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Abstract

The goal of this paper is to estimate the 6D pose and
dimensions of unseen object instances in an RGB-D im-
age. Contrary to “instance-level” 6D pose estimation tasks,
our problem assumes that no exact object CAD models are
available during either training or testing time.

To handle different and unseen object instances in a
given category, we introduce a Normalized Object Coordi-
nate Space (NOCS)—a shared canonical representation for
all possible object instances within a category. Our region-
based neural network is then trained to directly infer the
correspondence from observed pixels to this shared object
representation (NOCS) along with other object information
such as class label and instance mask. These predictions
can be combined with the depth map to jointly estimate
the metric 6D pose and dimensions of multiple objects in
a cluttered scene. To train our network, we present a new
context-aware technique to generate large amounts of fully
annotated mixed reality data. To further improve our model
and evaluate its performance on real data, we also provide
a fully annotated real-world dataset with large environment
and instance variation.

Extensive experiments demonstrate that the proposed
method is able to robustly estimate the pose and size of
unseen object instances in real environments while also
achieving state-of-the-art performance on standard 6D
pose estimation benchmarks.

1. Introduction
Detecting objects, and estimating their 3D position, ori-

entation and size is an important requirement in virtual
and augmented reality (AR), robotics, and 3D scene un-
derstanding. These applications require operation in new
environments that may contain previously unseen object
instances. Past work has explored the instance-level 6D
pose estimation problem [37, 46, 27, 51, 6, 28] where ex-
act CAD models and their sizes are available beforehand.
Unfortunately, these techniques cannot be used in general
settings where the vast majority of the objects have never

(a) Input: 
single RGB-D image

(b) Normalized object 
coordinate space estimation 

(c) Output: category-level
6D pose and size  

Figure 1. We present a method for category-level 6D pose and
size estimation of multiple unseen objects in an RGB-D image. A
novel normalized object coordinate space (NOCS) representation
(color-coded in (b)) allows us to consistently define 6D pose at the
category-level. We obtain the full metric 6D pose (axes in (c)) and
the dimensions (red bounding boxes in (c)) for unseen objects.

been seen before and have no known CAD models. On
the other hand, category-level 3D object detection meth-
ods [43, 36, 9, 34, 49, 12] can estimate object class la-
bels and 3D bounding boxes without requiring exact CAD
models. However, the estimated 3D bounding boxes are
viewpoint-dependent and do not encode the precise orien-
tation of objects. Thus, both these classes of methods fall
short of the requirements of applications that need the 6D
pose and 3 non-uniform scale parameters (encoding dimen-
sions) of unseen objects in new environments.

In this paper, we aim to bridge the gap between these
two families of approaches by presenting, to our knowledge,
the first method for category-level 6D pose and size esti-
mation of multiple objects. Estimating the 6D pose and
size of previously unseen objects is a challenging problem.
Since we cannot use CAD models for unseen objects, the
first challenge is to find a representation that allows defini-
tion of 6D pose and size for different objects in a particu-
lar category. The second challenge is the unavailability of
large-scale datasets for training and testing. Datasets such
as SUN RGB-D [41] or NYU v2 [40] lack annotations for
precise 6D pose and size, or do not contain table-scale ob-
ject categories—these are exactly the types of objects that
arise in table-top or desktop manipulation tasks for which
knowing the 6D pose and size would be useful.

To address the representation challenge, we formulate
the problem as finding correspondences between object pix-
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els to normalized coordinates in a shared object descrip-
tion space (see Section 3). We define a shared space
called the Normalized Object Coordinate Space (NOCS)
in which all objects are contained within a common normal-
ized space, and all instances within a category are consis-
tently oriented. This enables 6D pose and size estimation,
even for unseen object instances. At the core of our method
is a convolutional neural network (CNN) that jointly esti-
mates the object class, instance mask, and a NOCS map
of multiple objects from a single RGB image. Intuitively,
the NOCS map captures the normalized shape of the visible
parts of the object by predicting dense correspondences be-
tween object pixels and the NOCS. Our CNN estimates the
NOCS map by formulating it either as a pixel regression or
classification problem. The NOCS map is then used with
the depth map to estimate the full metric 6D pose and size
of the objects using a pose fitting method.

To address the data challenge, we introduce a spatially
context-aware mixed reality method to automatically gener-
ate large amounts of data (275K training, 25K testing) com-
posed of realistic-looking synthetic objects from ShapeNet-
Core [8] composited with real tabletop scenes. This ap-
proach allows the automatic generation of realistic data with
object clutter and full ground truth annotations for class la-
bel, instance mask, NOCS map, 6D pose, and size. We
also present a real-world dataset for training and testing
with 18 different scenes and ground truth 6D pose and size
annotations for 6 object categories, and in total 42 unique
instances. To our knowledge, ours is the largest and most
comprehensive training and testing datasets for 6D pose and
size, and 3D object detection tasks.

Our method uses input from a commodity RGB-D sen-
sor and is designed to handle both symmetric and asymmet-
ric objects, making it suitable for many applications. Fig-
ure 1 shows examples of our method operating on a tabletop
scene with multiple objects unseen during training. In sum-
mary, the main contributions of this work are:

• Normalized Object Coordinate Space (NOCS), a uni-
fied shared space that allows different but related ob-
jects to have a common reference frame enabling 6D
pose and size estimation of unseen objects.
• A CNN that jointly predicts class label, instance mask,

and NOCS map of multiple unseen objects in RGB im-
ages. We use the NOCS map together with the depth
map in a pose fitting algorithm to estimate the full met-
ric 6D pose and dimensions of objects.
• Datasets: A spatially context-aware mixed reality

technique to composite synthetic objects within real
images allowing us to generate a large annotated
dataset to train our CNN. We also present fully anno-
tated real-world datasets for training and testing.

2. Related Work
In this section, we focus on reviewing related work

on category-level 3D object detection, instance-level 6D
pose estimation, category-level 4 DoF pose estimation from
RGB-D images, and different data generation strategies.

Category-Level 3D Object Detection: One of the
challenges in predicting the 6D pose and size of objects
is localizing them in the scene and finding their physical
sizes, which can be formulated as a 3D detection prob-
lem [54, 22, 21, 31, 14]. Notable attempts include [43, 55]
who take 3D volumetric data as input to directly detect
objects in 3D. Another line of work [36, 20, 10, 29] pro-
poses to first produce 2D object proposals in 2D image
and then project the proposal into 3D space to further re-
fine the final 3D bounding box location. The techniques
described above reach impressive 3D detection rates, but
unfortunately solely focus on finding the bounding volume
of objects and do not predict the 6D pose of the objects.

Instance-Level 6 DoF Pose Estimation: Given its prac-
tical importance, there is a large body of work focusing on
instance-level 6D pose estimation. Here, the task is to in-
fer the 3D location and 3D rotation of objects (no scale),
assuming exact 3D CAD models and size of these objects
are available during training. The state of the art can be
broadly categorized as template matching or object coordi-
nates regression techniques. Template matching techniques
align 3D CAD models to observed 3D point clouds with al-
gorithms such as iterative closest point [4, 53], or use hand
crafted local descriptors to further guide the alignment pro-
cess [26, 11]. This family of techniques often suffer from
inter- and intra-object occlusions, which is typical when we
have only partial scans of objects. The second category of
approaches based on object coordinates regression aim to
regress the object surface position corresponding to each
object pixel. Such techniques have been successfully em-
ployed for body pose estimation [45, 18], camera relocal-
ization [39, 48] and 6D object pose estimation [5].

Both the above approaches need exact 3D models of the
objects during training and test time. Besides the practi-
cal limitation in storing all 3D CAD models or learned ob-
ject coordinate regressors in memory at test time, capturing
high-fidelity and complete 3D models of a very large array
of objects is a challenging task. Although our approach is
inspired by object coordinate regression techniques, it also
significantly differs from the above approaches since we no
longer require complete and high-fidelity 3D CAD models
of objects at test time.

Category-Level 4 DoF Pose Estimation: There has
been some work on category-level pose estimation [20, 42,
19, 35, 7], however they all make simplifying assumptions.
First, these algorithms constrain the rotation prediction to
be only along the gravity direction (only four degrees of
freedom). Second, they focus on a few big room-scale ob-



ject categories (e.g., chairs, sofa, beds or cars) and do not
take object symmetry into account [20, 42, 19]. On the
contrary, we estimate the pose of a variety of hand-scale
objects, which are often much more challenging than the
bigger room-scale objects due to larger pose variation. Our
method also predicts full 6D pose and size without assum-
ing the objects gravity direction. Finally, our method runs
at interactive frame rates (0.5 s per frame), which is signif-
icantly faster than alternative approaches (∼70 s per frame
for [20], 25 mins per frame for [42]).

Training Data Generation: A major challenge with
training CNNs is the lack of training data with sufficient cat-
egory, instance, pose, clutter, and lighting variation. There
have been several efforts aimed at constructing real-world
datasets containing object labels (e.g., [40, 41, 50]). Unfor-
tunately, these datasets tend to be relatively small, mostly
due to the high cost (time and money) associated with
ground truth annotation. This limitation is a motivator for
other works (e.g., [35, 44, 51]) which generate data that
is exclusively synthetic allowing the generation of large
amounts of perfectly annotated training data at a smaller
cost. For the sake of simplicity, all these datasets ignore a
combination of factors (material, sensor noise, and lighting)
which creates a de-facto domain gap between the synthetic
and real data distributions. To reduce this gap, [13] have
generated datasets that mix real and synthetic data by ren-
dering virtual objects on real backgrounds. While the back-
grounds are realistic, the rendered objects are flying mid-
air and out of context [13], which prevent algorithms from
making use of important contextual cues.

We introduce a new mixed reality method to automati-
cally generate large amounts of data composed of synthetic
renderings of objects and real backgrounds in a context-
aware manner. By leveraging depth, and realistic lighting
and shading our data is more realistic than previous work.

This is supported by experiments that show that our
context-aware mixed reality training data enables the model
to generalize better to real-word test data. We also present a
real-world dataset to further improve learning and for eval-
uation.

3. Background and Overview
Category-Level 6D Object Pose and Size Estimation:

We focus on the problem of estimating the 3 rotation, 3
translation, and 3 scale parameters (dimensions) of object
instances. The solution to this problem can be visualized
as a tight oriented bounding box around an object (see
Figure 1). Although not previously observed, these ob-
jects come from known object categories (e.g., camera) for
which training samples have been observed during training.
This task is particularly challenging since we cannot use
CAD models at test time and 6D pose is not well-defined
for unseen objects.

Figure 2. The Normalized Object Coordinate Space (NOCS) is a
3D space contained within a unit cube. For a given object cate-
gory, we use canonically oriented instances and normalize them to
lie within the NOCS. Each (x, y, z) position in the NOCS is vi-
sualized as an RGB color tuple. We train our network on the per-
spective projection of the NOCS on the RGB image, the NOCS
map (bottom left inset). At test time, the network regresses the
NOCS map which is then used together with the depth map for 6D
pose and size estimation.

To overcome this, we propose a new representation that
defines a shared object space enabling the definition of 6D
pose and size for unseen objects.

Normalized Object Coordinate Space (NOCS): The
NOCS is defined as a 3D space contained within a unit cube
i.e., {x, y, z} ∈ [0, 1]. Given a shape collection of known
object CAD models for each category, we normalize their
size by uniformly scaling the object such that the diagonal
of its tight bounding box has a length of 1 and is centered
within the NOCS space (see Figure 2).

Furthermore, we align the object center and orienta-
tion consistently across the same category. We use models
from ShapeNetCore [8] which are already canonicalized for
scale, position, and orientation.

Figure 2 shows examples of canonicalized shapes in the
camera category. Our representation allows each vertex of a
shape to be represented as a tuple (x, y, z) within the NOCS
(color coded in Figure 2).

Our CNN predicts the 2D perspective projection of the
color-coded NOCS coordinates, i.e., a NOCS map (bot-
tom left in Figure 2). There are multiple ways to interpret a
NOCS map: (1) as a shape reconstruction in NOCS of the
observed parts of the object, or (2) as dense pixel–NOCS
correspondences. Our CNN learns to generalize shape pre-
diction for unseen objects, or alternatively learns to pre-
dict object pixel–NOCS correspondences when trained on
a large shape collection. This representation is more robust
than other approaches (e.g., bounding boxes) since we can
operate even when the object is only partially visible.

Method Overview: Figure 3 illustrates our approach
which uses an RGB image and a depth map as input. The
CNN estimates the class label, instance mask, and the



Figure 3. The inputs to our method are the RGB and depth images of a scene with multiple objects. Our CNN predicts the class label,
instance mask, and NOCS map (color-coded) for each object in the RGB image. We then use the NOCS maps for each object together with
the depth image to obtain the full metric 6D pose and size (axes and tight red bounding boxes), even if the object was never seen before.

NOCS map from only the RGB image. We do not use the
depth map in the CNN because we would like to exploit
existing RGB datasets like COCO, which do not contain
depth, to improve performance.

The NOCS map encodes the shape and size of the objects
in a normalized space. We can therefore use the depth map
at a later stage to lift this normalized space, and to predict
the full metric 6D object pose and size using robust outlier
removal and alignment techniques.

Our CNN is built upon the Mask R-CNN framework [23]
with improvements to jointly predict NOCS maps in addi-
tion to class labels, and instance masks. Section 5 contains
more details on our improvements and new loss functions
that can handle symmetric objects. During training, we use
ground truth images rendered with a new Context-Aware
MixEd ReAlity (CAMERA) approach (see Section 4). This
large dataset allows us to generalize to new instances from
new categories at testing time. To further bridge the domain
gap we also use a smaller real-world dataset.

4. Datasets

A major challenge in category-level 3D detection, and
6D pose and size estimation is the unavailability of ground
truth data. While there have been several attempts like NYU
v2 [40] and SUNRGB-D [41], they have important limita-
tions. First, they do not provide 6D pose of objects and fo-
cus on just 3D bounding boxes. Second, applications such
as augmented reality and robotics benefit from hand-scale
objects in tabletop settings which are missing from current
datasets which focus on on larger objects such as as chairs
and tables. Finally, these datasets do not contain annota-
tions for the type of ground truth we need (i.e., NOCS maps)
and contain limited number of examples.

4.1. Context-Aware Mixed Reality Approach

To facilitate the generation of large amounts of train-
ing data with ground truth for hand-scale objects, we pro-

pose a new Context-Aware MixEd ReAlity (CAMERA)
approach which addresses the limitations of previous ap-
proaches and makes data generation less time consuming
and significantly more cost-effective. It combines real back-
ground images with synthetically rendered foreground ob-
jects in a context-aware manner i.e., the synthetic objects
are rendered and composited into real scenes with plausible
physical locations, lighting, and scale (see Figure 4). This
mixed reality approach allows us to generate significantly
larger amounts of training data than previously available.

Real Scenes: We use real RGB-D images of 31 widely
vaying indoor scenes as background (Figure 4 middle).
Our focus is on tabletop scenes since the majority of in-
door human-centric spaces consist of tabletop surfaces with
hand-scale objects. In total, we collected 553 images for the
31 scenes, 4 of which were set aside for validation.

Synthetic Objects: To render realistic looking objects
in the above real scenes, we picked hand-scale objects from
ShapeNetCore [8], manually removing any that did not look
real or had topology problems. In total, we picked 6 object
categories—bottle, bowl, camera, can, laptop, and mug. We
also created a distractor category consisting of object in-
stances from categories not listed above such as monitor,
phone, and guitar. This improves robustness when making
predictions for our primary categories even if other objects
are present in the scene. Our curated version of ShapeNet-
Core consists of 1085 individual object instances of which
we set aside 184 instances for validation.

Context-Aware Compositing: To improve realism, we
composite virtual objects in a context-aware manner i.e., we
place then where they would naturally occur (e.g., on sup-
porting surfaces) with plausible lighting. We use a plane
detection algorithm [15] to obtain pixel-level plane segmen-
tation in real images. Subsequently, we sample random lo-
cations and orientations on the segmented plane where syn-
thetic objects could be placed. We then place several virtual
light sources to mimic real indoor lighting conditions. Fi-
nally, we combine the rendered and real images to produce



Figure 4. We use a Context-Aware MixEd ReAlity (CAMERA) approach to generate data by combining real images of tabletop scenes,
detect planar surfaces, and render synthetic objects onto the planar surfaces (left). Since the objects are synthetic, we obtain accurate
ground truth for class label, instance mask, NOCS map, and 6D pose and size. Our approach is fast, cost-effective, and results in realistic
and plausible images (middle). We also gather a real-world dataset for training, testing, and validation (right).

a realistic composite with perfect ground truth NOCS maps,
masks, and class labels.

In total, we render 300K composited images, of which
25K are set aside for validation. To our knowledge, this the
largest dataset for category-level 6D pose and size estima-
tion. Our mixed reality compositing technique was imple-
mented using the Unity game engine [2] with custom plu-
gins for plane detection and point sampling (all of which
will be publicly released). The images generated using our
method look plausible and realistic resulting in improved
generalization compared to using non-context aware data.

4.2. Real-World Data

To further improve and validate our algorithm’s real-
world performance under challenging clutter and lighting
conditions, we curate two real-world datasets: (1) a real-
world training dataset that supplements the mixed reality
data we generated earlier, (2) a real-world testing dataset to
evaluate the performance of 6D pose and size estimation.
We developed a semi-automatic method to annotate ground
truth object pose and size. Figure 4 shows examples of our
real-world data.

We captured 8K RGB-D frames (4300 for training, 950
for validation and 2750 for testing)

of 18 different real scenes (7 for training, 5 for valida-
tion, and 6 for testing) using a Structure Sensor [1]. For
each of the training and testing subsets, we used 6 categories
and 3 unique instances per category. For the validation set
we use 6 categories with 1 unique instance per category.
We place more than 5 object instances in each scene to sim-
ulate real-world clutter. For each instance, we obtained a
clean and accurate 3D mesh using an RGB-D reconstruc-
tion algorithm that we developed for this purpose. In to-
tal, our combined datasets contain 18 different real scenes,
42 unique object instances spanning 6 categories making
it one of the most comprehensive datasets for category-level
6D pose and size estimation.

5. Method
Figure 3 shows our method for 6D pose and size estima-

tion of multiple previously unseen objects from an RGB-D
image. We use a CNN to predict class labels, masks, and
NOCS maps of objects. Subsequently, we use the NOCS
map and the depth map to estimate the full metric 6D pose
and size of objects.

5.1. NOCS Map Prediction CNN

The goal of our CNN is to estimate class labels, instance
masks, and NOCS maps of objects based purely on RGB
images. We build upon the region-based Mask R-CNN
framework [23] since it has demonstrated state-of-the-art
performance on 2D object detection and instance segmen-
tation tasks, is modular and flexible, fast, and can easily be
augmented to predict NOCS maps as described below.

5.1.1 NOCS Map Head

Mask R-CNN builds upon the Faster R-CNN architec-
ture [38] and consists of two modules—a module to propose
regions potentially containing objects, and a detector to de-
tect and classify objects within regions. Additionally, it also
predicts the instance masks of objects within the regions.

Figure 5. NOCS map head architecture. We add three additional
heads to the Mask R-CNN architecture to predict the x, y, z coor-
dinates of the NOCS map (colored boxes). These heads can either
be used for direct pixel regression or classification (best). We use
ReLU activation and 3×3 convolutions.

Our main contribution is the addition of 3 head architec-
tures to Mask R-CNN for predicting the x, y, z components



of the NOCS maps (see Figure 5). For each proposed region
of interest (ROI), the output of a head is of size 28×28×N,
whereN is the number of categories and each category con-
taining the x (or y, z) coordinates for all detected objects in
that category. Similar to the mask head, we use the object
category prior to look up the corresponding prediction chan-
nel during testing. During training, only the NOCS map
component from the ground truth object category is used
in the loss function. We use a ResNet50 [25] backbone to-
gether with Feature Pyramid Network (FPN).

Regression vs. Classification: To predict the NOCS
map, we can either regress each pixel value or treat it as a
classification problem by discretizing the pixel values (de-
noted by (B) in Figure 5). Direct regression is presumably a
harder task with the potential to introduce instability during
training. Similarly, pixel classification with large number
of classes (e.g., B = 128, 256) could introduce more pa-
rameters making training even more challenging than direct
regression. Our experiments revealed that pixel classifica-
tion with B = 32 performed better than direct regression.

Loss Function: The class, box, and mask heads of our
network use the same loss functions as described in [23].
For the NOCS map heads, we use two loss functions: a
standard softmax loss function for classification, and the
following soft L1 loss function for regression which makes
learning more robust.

L(y,y∗) =
1

n

{
5 (y − y∗)2, |y − y∗| ≤ 0.1

|y − y∗| − 0.05, |y − y∗| > 0.1
,

∀y ∈ N,y∗ ∈ Np,

where y ∈ R3 is the ground truth NOCS map pixel value,
y∗ is the predicted NOCS map pixel value, n is the number
of mask pixels inside the ROI, I and Ip are the ground truth
and predicted NOCS maps.

Object Symmetry: Many common household objects
(e.g., bottle) exihibit symmetry about an axis. Our NOCS
representation does not take symmetries into account which
resulted in large errors for some object classes.

To mitigate this issue, we introduce a variant of our loss
function that takes symmetries into account. For each cat-
egory in our training data, we define an axis of symmetry.
Pre-defined rotations about this axis result in NOC maps
that produce identical loss function values. For instance, a
cuboid with a square top has a vertical symmetry axis. Rota-
tion by angles, θ = {0◦, 90◦, 180◦, 270◦} on this axis leads
to NOC maps that are identical and therefore have the same
loss.

For non-symmetric objects, θ = 0◦ is unique. We
found that a |θ| ≤ 6 is enough to handle most symmet-
ric categories. We generate ground truth NOCS maps,
{ỹ1, . . . , ỹ|θ|}, that are rotated |θ| times along the symme-
try axis. We then define our symmetric loss function, Ls as

Ls = mini=1,...,|θ| L (ỹi,y
∗) , where y∗ denotes the pre-

dicted NOCS map pixel (x, y, z).
Training Protocol: We initialize the ResNet50 back-

bone, RPN and FPN with the weights trained on 2D in-
stance segmentation task on the COCO dataset[33]. For all
heads, we use the initialization technique proposed in [24].
We use a batch size of 2, initial learning rate of 0.001, and
an SGD optimizer with a momentum of 0.9 and a 1×10−4

weight decay. In the first stage of training, we freeze the
ResNet50 weights and only train the layers in the heads, the
RPN and FPN for 10K iterations. In the second stage, we
freeze ResNet50 layers below level 4 and train for 3K iter-
ations. In the final stage, we freeze ResNet50 layers below
level 3 for another 70K iterations. When switching to each
stage, we decrease the learning rate by a factor of 10.

5.2. 6D Pose and Size Estimation

Our goal is to estimate the full metric 6D pose and di-
mensions of detected objects by using the NOCS map and
input depth map. To this end, we use the RGB-D camera
intrinsics and extrinsics to align the depth image to color
image. We then apply the predicted object mask to obtain a
3D point cloud Pm of the detected object. We also use the
NOCS map to obtain a 3D representation of Pn. We then
estimate the scales, rotation, and translation that transforms
the Pn to Pm. We use the Umeyama algorithm [47] for this
7 dimensional rigid transformation estimation problem, and
RANSAC [16] for outlier removal. See C for qualitative
results.

6. Experiments and Results
Metrics: We report results on both 3D object detection,

and 6D pose estimation metrics. To evaluate 3D detection
and object dimension estimation, we use the intersection
over union (IoU) metric with a threshold of 50% [17]. For
6D pose estimation, we report the average precision of ob-
ject instances for which the error is less thanm cm for trans-
lation and n◦ for rotation similar to [39, 30]. We decouple
object detection from 6D pose evaluation since it gives a
clearer picture of performance. We set a detection thresh-
old of 10% bounding box overlap between prediction and
ground truth to ensure that most objects are included in the
evaluation. For symmetric object categories (bottle, bowl,
and can), we allow the predicted 3D bounding box to freely
rotate around the object’s vertical axis with no penalty. We
treat mug as a special category and make it symmetric when
the handle is not visible since it is hard to judge its pose in
such cases, even for humans. We use [52] to detect handle
visibility for CAMERA data and manually annotate for real
data.

Baselines: Since we know of no other methods for
category-level 6D pose and size estimation, we built our
own baseline to help compare performance. It consists of



the Mask R-CNN network trained on the same data but
without the NOCS map heads. We use the predicted in-
stance mask to obtain a 3D point cloud of the object from
the depth map. We align the masked point cloud to one
randomly chosen model from the corresponding category.
For the instance-level 6D pose estimation, we present re-
sults that can readily be compared with [51].

Evaluation Data: All our experiments use one or both
of these evaluation datasets: (1) the CAMERA valida-
tion dataset (CAMERA25), and (2) a 2.75K real dataset
(REAL275) with ground truth annotations. Since real data
is limited, this allows us to investigate performance without
entangling pose estimation and domain generalization.

6.1. Category-Level 6D Pose and Size Estimation

Test on CAMERA25: We report category-level results
for our method with the CNN trained only on the 275K
CAMERA training set (CAMERA*). We test performance
on CAMERA25 which is composed of objects and back-
grounds completely unseen during training. We achieve a
mean average precision (mAP) of 83.9% for 3D IoU at 50%
and an mAP of 40.9% for the (5◦, 5 cm) metric. (5◦, 5 cm)
is a strict metric for estimating 6D pose even for known in-
stances [51, 6, 37]. Figure 6 shows the average precision
at different 3D IoU, rotation, and translation errors for all 6
object categories.

Figure 6. 3D detection and 6D pose estimation results on CAM-
ERA25 when our network is trained on CAMERA*.

Test on REAL275: We then train our network on a com-
bination of CAMERA*, the real-world dataset (REAL*),
with weak supervision from COCO [33], and evaluate it on
the real-world test set. Since COCO does not have ground
truth NOCS maps, we do not use NOCS loss during train-
ing. We use 20K COCO images that contain instances in
our categories. To balance between these datasets, for each
minibatch we select images from the three data sources,
with a probability of 60% for CAMERA*, 20% for COCO,
and 20% for REAL*. This network is the best performing
model which we use to produce all visual results (Figure 8).

In the real test set, we achieved an mAP of 76.4% for
3D IoU at 50%, an mAP 10.2% for the (5◦, 5 cm) met-
ric, and an mAP of 23.1% for (10◦, 5 cm) metric. In com-
parison, the baseline algorithm (Mask RCNN + ICP align-

ment) achieves an mAP of 43.8% for 3D IoU at 50%,and
an mAP of 0.8% for both (5◦, 5 cm) and (10◦, 5 cm) met-
ric, which is significantly lower than our algorithm’s perfor-
mance. Figures 7 shows more detailed analysis and com-
parison. This experiment demonstrates that by learning
to predict the dense NOCS map, our algorithm is able to
provide additional detailed information about the object’s
shape, parts and visibility, which are all critical for correct
estimation the object’s 6D pose and sizes.

Figure 7. Result on REAL275 test set, average precision (AP) vs.
different thresholds on 3D IoU, rotation error, and translation error.

6.2. Ablation Studies

CAMERA Approach: To evaluate our CAMERA data
generation approach, we conducted an experiment with our
network trained on different training data combinations. For
this experiment, we set the network architecture to regress
the NOCS maps. Table 1 shows the performance of our
network on the REAL275 test set.

We also created a variant of CAMERA* where the im-
ages are composited in a non-context aware manner (de-
noted by B in Table 1). As shown in the table, using only
CAMERA* results in poor performance due to domain gap.
We see progressive improvements on adding COCO and
REAL*. Training only on REAL*, or REAL* and COCO
tend to overfit to the training data due to small dataset size.
Training on CAMERA* with COCO and REAL* lead to
the best results. Furthermore, we see that non-context aware
data results in worse performance than context-aware data
indicating that our CAMERA approach is useful.

Classification vs. Regression: On both CAMERA25
and REAL275, we observe that pixel classification is con-
sistently better than regression. The network with 32 bins
is better on pose estimation while the one with 128 bins is
slightly better on detections (see Table 2).

Symmetry Loss: The symmetry loss is critical for many
everyday object categories. To study the effect of symme-
try loss, we conduct ablation experiments on the regression
network on both CAMERA25 and REAL275 set. Table 2
shows that the pose accuracy degrades significantly, partic-
ularly for 6D pose, if the symmetry loss is not used.
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Figure 8. Qualitative result on REAL275 test set. Top row shows the predicted NOCS maps color coded. Bottom row shows the quality of
6D pose (axis) and size estimation (red tight bounding box).

Data mAP

CAMERA* COCO REAL* 3D25 3D50
5 ◦ 10◦ 10◦

5 cm 5 cm 10cm
C 51.7 36.7 3.4 20.4 21.7
C X 57.6 41.0 3.3 17.0 17.1

X 61.9 47.5 6.5 18.5 18.6
X X 71.0 53.0 7.6 16.3 16.6

C X 79.2 69.7 6.9 20.0 21.2
C X X 79.6 72.4 8.1 23.4 23.7

B 42.6 36.5 0.7 14.1 14.2
B X X 79.1 71.7 7.9 19.3 19.4

Table 1. Validating CAMERA approach. C represents the unmodi-
fied CAMERA* data while B denotes a non-context aware version
of CAMERA*. We report AP for 5 different metrics, where 3D25

and 3D25 represent 3D IoU at 25% and 50%, respectively.

Data Network
mAP

3D25 3D50
5 ◦ 10◦ 10◦

5 cm 5 cm 10cm

CAMERA25

Reg. 89.3 80.9 29.2 53.7 54.5
Reg. w/o Sym. 86.6 79.9 14.7 38.5 40.0

32 bins 91.1 83.9 40.9 64.6 65.1
128 bins 91.4 85.3 38.8 61.7 62.2

REAL275

Reg. 79.6 72.4 8.1 23.4 23.1
Reg. w/o Sym. 82.7 73.8 1.3 9.1 9.3

32 bins 84.8 78.0 10.0 25.2 25.8
128 bins 84.9 80.5 9.5 26.7 26.7

Table 2. Network architectures and losses. Reg. represents re-
gression network trained with soft L1 loss; 32 bins and 128 bins
represent classification networks with the corresponding numbers
of bins, respectively.

6.3. Instance-level 6D Pose Estimation

We also evaluate our method on instance-level 6D pose
estimation task on OccludedLINEMOD [26] and compare
with PoseCNN [51]. OccludedLINEMOD is a challenging
dataset where 9 annotated objects are highly occluded in a
cluttered scene.

The OccludedLINEMOD dataset has 9 object instances
and provides a CAD model for each instance. It has 1214
images with annotated ground truth 6D pose. We follow the
protocols from [46] [27] and randomly select 15% of the
dataset as training images. Then we generate 15000 syn-
thetic images using the technique described in Section 4.

Using 32-bin classification network, we achieve a detec-

Figure 9. Result on OcculudedLINEMOD. Here we show the av-
erage precision (AP) vs. different thresholds on 3D IoU, rotation
error, and translation error.

tion rate of 94.7%, an mAP of 88.4% for 3D IoU at 50%,
an mAP 13.9% for the (5◦, 5 cm) metric, and an mAP of
33.5% for (10◦, 5 cm) metric. This is substantially higher
than PoseCNN[51] which only achieves an mAP of 1.7%
without iterative pose refinement (reported in [30]). Figure
9 provide more detailed analysis. This experiment demon-
strates that while our approach designed for category-level
pose estimation, it can also achieve state-of-the-art perfor-
mance on standard 6D pose estimation benchmarks.

With 2D projection metric, which measures the average
pixel distance between ground truth and estimated object
poses, we achieve 30.2% mAP on 2D projection at 5 pixel.
Our method significantly outperforms PoseCNN[51] by a
large margin, which reported 17.2% mAP on 2D projection
at 5 pixel in [30].

The comparison between our method and other RGB-
only methods with 2D projection metric is shown in Fig. 10.
We only show the plots with 2D Projection metric because
these are the only results reported in [37] and [46].

6.4. Limitations and Future Work

To our knowledge, ours is the first approach to solve the
category-level 6D pose and size estimation problem. There
are still many open issues that need to be addressed. First,
in our approach, the pose estimation is conditioned on the
region proposals and category prediction which could be in-
correct and negatively affect the results. Second, our ap-
proach rely on the depth image to lift NOCS prediction to
real-world coordinates. Future work should investigate es-
timating 6D pose and size directly from RGB images.



Figure 10. Comparison with state-of-the-art RGB or RGB-D based methods on the OccludedLINEMOD dataset[6].

7. Conclusion

We presented a method for category-level 6D pose
and size estimation of previously unseen object instances.
We presented a new normalized object coordinate space
(NOCS) that allows us to define a shared space with consis-
tent object scaling and orientation. We propose a CNN that
predicts NOCS maps that can be used with the depth map to
estimate the full metric 6D pose and size of unseen objects
using a pose fitting method. Our approach has important
applications in areas like augmented reality, robotics, and
3D scene understanding.
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Appendix

A. Implementation and Computation Times

Our network is implemented on Python 3, Keras and
Tensorflow. The code is based on MatterPort’s Mask RCNN
implementation[3]. The network uses Feature Pyramid Net-
work (FPN)[32] and a ResNet50 backbone[25].

Our network takes images with a resolution of 640×360
as input. We achieve an interactive rate of around 4 fps on
an Intel Xeon Gold 5122 CPU @ 3.60GHz desktop with a
NVIDIA TITAN Xp. Our implementation takes an average
time of 210 ms for neural network inference and 34 ms for
pose alignment using Umeyama algorithm.

B. Scanned Real Instances
Our real dataset contains 6 object categories and 42 real

scanned unique instances. For each category, we collect 7
instances with 4 for training and validation and the rest 3
for test. Figure 11 show a subset of our instances where one
can see a large intra-category shape variance in the dataset.
The first row are instances used in training. The second and
third rows are held-out instances for testing.

C. Result Visualization
Here we provide more visual results of the 6D pose and

size estimation. Due to sufficient training data, our method
achieves very promising performance on CAMERA25 val-
idation set as shown in Figure12. On REAL275 test set, we
still observe decent performance even though the amount of
real training data is small. We observe several failure modes
on real data, including missing detection, wrong classifica-
tion, and inconsistency in predicted coordinate maps.
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