograms being compared.

After finding the longest Monge subsequence given the ground distance ma-
trix [28], we decompose the flow matrices into two parts: one containing the flows
that result from the Monge subsequence, which is denoted as the Monge flow,
the other containing the remaining entries in the flow matrices that cannot be
solved using the greedy algorithm, denoted as the non-Monge flow. To measure
distance between two flow-networks, we choose L2 distance between the non-
Monge components of the two flows, because these are the components of the
flows that are highly dependent on the histograms involved.
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Now that we know how to evaluate similarity between two flows, given two
faces A and B where B is the nearest neighbor of A in terms of EMD, we can
find a face C that differs from A in the same way as B does. This is specified
by requiring the distance between the non-Monge components of the two flows
Flow(A → B) and Flow(A → C) to be smaller than a certain threshold. We
connect the link A → B → C to indicate this relationship, and B precedes C
because EMD(A,B) < EMD(A,C). If this procedure is performed repetitively,
a longer path A→ B → C → D → · · · can be discovered. Since the flows in the
path are consistent, we often observe that the path indicates variation from face
A along a certain interpretable attribute.

If we repeat the procedure above by setting B to all close neighbors of A,
we can find multiple paths to transit A to other faces, each corresponding to
a transition along a specific facial attribute. Please see Sec. 5.2 and Fig. 6a for
more detailed examples.

5 Experimental Results

5.1 Face Verification on Standard Face Data Sets

We evaluate the proposed algorithm on two standard data sets: Labeled Faces
in the Wild (LFW) [29] and PubFig [17]. These two data sets both contain real-
world face images of public figures with a large degree of variations in pose, age,
expression, race, illumination, etc.

LFW contains 13,233 face images from news photos. We follow the exact
restricted setting as specified in the original paper [29]. The performance is
measured through 10-fold cross validation on 6,000 face pairs. Please refer to
the LFW paper [29] for more detailed description of the experimental setup.

PubFig contains image URLs collected from the Internet by a face detector.
It includes 58,797 images of 200 public figures or celebrities. We downloaded
all 50,948 images that were still available online when the experiment was per-
formed (Sep. 2011). The provided face bounding box for each image was also
verified by the OpenCV face detector, because some images pointed to by the
provided URLs have been resized or even completely changed. Face bounding
boxes with severe discrepancies were filtered out. The final data set contains
45,068 face images. The PubFig data set was divided into 2 non-overlapping
parts: development set and evaluation set, containing images of 60 and 140 in-
dividuals, respectively. Among the images we’ve successfully downloaded and
verified, these two sets include 12,603 and 32,465 images, respectively.

Improved Ground Distance Matrix by Learning In this experiment, we
use holistic representation of each face to generate histogram descriptor, i.e.,
each face is resized to 64 × 64 and reduced to 500 dimensions by PCA. The
reference set were selected as the development set of PubFig with 60 identities.

The ground distance should be the distance between identities, which is d-
ifficult to define. We would like to investigate how the supervised EMD affects
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Fig. 2: Ground distance matrix before and after learning, visualized by MDS. The three
identities shown on the top were close to each other before learning, but are separated
after learning because they do not look alike. Moreover, the first face was moved further
away from the other two, because it’s more different from the other two, most likely
because of the absence of eye glasses. For the three identities at the bottom, the first
and the third persons were close to each other before learning, while the second person
was some distance away. After learning, the first and the second person was pushed
closer because they actually look alike, while the third person was placed further away.
Note that only one representative face image is shown for each of the six identities.

the ground distance matrix. The initial ground distance between the reference
identities is defined as the Hausdorff distance between the PCA features of the
two corresponding groups of face images. The training data from the face pairs
in PubFig are used to learn a new ground distance using supervised EMD.

We visualize the ground distance matrices before and after training in a 2D
space by Multidimensional Scaling (MDS) in Fig. 2, with each dot represent-
ing an identity. The figure shows that the ground distance after learning (right,
blue dots) makes more sense compared to that before learning (left, red dot-
s). Please refer to the caption of Fig. 2 for more details. Using this improved
ground distance, it’s reasonable to expect the resulting EMD to improve over
the original EMD based on the ad hoc ground distance. We will demonstrate
this experimentally in the next section.

Face Verification on Real-world Data Sets We evaluate the performance
of face verification on the two real-world data sets, still using the 60 identities
from PubFig as reference identities. Local face features are used for robustness
as described in Sec. 3.2. Seven fiducial points are detected for each face [30],
and the local facial patches at 3 different scales (4 × 4, 8 × 8, and 12 × 12) are
extracted as the local representation. Two faces are compared by 7×3 = 21 local
descriptors plus the holistic descriptor, yielding 22 EMD values. These values
are then fed in an SVM classifier to determine whether these two faces belong
to the same person. During cross-validation, the training set for EMD learning
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and for learning the SVM classifier are both changed correspondingly in each
fold. The test set is excluded from all types of training.

The face verification performance is evaluated by the average ROC curve over
10-fold cross validation on PubFig and LFW. The performance of our method
before and after EMD training are first compared with Attribute classifiers [17]
for PubFig data in Fig. 3. Our method is then evaluated on LFW In Fig. 5
comparing with the following methods: traditional eigenface [31] utilizes the least
information and shows the worst performance; CSML+SVM [16], DML-eig [32]
and Hybrid aligned [33] included outside data for alignment or feature extraction,
so does our method; Attribute and Similie [17] and Multiple LE [34] had similar
framework to ours, although they included more outside data for training. The
average accuracy for LFW is listed in Fig. 4. Even though only simple histogram-
like descriptors are used, the proposed supervised EMD framework still achieves
state-of-the-art performance on the two data sets.

The proposed algorithm addresses the application of face verification from a
unique angle, without special tuning of parameters or using handcrafted features.
Although the results are only slightly better than the state-of-the-art, the tools
used here are completely different, thus suggesting opportunities for combined
approaches that may perform even better.

5.2 Face Attribute Transitions Using EMD

Using the same setup as in Sec. 5.1, we find paths in face data sets that have
consistent attribute changes using the strategies in Sec. 4. Several paths within
faces of one identity are shown in Fig. 6a, each indicated by a blue surrounding
box. All paths found by analyzing the EMD flows reflect some transition on
certain facial attribute. Please see the figure caption for detailed explanations.
The transition paths reveal structures present in the underlying manifold of the
face space.

Since a flow can represent the changes of face attributes between face pairs,
it can be used to find new face pairs that show similar attribute change. For
example, in Fig. 6b, given a pair of example faces in the blue box showing

Fig. 3: ROC curve on PubFig.

Method Accuracy ± Std

Supervised EMD 0.8853 ±±± 0.0107
CSML+SVM 0.8800 ± 0.0037
DML-eig combined 0.8565 ± 0.0056
Attribute and Similie classifiers 0.8529 ± 0.0123
Multiple LE+comp 0.8445± 0.0046
Hybrid, aligned 0.8398 ± 0.0035
EMD w/o Learning 0.7977 ± 0.0121
Eigenfaces 0.6002 ± 0.0079

Fig. 4: Performance comparison on LFW.
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(a) ROC curve (b) ROC curve amplified

Fig. 5: ROC curve of face verification on LFW. The blue box in (a) is amplified in (b).

expression changing from smiling to neutral, we try to transfer the same change
to the smiling faces in the red boxes. To do this, we impose the EMD flow
between the given pair to the descriptor of each smiling face in the red boxes.
The resulting new descriptor is the used to retrieve a face image whose descriptor
is the closest to the new descriptor. The results are shown in the second column.
By applying the flow representing the change of “smiling→neutral”, we have
successfully transformed other smiling faces to neutral ones. Note that before
transferring, the given flow needs to be normalized to have uniform L1 norm on
each row to ensure relative independence to the source histogram.

6 Discussion and Conclusion

In this paper, we have presented an algorithm that jointly learns a ground dis-
tance matrix and a flow-network for the Earth Mover’s Distance. Learning a bet-
ter EMD is a fundamental problem in measuring distance between distributions
or histograms. The effectiveness of the optimized EMD distance is demonstrat-
ed by face verification results on two standard data sets. The proposed EMD
learning framework can also be directly applied to measuring distances for other
histogram-like features such as color histogram, histogram of gradient (HoG),
SIFT, Bag-of-Words, etc.

EMD yields not only a distance value but also a transformation plan. We
demonstrate that the flow-network contains valuable information about the “di-
rection” of facial attribute transition, which cannot be easily achieved by classic
distance metrics. The “directions” of the flows in image space can be further
applied in many other contexts, such as image understanding and retrieval.
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(a) (b)

Fig. 6: (a) Attribute paths: The faces of the same identity are organized in several
paths corresponding to certain consistent attribute transitions. The face in the red box
is selected as the starting point, from which different paths are found to explore the
face space. Path 1 contains two branches of faces with gradually changing expressions
(both neutral → smile), and the two branches meet each other after some steps to form
a circle. Faces in Path 2 show a combination of pose and expression changes. Faces in
Path 3 and 4 both show pose changes, but faces in Path 3 all have neutral expression
while those in Path 4 are smiling. (b) Attribute transfer: Given a pair of faces (in
blue box) changing from smiling to neutral, its flow is imposed on other smiling faces
(red), and the corresponding neutral faces are found as in the second column.
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