
Sensor Tasking for Occupancy Reasoning in a Network of Cameras

Danny B. Yang
�

Jaewon Shin
�

Ali Ozer Ercan
�

Leonidas J. Guibas
�

Computer Science Department
�

Electrical Engineering Department
�

Stanford University
Stanford, CA 94305�

dbyang,jwshin,aliercan � @stanford.edu, guibas@cs.stanford.edu

Abstract

In this paper, we study how to task camera sensor nodes
to reason about the occupancy of the area around them.
Occupancy information is valuable because it can be used
to answer many other queries such as determining object
tracks or the count of the number of people in an area. Cam-
era sensors are challenging to include in a wireless sen-
sor network (WSN) because they are high data rate devices.
To save energy and to satisfy the bandwidth constraint, our
camera nodes will only send a very limited amount of data
and only a limited number of camera nodes will be tasked.
Our first result, from simulation, gives an upper bound on
the number of cameras needed for a given accuracy in the
occupancy. Given this number of cameras, we then com-
pare several approaches to tasking the most relevant cam-
eras both in simulation and in a real system of 16 cam-
era nodes. Our incremental greedy tasking algorithm per-
formed the best. Finally, we applied this tasking algorithm
to a tracking application. We show that the tracker that used
tasking outperformed the same tracker without tasking.

1 Introduction

Recent advances in CMOS fabrication have made it pos-
sible to integrate processing (and communication) circuits
with the image sensor [7, 13]. With this integration capabil-
ity and today’s feature sizes, it is possible to produce image
sensor nodes with processing and communication capabil-
ity at very low cost. This type of camera node is an ideal
candidate for a sensor node in a wireless sensor network
(WSN).

The main limitation of WSNs is energy, which translates
into constraints on communication and computation. For
camera nodes, these constraints are particularly limiting be-
cause cameras are high data rate devices (as opposed to low
data rate devices like microphones and thermometers) and

(a) (b)

Figure 1. Comparison of 2 different camera
taskings to localize 2 circular objects in the
plane

the vision algorithms required to process the image data are
often very computationally expensive. To overcome these
constraints, it is critical to both have cheap local processing,
and be able to task useful subsets of cameras to collabora-
tively answer queries.

Tasking camera nodes is particularly important in a
WSN. A good tasking scheme will save energy, because less
cameras are needed to answer a particular query. Tasking
allows the network to scale to very large numbers of cam-
era nodes. However, tasking cameras is more difficult than
tasking many other types of sensors because cameras can
see far away and consequently the data is nonlocal. Simply
tasking local camera nodes may lead to poor results.

In this paper, we task camera nodes to reason about oc-
cupancy. Figure 1 illustrates two different tasking strategies
of choosing two cameras out of three, and shows that intelli-
gent tasking makes a huge difference in the quality of infor-
mation that can be obtained from the collaboration. Tasking
the two cameras in (b) yields better information than in (a)
because the tasking in (b) is able to localize the two circular
objects.

In addition to the information quality of the tasked cam-
eras, we should also consider efficient updates. Since ob-

1

jects are moving around smoothly, after a small time step, a
good subset of cameras is not likely to change much. This
suggests that it might be possible to compute the new set
of cameras by updating the previous set. This is also very
important in terms of energy consumption.

We introduce efficient camera tasking heuristics that
minimize areas that are potentially occupied by moving ob-
jects and compare their performance in simulation and in
a real system of 16 cameras. We argue that the occupancy
information is useful for many applications like tracking,
counting and monitoring. The result shows that our heuris-
tic is energy-efficient and selects good subsets of cameras.
We also implement a simple tracking algorithm based on
the occupancy information provided by our tasking heuris-
tic and shows that the tracker based on our tasking outper-
forms the tracker with no tasking.

This paper will be organized as follows: In section 2,
we will introduce the sensor tasking problem. In section 3
and 4, we will explain the number of cameras tasked and the
heuristics for tasking the cameras. In section 5, we will give
simulation and experimental results. A tracking application
will be presented in section 6. In section 7, we will give a
brief overview of related work and in section 8, we conclude
and discuss future work.

2 Sensor Tasking Problem

2.1 Local Processing

In a WSN, each sensor node is operated under energy
constraint. It is crucial to perform as much local processing
as possible to reduce the amount of information that needs
to be communicated to other nodes because the communica-
tion cost is much higher than the computation cost [12]. For
image sensors, a light-weight local processing algorithm is
also important, since many image processing and computer
vision algorithms are extremely computationally expensive
and can cause significant energy consumption at each node.

One of the simplest image processing algorithms is back-
ground subtraction, where a background image (�����
matrix) is subtracted from each new image to segment the
object regions. We further compress the background sub-
tracted image by summing the columns to get a 1-D scanline
(� dimensional vector) that describes the foreground ob-
jects.1 Figure 2 illustrates the background subtraction and
1-D scanline. A scanline is a very compact summarization,
since only � numbers are needed, and this can be further
compressed by run-length coding. This will result in big
savings in the communication cost.

1To increase robustness, our actual implementation was more sophisti-
cated. Please see section 5.2.2 for details.

−

Background Subtraction

Current Image Background Foreground

1D scan−line

Figure 2. Background subtraction and 1-D
scanline

c

a

a 1D scan line a
b

a

b

c

Figure 3. Visual hulls

2.2 Occupancy and Visual Hulls

Although a single scanline can be computed very effi-
ciently and has a very compact representation, it provides
little information, since it only tells whether a specific direc-
tion (cone) is occluded by one or more objects. However,
by combining many 1-D scanlines we can reason about the
regions that are potentially occupied by objects. The in-
tersection of the occluded cones from the 1D scanlines is
called visual hulls. This is the maximal area that could be
occupied (figure 3).

Many applications like people counting, multi-object
tracking, and group behavior monitoring depend on occu-
pancy information, so it is critical to have an accurate visual
hull that result in the tightest occupancy. If we do not have
energy constraints, we can use all the cameras available to
compute the best visual hull since the area monotonically
decreases as the number of cameras increases. However,
this is not a realistic scenario for a WSN because as the
number of used cameras nodes increases, the network will
quickly run out of energy. Therefore, it is important to be
able to task a subset of cameras nodes to save energy.

2.3 Problem Formulation and Assumptions

Given � objects and � cameras, we want to task 	
�� �� cameras that minimize the visual hull area. For sim-
plicity, we make the following assumptions. All the cam-
eras are modeled by perspective projection and have a �������

2

field of view. The cameras are pointing toward the center
of the room, so the only parameter is the position on the
perimeter of the room. The objects are discs.

Problem 1: For � randomly placed objects, what is the
expected number of cameras needed to guarantee a visual
hull area that is within a certain factor of the area actually
occupied?

For a given camera and object placement, we can com-
pute the visual hull area, but we do not know how to express
this area as a function of the camera and object positions
that can be easily used to calculate the expected number of
cameras needed. We solve this problem in the next section
using a Monte-Carlo simulation.

Problem 2: For � randomly placed objects and � cam-
eras, what is the optimal camera placement for minimizing
the visual hull area?

It makes sense that the optimal camera placement for
randomly placed objects (with unknown positions) should
be uniform, but we have not proved this yet. We will con-
sider the following simpler problem of tasking a subset of
positioned cameras.

Problem 3: For � randomly placed objects and �
placed cameras (known positions), what is the optimal sub-
set of 	 cameras for minimizing the visual hull area? If the
object positions are known, what is the optimal subset?

For randomly placed objects, once again it makes sense
that tasking a uniform (as evenly spaced and separated as
possible) subset of cameras should be optimal. Given the
object positions (or approximate positions from the previ-
ous timestep), the optimal tasking can be computed by eval-
uating all ��� ��� different camera taskings. However, each
evaluation involves computing a visual hull, so this ap-
proach is too costly. Therefore, in section 4 we compare
heuristics for finding good camera taskings quickly. There
is also an additional consideration that as objects move, the
new subset of cameras tasked should not be too different
from the previous subset, so that cameras are not turned on
and off too frequently. This will also be accounted for in
designing our heuristics.

3 Number of Cameras for Tasking

In this section, we present an empirical solution to the
problem of determining the number of cameras required to
guarantee a visual hull area within a factor of the minimum.
Specifically, we want to know, for a given number of objects
in a room, how many cameras we need. To this end, we per-
formed a Monte-Carlo simulation. We randomly dropped
circular objects of radius 0.1 inside a circular room of ra-
dius 1. Objects were not allowed to overlap - overlapping
objects were removed and dropped again. Cameras were
placed uniformly around the perimeter of the room. For a
given number of objects and a given number of cameras,

the visual hull area was computed. For each setting, we re-
peated this 500 times and averaged, to compute the expected
area of the visual hull.

R

Q

Object2

Camera

Object1

(a) (b)

Figure 4. Residual error in the VH due to oc-
clusion

An important note is that the visual hull area does not
converge to the actual total object area as the number of
cameras goes to infinity for 2 or more objects. This is be-
cause of occlusion. In the case of 1 object, there is no
occlusion, so as the number of cameras increases, the cir-
cumscribing tangent lines of the visual hull close in on the
object from all sides and the visual hull converges to the
object (figure 4a.). In the case of 2 objects (figure 4b.), Ob-
ject2 occludes all tangent lines in the region Q, resulting in
the residual area R that overestimates Object1 even with an
infinite number of cameras. For more than 2 cameras, in ad-
dition to these occlusion from pairs of objects, there are also
occlusions from multiple

���� objects. Figure 5 shows the
residual area of the visual hull, normalized by the area of
an object, of 1 to 10 objects seen by 2000 cameras. As
the number of objects increases, the residual area increases
due to more occlusions. The 2000 camera case was used to
approximate the case when the number of cameras goes to
infinite.

The main result for this section is plotted in figure 6,
which shows the accuracy of the visual hull for different
numbers of objects and cameras. The residual of the visual
hull is scaled by the “infinite” camera case for the corre-
sponding number of objects, because that corresponds to
the minimum possible visual hull area.

Observation 1 For a single object, the residual of the ex-
pected visual hull area decreases as
"!�$# for � cameras.
This is as expected because the residual of a regular circum-
scribed N-gon of a circle also decreases as

!� # . For 2 or
more objects, the residual decreases at a slower and slower
rate due to an increasing number of occlusions.

For an application that requires the visual hull area to be
within a certain factor of the minimum, then the plot in fig-

3

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Objects

R
es

id
ua

l N
or

m
al

iz
ed

 b
y

S
in

gl
e

O
bj

ec
t A

re
a

Figure 5. Residual of the expected VH with
“infinite” number of cameras

ure 6 can be used to decide the expected number of cameras
needed. This result was for uniformly placed cameras, but
for camera tasking heuristics that perform better than the
uniform case, we will get a lower residual area, hence this
result provides an empirical upper bound on the number of
cameras () to task.

4 Camera Tasking Algorithms

Given the number of cameras to task (), we want to
task the most relevant ones. Assuming there are � cam-
eras (� �), we wish to find the subset of 	 cameras that
will minimize the visual hull area. We tested the following
approaches to tasking cameras:

4.1 Uniform

The simplest approach is to pick cameras to cover the
space as evenly as possible. Given no other information,
this is probably the best approach. Besides initialing by
tasking the uniform set of cameras, this approach does no
additional tasking.

4.2 Clustering

For 2 objects and 2 cameras, if % is the vector connecting
the objects, and & ! and &(' are the unit vectors describing the
direction of the cameras, we know that choosing & !*) % and&+'-,.% gives a good placement because the resulting visual
hull has no phantom areas (figure 7). Motivated by this, we
generalize this idea to � �/�

objects and 	 �0�
cameras.

Now, for every pair of objects, we try to maximize the)

100 101 102
10−3

10−2

10−1

100

101

Number of Cameras

R
es

id
ua

l o
f E

xp
ec

te
d

V
is

ua
l H

ul
l A

re
a

1 object

2 objects

3 objects

......

10 objects

Figure 6. Residual of expected visual hull area
as a function of the number of cameras

and , placement for some camera. Specifically, given the
object locations, we maximize:

1 2436587:9";=<!?>�@A> � �?B %DC2E5GF & @ B �IH 98;J<!?>�@A> �LK B %NM2E5 C F & @ B OQP (1)

where % 2R5 is the vector connecting the SUT4V and WGT4V object.
It turns out that the solution to this optimization problem
can easily be approximated by 	 -means clustering [1]. We
simply perform 	 -means clustering on the angles XI% 2R5 andXI% M2E5 , YQS[Z\W , to get the k optimal camera directions. The cam-
eras with the closest directions are then tasked.

c2
v

1c

Figure 7. Good placement for 2 objects and 2
cameras

4

4.3 Optimal

Given the object and camera locations, the optimal ap-
proach computes the subset of cameras that gives the tight-
est occupancy . This requires the brute force search of all
possible camera configurations, and returns the configura-
tion with the smallest visual hull area. The cost is
 � � � � .
4.4 Greedy

This approach involves greedily searching for the sub-
set of cameras that gives the tightest occupancy. Instead
of searching all possible subsets, it greedily picks the best
camera one at a time. The following pseudo-code describes
the algorithm in detail:

Algorithm Greedy Tasking
Select] of ^ cameras greedily to minimize the visual hull area
Output: a set _ of the] selected cameras
1. _ = empty set
2. for ` = 1 to]
3. MinimumArea = infinite;
4. for Camera = 1 to ^
5. if (Camera ab _)
6. add Camera to _
7. c = visual hull area using cameras in _ ,

given the object locations
8. if (c�d MinimumArea)
9. MinimumArea = c
10. BestCam = Camera

endif
11. remove Camera from _

endif
end for Camera

12. add BestCam to _
end for `
Note that the the object locations are used in the algo-

rithm. When this information is not available, an estimate
is used based on the visual hull from the previous time step.
The polygon centers of the previous visual hull are used as
the object locations. The cost of greedy tasking is
 	6�� .
4.5 Incremental Greedy

This assumes that a subset of 	 cameras has previously
been tasked and the objects have not moved far, so only
some of the cameras need to be updated. Instead of greedily
picking all the cameras each time, only a subset e of the 	
cameras is greedily updated.

First, e cameras are greedily removed one at a time from
the tasked subset. Next, e cameras are greedily added one
at a time. Greedy remove and add operations are very simi-
lar to the full greedy algorithm described above. For remov-
ing greedily, the following lines need to be replaced:

2. for ` = 1 to f
5. if (Camera b _)
6. remove Camera from _
11. add Camera to _
12. remove BestCam from _

After removing the cameras, e new cameras added with
the same algorithm as the full greedy algorithm, with only
the for loop at line 2 running from 1 to e . The cost of this
is
 eg�� . For our experiments, we will use eihj� .
5 Simulations and Experiments

We tested the above mentioned heuristics in both simu-
lation and in the real system.

5.1 Simulations

The simulations assume there are 5 circular objects in a
room of radius 1. The objects have radius 0.1. The cameras
are assumed to be placed along the perimeter of the room
and have ����� � field of view. Perspective projection is as-
sumed in constructing the visual hull of a given object and
camera configuration. For all the simulations and experi-
ments, the polygons in the visual hull that are too small to
be real objects (smaller than the object area) are removed.
Simulations for both static objects and moving objects are
performed.

5.1.1 Static Objects

For these simulations, 5 objects are randomly dropped in
the room. Then the cameras are placed according to the
uniform, clustering, greedy, and optimal algorithms, using
the actual object locations. Actual locations are used since
objects are randomly dropped and there is no previous esti-
mate of their positions.

Uniform placement requires no computation, and it is
the best bet when there is no a priori information on the
objects’ locations. It is chosen as a reference to compare
against the other algorithms. The residual area vs. number
of cameras tasked are shown for these algorithms in fig-
ure 8. For a given number of cameras and tasking scheme,
many random drops are simulated and averaged to generate
the expected visual hull area.

Clustering does much worse than the greedy and opti-
mal algorithms. The reason for this is because the greedy
and optimal algorithms try to minimize the visual hull area
directly, while the clustering algorithm tries to maximize
the metric we had in equation 1. The hope was this would
help minimize the visual hull area. While it still can do
better than uniform placement for small number of tasked
cameras, it is inferior compared to the greedy algorithm.

5

3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of Cameras

R
es

id
ua

l o
f E

xp
ec

te
d

V
is

ua
l H

ul
l A

re
a

Uniform
Clustering
Greedy
Optimal

Figure 8. Performance of the tasking algo-
rithms with static objects

Optimal placement performs the best, as expected, but
is expensive to compute. Still, the greedy placement algo-
rithm can achieve very close results to optimal. This algo-
rithm and the incremental variation of it when there is object
motion will be discussed in the next section.

5.1.2 Moving Objects

For these simulations, the objects are initialized with ran-
dom drops, and assumed to be moving according to the
random waypoints motion model. The objects each pick
a random destination in the room and try to head there in a
straight line at a constant velocity. If two objects block each
other, each tries to get around the other by circling around
to the right.

At each time step, the centers of the polygons from the
visual hull of the previous time step are found. These poly-
gon centers are then used by the tasking algorithms as the
object centers for the current time step. The visual hull area
is computed over a period of time, and a time-average of
the residual visual hull area is computed for the different
tasking algorithms and for different number of cameras.

Another heuristic that is used here, but not in the static
objects case, is the incremental greedy algorithm (explained
in section 4.5). It is less expensive computationally com-
pared to the greedy algorithm and is suitable for moving
objects because the scene does not change drastically in a
time step.

The results for uniform, greedy and incremental greedy
tasking algorithms are shown in figure 9. It is clear that
both greedy tasking algorithms perform much better than
uniform tasking. Incremental greedy placement achieves

almost as good performance as greedily placing all cameras
at each time step.

3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Cameras

R
es

id
ua

l o
f E

xp
ec

te
d

V
is

ua
l H

ul
l A

re
a

Uniform
Incremental Greedy
Greedy

Figure 9. Performance of the tasking algo-
rithms with moving objects

Incremental greedy algorithm is also tested with differ-
ent update rates. That is, instead of incrementally updating
the tasked cameras at each time step, we updated every kNl?m ,n T4V and o T4V time step. The results of these simulations are
shown in figure 10

3 4 5 6 7 8 9 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Cameras

R
es

id
ua

l o
f E

xp
ec

te
d

V
is

ua
l H

ul
l A

re
a

Uniform
Every 7th frame
Every 5th frame
Every 3rd frame
Every frame

Figure 10. Performance of the incremental
greedy algorithm with different update rates

As expected, the performance gets worse as update rates
get slower, however, it could be argued that even with very
slow update rates such as every oJT4V time step, much bet-
ter performance than uniform is achieved, and update rate

6

can be traded off with less computation and communication
cost.

5.2 Real Experiments

We tested the above algorithms in an experimental setup
with real networked cameras. The experimental setup is ex-
plained below.

5.2.1 Experimental Setup

The setup consists of 16 web cameras placed around a
���Dp ��rq p room. The horizontal FOV of the cameras is sGqN� , and

they all look inward. The relative positions of the cameras
in the room can be seen in figure 11. A view of the room
(from camera 5) shows a typical scene with three people in
the FOV (figure 12).

1

151413
1211

10

9

8

7 6 5

16

4
3

2

Figure 11. Positions of the cameras in the real
setup. The cones show the FOV of the cam-
eras and the grid spacing is 1 foot

The cameras are hooked up to a PC via IEEE 1394
(FireWire) interface and can provide 8-bit 3-channel (RGB)
raw video at 7.5 frames/s. The PC connected to a camera
models a sensor node in the network with processing power.
Each PC is connected to 2 cameras, but the data from each
camera is processed independently from the other. These
PCs are then networked to a central PC, where further pro-
cessing is performed. The networking is implemented in a
wired medium, because the limited bandwidth is our only
concern of WSNs and other concerns like collusion, fading,
etc. are not topics of this research.

Raw data from each camera is gathered at the node PCs
and are locally processed toward our application’s needs.
This will be explained in detail in section 5.2.2. When

Figure 12. View of part of the room seen by
camera #5

tasked, the reduced data is then sent to the central proces-
sor, where the occupancy is computed. The PC’s are all
Intel Pentium based PC’s running RedHat Linux 9.0

5.2.2 Local Processing

Each frame consists of 3 channels (RGB), and each channel
is 640 � 480 pixels, 8 bits per pixel. The local processing
first implements a simple version of the background sub-
traction algorithm given in [11]. This step mainly calls
a pixel foreground, if its [R,G,B] color vector’s angle is
more than a threshold different from the background’s cor-
responding pixel. This gives a binary indicator image of
foreground. To suppress false positives, a morphological
opening operation is also implemented. The resulting image
is corrected for lens distortion. Then this image is summed
vertically to generate the scanline. A spatial and tempo-
ral smoothing, and a median filter is applied to the scanline
to further suppress false negatives, which would otherwise
cause splits. The resulting scanline is just 640 bits, which is
sent over to the central computer for final decision making.
All of the above is done in real time at 7.5 frames/s.

5.2.3 Experimental Results

For this section, data was taken using the experimental setup
with 3 people. Fewer people were used here because the
cameras have a small field of view and the real data includes
noise, thus making the problem more difficult.

Uniform tasking needed to be modified for the experi-
mental setup because the room in our setup is not circular
and the cameras have fixed positions. For 8 cameras, the
odd numbered cameras are selected (See figure 11). For 6

7

cameras, cameras numbered 5 and 9 are removed from the
8 camera case. For 10 cameras, cameras numbered 8 and
16 are added to the 8 camera case.

The performance of the tasking algorithms can be seen
in figure 13. The plots show the normalized residual visual
hull area vs. number of cameras used. The normalization is
done by dividing all visual hull areas by the minimum area
that was achieved by all 16 cameras over all times. We do
not know the actual object areas, so this is our best approx-
imation. Time averages were taken over the whole run.

5 6 7 8 9 10
0.5

1

1.5

2

2.5

3

3.5

4

Number of Cameras

R
es

id
ua

l o
f E

xp
ec

te
d

V
is

ua
l H

ul
l A

re
a

Uniform
Greedy
Incremental Greedy

Figure 13. Performance of the tasking algo-
rithms on the real system

Again, the greedy algorithms performed better than uni-
form. For certain number of cameras, the incremental
greedy does slightly better than the greedy algorithm, which
is unexpected. These algorithms assume that the centers of
the polygons from the previous time step are the real object
centers, which is only a rough approximation. Several bad
approximations probably caused the full greedy algorithm
to perform worse. In the long run, we expect greedy to per-
form better than incremental. The important result is the
incremental greedy performs well in the real setting.

6 Application: Tracking

The visual hull is a powerful primitive that can be used
by many other applications as we stated before. Applica-
tions such as tracking people, detecting unusual events, and
counting people in an area usually depend on having good
occupancy information. Our camera tasking scheme pre-
cisely minimizes the maximal area that can be occupied.
This maximum occupancy information can then be used
by all those occupancy dependent applications. We will

demonstrate the benefits of using our tasking scheme in one
particular application: tracking.

Suppose we want to track moving objects in a room with
our camera network. We can do this by first generating the
visual hull of the moving objects. If there is enough data,
the visual hull polygons will model the objects very well,
and these polygons can be used to track the objects. For
each frame, we compute the centers of the polygons and
use temporal coherence to track the motions of these cen-
ters over multiple frames. These polygon center tracks will
be the estimates of the actual object tracks in our tracking
algorithm. Clearly, the tighter the visual hull is to the actual
object areas, the more accurate this tracking algorithm will
be.

We implemented this tracking algorithm on top of our
tasking algorithm and compared the performance of the in-
cremental greedy camera tasking case with a uniform cam-
era case (no tasking). The simulation was set up with six
circular objects of radius 0.1 moving in a circular room of
radius 1 with the cameras arranged along the perimeter. For
the uniform camera case, cameras were placed uniformly
around the perimeter and all the cameras were used. For the
incremental greedy case, a subset of 16 uniformly spaced
cameras was tasked at each time step.

Real Path
Estimated Path

(a) (b)
6 uniform cameras Tasking 4 cameras with

mean sqr error=0.370 incremental greedy
mean sqr error=0.037

Figure 14. Comparison of the trackers show-
ing the real and estimated tracks of one of the
six objects

A comparison of the tracks of one of the six objects
is shown in figure 14. The uniform case with 6 cameras
is compared against the incremental greedy tasking case
where only 4 cameras are tasked. The figure shows that with
6 cameras, the uniform case lost track of the object, while
the tasking case did not. The tasking case used fewer cam-
eras, thus saving energy because additional cameras can be
turned off and saving networking bandwidth because data
from less cameras are sent, and still outperformed the uni-
form case. With 7 cameras, the uniform tracker was able

8

to successfully track the object with a mean square error of
0.014, but tasking 7 cameras still outperforms the uniform
case, with a mean square error of 0.009.

7 Related Work

Much work exists in the computer vision community on
video surveillance and monitoring [4, 5, 9], of which the
goal is larger-scale monitoring of activities over long time
periods. Distributed resource tasking, however, is not the
main concern of those works, since they use all the cam-
eras for their tasks - tracking objects and detecting activi-
ties. One thing they have in common is that each camera
sends summaries of events to a centralized computer, not
the video stream itself. However the local processing may
be computationally very expensive.

In robotics, occupancy maps are often computed for
robot navigation tasks. Typically, various range sensors
such as sonar or laser range finders are used. Image sen-
sors have also been used. In [10], multiple cameras detect
foreground to determine the occupancy in real-time. The
drawback of this system is that a central computer collects
the video stream from all the cameras to compute the occu-
pancy.

In computer graphics, a related problem is the art-gallery
problem [16]. The goal of this problem is to cover a given
space using the minimum number of cameras. The setting,
however, is mainly of theoretical interest and the results are
not applicable to our context, since their definition of occlu-
sion and utilities are different from our context.

Another related problem in robotics and graphics is the
selection of the next best view. One scenario is to select
the best views to cover the surface of an object [19]. This
allows a 3d range finder to build the best 3d model with
the least number of views. Another scenario is to pick the
best views for scene understanding. [18] defines a view-
point entropy that favors scenes with more ”information.”
Projected areas of scene parts are converted into probabil-
ities for the entropy computation. The common theme be-
tween the next best view work and ours is the definition of
an objective function that is then maximized by searching
efficiently over possible camera positions.

In WSNs, the resource tasking problem has been studied
extensively. In [3, 20], the authors propose a utility-based
framework that combines information utility of a sensor and
the cost of tasking it in a single target tracking application.
Many other recent works [2, 17] in WSN study problems
of resource allocation and load balancing based on utilities
and game theory, but their setting is theoretical and not ap-
plicable to a camera network. Not much work exists on us-
ing cameras in a WSN. [15] surveys the various issues with
using cameras - balancing the computational cost of vision
algorithms with the networking cost of cameras, which are

high data rate devices.
The most similar work to ours is probably [14]. Here

they try to task a subset of cameras to localize a few ob-
jects. The tasking problem is formulated as a constraint sat-
isfaction problem and solved in a centralized setting. Their
work, however, does not fully address the issues related to
occlusions and is simply based on the simulation results
from a four camera case.

8 Discussion

We have presented heuristics for reducing the visual hull
areas both for static and moving objects. If an application
were to use the visual hull information, like multi-object
tracking or counting, then the visual hull area could be fur-
ther reduced by pruning the phantom polygons that appear
from nowhere (because real objects have temporal coher-
ence). This additional processing can be fed back to the
occupancy tasking algorithm to improve the visual hull.
Also, additional low level local processing such as color
histograms and motion vectors can be used to further re-
duce the visual hull area.

For the current experimental setup, the scanlines from
the tasked nodes are sent to a fixed central node that aggre-
gates the scanlines to compute the occupancy. We can fur-
ther distribute the computation, by automatically selecting
the aggregating node. One idea to elect cluster heads to task
the nearby cameras and aggregate the information. Cluster
heads can then be queried for the occupancy in a particu-
lar region. A distributed algorithm for cluster formation is
described in [8] and can be used for this purpose.

For simplicity, we have so far only placed cameras along
the perimeter of a simple convex shape (circle and rect-
angle). Our tasking heuristic, however, can be extended
to general non-convex shape spaces (such as hallway with
branching rooms) and to cameras placed inside the space.
The only difference is that some of the visual hull polygons
will be non-convex, which is not a problem because our al-
gorithms do not depend on the shape of the polygons.

Some theoretical studies are necessary for better under-
standing of visual hulls and camera tasking. For example, in
section 3, the residual of the expected visual hull area scales
as

!�$# for one object and it has nice theoretical explanation
in [6]. For more than one object, however, we do not know
how the residual scales except for the empirical observation
we made. It would be nice to understand if the residual ac-
tually scales as

!�ut and, if so, determine the values of the
exponent v for different conditions, to give a better estimate
on the number of cameras for tasking. Another interesting
theoretical study is to prove if the uniform camera place-
ment is optimal in terms of the visual hull area when object
positions are not known.

9

9 Acknowledgement

The authors wish to acknowledge support from the Stan-
ford Networking Research Center, the Stanford Media-X
Consortium, ONR MURI grant N0014-02-1-0720, and NSF
grant CCR-0204486.

References

[1] C. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, Oxford, England, 1995.

[2] J. Byers and G. Nasser. Utility-based decision mak-
ing in wireless sensor networks. In Proceedings of the
1st ACM International Symposium on Mobile Ad-hoc
Networking and Computing, pages 143–144, 2000.

[3] M. Chu, H. Haussecker, and F. Zhao. Scalable
information-driven sensor query and routing for ad
hoc heterogeneous sensor network. In International
Journal of High Performance Computing Applica-
tions, 2002.

[4] I. Cohen and G. Medioni. Detecting and tracking mov-
ing objects in video from and airborne observer. In
Proc. DARPA Image Understanding Workshop, pages
217–222, Monterey, November 1998.

[5] R. T. Collins, A. J. Lipton, T. Kanade, H. Fu-
jiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N. Enomoto,
O. Hasegawa, P. Burt, and L. Wixon. A system for
video surveillance and monitoring. Technical Report
CMU-RI-TR-00-12, The Robotics Institute, Carnegie
Mellon University, 2000.

[6] R. M. Dudley. Metric entropy of some classes of sets
with differentiable boundaries. Journal of Approx.
Theory, 10:227–236, 1974.

[7] A. E. Gamal, D. Yang, and B. Fowler. Pixel level
processing – why, what and how? In Proc. of
the SPIE Electronic Imaging ’99 conference, volume
3650, 1999.

[8] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and
A. Zhu. Discrete mobile centers. In Proceedings of
the 17th Annual Symposium on Computational Geom-
etry, pages 188–196, 2001.

[9] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee.
Using adaptive tracking to classify and monitor activ-
ities in a site. In Proc. IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 22–29, Santa Barbara, CA, June 1998.

[10] A. Hoover and B. Olsen. A real-time occupancy
map from multiple video streams. In Proc. Interna-
tional Conference on Robotics and Automation, De-
troit, Michigan, May 1999.

[11] T. Horprasert, D. Harwood, and L. S. Davis. A ro-
bust background subtraction and shadow detection. In
Proc. Asian Conference on Computer Vision, January
2000.

[12] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next
century challenges: Mobile networking for ”smart
dust”. In Proc. 5th Annual International Confer-
ence on Mobile Computing and Networks (MobiCom
1999), pages 271–278, Seattle, WA, 1999.

[13] S. Lim and A. El-Gamal. Integrating image capture
and processing – beyond single chip digital camera.
In Proceedings of the SPIE Electronic Imaging ’2001,
volume 4306, San Jose, CA, January 2001.

[14] T. Matsui, H. Matsuo, and A. Iwata. Dynamic cam-
era allocation method based on constraint satisfaction
and cooperative search. In Proc. 2nd International
Conference on Software Engineering, Artificial Intel-
ligence, Network and Parallel/Distributed Computing,
Nagoya, Japan, February 2001.

[15] K. Obraczka, R. Manduchi, and J. Garcia-Luna-
Aveces. Managing the information flow in visual sen-
sor networks. In Symposium on Wireless Personal
Multimedia Communications, Honolulu, Hawaii, Oc-
tober 2002.

[16] J. O’Rourke. Art Gallery Theorems and Algorithms.
Oxford University Press, New York, NY, USA, August
1987.

[17] N. Sadagopan and B. Krishnamachari. Decentralized
utility-based design of sensor networks. In The 2nd
Workshop on Modeling and Optimization in Mobile,
Ad Hoc and Wireless Networks (WiOpt ’04), Univer-
sity of Cambridge, UK, March 2004.

[18] P. Vazquez, M. Feixas, M. Sbert, and W. Heidrich.
Viewpoint selection using viewpoint entropy. In Vi-
sion, Modeling, and Visualization, 2001.

[19] L. Wong, C. Dumont, and M. Abidi. Next best view
system in a 3-d object modeling task. In Proc. IEEE
Conference on Computational Intelligence in Robotics
and Automation, Monterey, California, November
1999.

[20] F. Zhao, J. Shin, and J. Reich. Information-driven
dynamic sensor collaboration for tracking applica-
tions. IEEE Signal Processing Magazine, 19(2):61–
72, March 2002.

10

