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Abstract

We show that the persistent homology of a filterdd
dimensional simplicial complex is simply the standard homol-
ogy of a particular graded module over a polynomial ring. Our
analysis establishes the existence of a simple description of
persistent homology groups over arbitrary fields. It also en-
ables us to derive a natural algorithm for computing persistent
homology of spaces in arbitrary dimension over any field. This
result generalizes and extends the previously known algorithm
that was restricted to subcomplexesSéfandZ, coefficients.
Finally, our study implies the lack of a simple classification
over non-fields. Instead, we give an algorithm for computing
individual persistent homology groups over an arbitrary prin-
cipal ideal domains in any dimension.

1

In this paper, we study the homology of a filteréd
dimensional simplicial complexX, allowing an arbi-
trary principal ideal domai® as the ground ring of co-
efficients. A filtered complex is an increasing sequence
of simplicial complexes, as shown in Figutelt deter-
mines aninductive systenof homology groups, i.e., a
family of Abelian groups{G; };>o together with homo-
morphismsG; — G;+1. If the homology is computed
with field coefficients, we obtain an inductive system of
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Figure 1. A filtered complex with newly added simplices high-
lighted.

of vector spaces. Our classification is in terms of a set of
intervals. We also derive a natural algorithm for comput-
ing this family of intervals. Using this family, we may
identify homological features that persist within the fil-
tration, thepersistent homologgf the filtered complex.

Furthermore, our interpretation makes it clear that if
the ground ring is not a field, there exists no similarly
simple classification of persistent homology. Rather, the
structures are very complicated, and although we may
assign interesting invariants to them, no simple classifi-
cation is, or is likely ever to be, available. In this case
we provide an algorithm for computing a single persis-
tent group for the filtration.

In the rest of this section we first motivate our study
through three examples in which filtered complexes
arise whose persistent homology is of interest. We then
discuss prior work and its relationship to our work. We

vector spaces over the field. Each vector space is deter-conclude this section with an outline of the paper.

mined up to isomorphism by its dimension. In this paper
we obtain a simple classification of an inductive system
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1.1 Motivation

We call a filtered simplicial complex, along with its as-
sociated chain and boundary mapgeasistence com-
plex We formalize this concept in Sectidh Per-
sistence complexes arise naturally whenever one is at-
tempting to study topological invariants of a space com-
putationally. Often, our knowledge of this space is lim-
ited and imprecise. Consequently, we must utilize a



multiscale approach to capture the connectivity of the  Persistent homology groups are initially defined in
space, giving us a persistence complex. [11, 18]. The authors also provide an algorithm that
worked only for spaces that were subcomplexe§of
Example 1.1 (point cloud data) Suppose we are given ~ OVerZ, coefficients. The algorithm generates a set of in-
afinite set of pointst from a subspack € R". We call tervals for a filtered complex. Surprisingly, the authors
X point cloud dataor PCDfor short. It is reasonable to  show that these intervals allowed the correct computa-
believe that if the sampling is dense enough, we should tion of the rank of persistent homology groups. In other

be able to compute the topological invariantsXoti- words, the authors prove constructively that persistent
rectly from the PCD. To do so, we may either compute homology groups of subcomplexes $f, if computed

the Cechcomplex, or approximate it via Rips com- overZs coefficients, have a simple description in terms

plex [15]. The latter complexz. (X) hasX as its vertex of a set of intervals. To build these intervals, the algo-

set. We declare a set of vertices= {xo,z1,...,=s} rithm pairspositivecycle-creating simplices witheg-

to span ak-simplex of R.(X) iff the vertices are pair-  ative cycle-destroying simplices. During the computa-

wise close, that isj(z;, ;) < e for all pairsz;, z; € o. tion, the algorithm ignores negative simplices and al-
There is an obvious inclusioR, (X) — R.(X) when- ways looks for thggoungessimplex. While the authors

evere < €. In other words, for any increasing sequence prove the correctness of the results of the algorithm, the
of non-negative real numbers, we obtain a persistenceunderlying structure remains hidden.
complex.

Example 1.2 (density) Often, our samples are not from 1.3 OurWork

a geometric object, but are heavily concentrated on it. It \e are motivated primarily by the unexplained results

is important, therefore, to compute a measure of den- of the previous work. We wish to answer the following
sity of the data around each sample. For instance, we gyestions:

may count the number of samplg&r) contained in a

ball of sizee around each sample. We may then de- 1. Why does a simple description exist for persistent
fine R{(X) C R. to be the Rips subcomplex on the homology of subcomplexes 6f overZ,?

vertices for whichp(z) < r. Again, for any increasing

sequence of non-negative real numbersve obtain a 2. Does this description also exist over other rings
persistence complex. We must analyze this complex to of coefficients and arbitrary-dimensional simplicial
compute topological invariants attached to the geomet- complexes?

ric object around which our data is concentrated.
3. Why can we ignore negative simplices during com-

Example 1.3 (Morse functions) Given a manifold}M putation?

equipped with a Morse functiorf, we may filter M/

via theexcursion setd/, = {m € M | f(m) < r}.

We again choose anincreasing sequence of non-negative

numbers to get a persistence complex. If the Morse

function is a height function attached to some embed-

ding of M in R™, persistent homology can now give in-

formation about the shape of the submanifolds, as well

the homological invariants of the total manifold.

4. Why do we always look for the youngest simplex?

5. What s the relationship between the persistence al-
gorithm and the standard reduction scheme?

In this paper we resolve all these questions by uncov-
ering and elucidating the structure of persistent homol-
ogy. Specifically, we show that the persistent homology
of a filteredd-dimensional simplicial complex is simply
1.2 Prior Work the standard homology of a particular graded module

over a polynomial ring. Our analysis places persistent
We assume familiarity with basic group theory and refer homology within the classical framework of algebraic
the reader to Dummit and Footé(] for an introduc- topology. This placement allows us to utilize a standard
tion. We make extensive use of Munkrés]in our de- structure theorem to establish the existence of a simple
scription of algebraic homology and recommend it as an description of persistent homology groups as a set of
accessible resource to non-specialists. There is a largantervals, answering the first question above. This de-
body of work on the efficient computation of homology scription exists over arbitrary fields, not just as in the
groups and their rankg[8, 9, 13]. previous result, resolving the second question.



Our analysis also enables us to derive a persistencein Section5 that computes individual persistent groups.

algorithm from the standard reduction scheme in alge-
bra, resolving the next three questions using two main

lemmas. Our algorithm generalizes and extends the pre-

viously known algorithm to complexes in arbitrary di-
mensions over arbitrary fields of coefficients. We also
show that if we consider integer coefficients or coeffi-
cients in some non-fiel®, there is no similar simple
classification. This negative result suggests the possibil-
ity of interesting yet incomplete invariants of inductive
systems. For now, we give an algorithm for classifying a
single homology group over an arbitrary principal ideal
domain.

1.4 Spectral Sequences

Any filtered complex gives rise to gpectral sequence
so it is natural to wonder about the relationship be-

tween this sequence and persistence. A full discussion

Section6 describes our implementation and some ex-
periments. We conclude the paper in Secffowith a
discussion of current and future work.

2 Background

In this section we review the mathematical and algo-
rithmic background necessary for our work. We begin
by reviewing the structure of finitely generated modules
over principal ideal domains. We then discuss simpli-
cial complexes and their associated chain complexes.
Putting these concepts together, we define simplicial ho-
mology and outline the standard algorithm for its com-
putation. We conclude this section by describing persis-
tent homology.

2.1 Algebra

on spectral sequences is outside the scope of this PaThroughout this paper we assume a riigo be com-

per. However, we include a few remarks here for the
reader who is familiar with the subject. We may easily
show that the persistence intervals for a filtration corre-
spond to nontrivial differentials in the spectral sequence
that arises from the filtration. Specifically, an interval of

lengthr corresponds to some differentiél ;. Given

this correspondence, we realize that the method of spec-

mutative with unity. Apolynomialf(¢) with coefficients
in R is a formal Sumeio a;t', wherea; € R andt is
the indeterminate. For exampl,+ 3 andt” — 5t are
both polynomials with integer coefficients. The set of
all polynomialsf(¢) over R forms a commutative ring
R[t] with unity. If R has no divisors of zero, and all its

ideals are principal, it is principal ideal domain (PID)

tral sequences computes persistence intervals in order ofgy. o purposes, a PID is simply a ring in which we

length, finding all intervals of length during the com-
putation of theE™ ! term. In principle, we may use this
method to compute the result of our algorithm. How-
ever, the method does not provide algorithm, but a
schemehat must be tailored for each problem indepen-
dently. The practitioner must decide on an appropriate

may compute thgreatest common divisar gcd of a
pair of elements. This is the key operation needed by
the structure theorem that we discuss below. PIDs in-
clude the familiar ring<Z, Q, andR. Finite fieldsZ,

for p a prime, as well ag"[t], polynomials with coeffi-
cients from a fieldr’, are also PIDs and have effective

basis, find the zero terms in the sequence, and deducealgorithms for computing the gcd]f

the nature of the differentials. Our analysis of persis-
tent homology, on the other hand, provides a complete,
effective, and implementable algorithm for any filtered

complex.

1.5 Outline

We begin by reviewing concepts from algebra and sim-
plicial homology in Sectior2. We also re-introduce
persistent homology over integers and arbitrary dimen-
sions. In Sectior8 we define and study the persistence
module, a structure that represents the homology of a fil-
tered complex. In addition, we establish a relationship
between our results and prior work. Using our analy-
sis, we derive an algorithm for computation over fields
in Section4. For non-fields, we describe an algorithm

A graded ringis a ring (R, +,-) equipped with
a direct sum decomposition of Abelian groups =
P, R, i € Z, so that multiplication is defined by bi-
linear pairingsRk,, ® R,, — R,+m. Elements in a
single R; are calledhomogeneousnd havedegrees,
dege = i for all e € R;. We may grade the polyno-
mial ring R[t] non-negatively with thetandard grading
R, = Rt", n > 0. In this grading,2t® and 7¢3 are
both homogeneous of degréeand3, respectively, but
their sum2t5 + 7¢2 is not homogeneous. The product
of the two terms 14t°, has degreé as required by the
definition. A graded moduleV/ over a graded ring?
is @ module equipped with a direct sum decomposition,
M = @, M;, i € Z, so that the action o on M is
defined by bilinear pairing®,, ® M,, — M, . The
main structure in our paper is a graded module and we



include concrete examples that clarify this concept later vertices ofo, where(vo, ..., vx) ~ (Vr(0),- - Ur(k))

on. A graded ring (module) ison-negatively graded are equivalent if the sign of is 1. We denote aori-

R, =0(M; =0)foralli < 0. ented simplexby [o]. A simplex may be realized geo-
The standard structure theorem describes finitely gen- metrically as the convex hull df + 1 affinely indepen-

erated modules and graded modules over PIDs. dent points inR¢,d > k. A realization gives us the

familiar low-dimensionalk-simplices: vertices, edges,
Theorem 2.1 (structure) If D is a PID, then every triangles andtetrahedrafor 0 < k < 3, shown in Fig-
finitely generatedD-module is isomorphic to a direct ure 2. Within a realized complex, the simplices must
sum of cyclic D-modules. That is, it decomposes

uniquely into the form 7i .@
Do @ ( > , a a b a

@ p/d:p (1) ¢ i

=1 vertex edge triangle tetrahedron
L a [a, b] [a, b, c] [a,b,c,d]
for d; € D,B € Z, such thatd;|d;1;. Similarly, ev-

ery graded modul@/ over a graded PID decomposes  Figure 2. Oriented k-simplices in R3, 0 < k < 3. The orien-
uniquely into the form tation on the tetrahedron is shown on its faces.

n m meet along common faces.subcomplexf K is a sub-
(@ E"“D) @ @ S%D/d;D |, ) setL C K that ig also a simplicial complex. fitration
1 e of a complexK is a nested subsequence of complexes
) = K°C K' C ... C K™ = K. For generality,

where d; € D are homogeneous elements so that we letK* = K™ for all i > m. We call K afiltered
djldjs1, @i,v; € Z, andX* denotes am-shift upward complex We show a small filtered complex in Figute
in grading.
In both cases, the theorem decomposes the structures2'3 Chain Complex
into two parts. Thefree portion on the left includes  Thekth chain groupCy, of K is the free Abelian group
generators that may generate an infinite number of el- on its set of oriented-simplices, wheréo] = —|[7] if
ements. This portion is a vector space and should bes = 7 ando andr are differently oriented.. An element
familiar to most readers. Decompositiol) fas avec- ¢ € Cy is ak-chain,c = ), n;[0;], 0; € K with coeffi-
tor space of dimensiof. Thetorsional portion on the cientsn; € Z. Theboundary operatot);: C,, — Cj_1
rightincludes generators that may generate a finite num-is a homomorphism defined linearly on a chaiby its

ber of elements. For example, if PID is Z in the theo- action on any simplex = [vg, v1,...,vk] € ¢,
rem,Z/37 = 73 would represent a generator capable of _ .

only creating three elements. These torsional elements Opo = Z(fl)z[vo’vl’ ey Uiy k),
are also homogeneous. Intuitively then, the theorem de- g

scribes finitely generated modules and graded moduleswhered; indicates that; is deleted from the sequence.
as structures that look like vector spaces but also haveThe boundary operator connects the chain groups into a
some dimensions that are “finite” in size. chain complex,:

Ok+1 O
) . = Crp1 ——Cp —Cpqg — .
2.2 Simplicial Complexes ’ ,
We may also define subgroups®@f using the boundary

A simplicial complexis a setk, together with a col-  operator: thecycle groupZ;, = ker 0, and thebound-
lections of subsets of< calledsimplicegsingularsim- ary groupB; = im Jx11. We show examples of cy-
pleX suchthatforalb € K, {v} € §,andifr C o € §, cles in Figure3. An important property of the boundary

thenr € 8. We call the set$v} theverticesof K. When operators is that the boundary of a boundary is always
it is clear from context wha$ is, we refer to sef as empty, 0,0r+1 = 0. This fact, along with the defi-
a complex. We say < § is ak-simplexof dimension nitions, implies that the defined subgroups are nested,

kif |o| = k+ 1. If  C o, 7 is afaceof o, ando Br C Zy C Cy, as in Figuret. For generality, we often
is acofaceof 7. An orientationof a k-simplexo, o = define null boundary operators in dimensions whege
{vg, ..., vk}, is @an equivalence class of orderings of the is empty.



2.4 Homology

The kth homology grougs Hy, = Z;/By. Its elements
are classes diomologougycles. To describe its struc-
ture, we view the Abelian groups we have defined so far
as modules over the integers. This view allows alter-
nate ground rings of coefficients, including fields. If the
ring is a PIDD, Hy, is a D-module and Theoren2(2)
applies: 3, the rank of the free submodule, is tBetti
numberof the module, and; are itstorsion coefficients
When the ground ring i&, the theorem above describes
the structure of finitely generated Abelian groups. Over
afield, such a®, Q, orZ, for p a prime, the torsion sub-

By

0 0 0

Figure 4. A chain complex with its internals: chain, cycle, and
boundary groups, and their images under the boundary opera-
tors.

The algorithm also useslementary column operations
that are similarly defined. Each column (row) opera-

module disappears. The module is a vector space that istion corresponds to a change in the basisdpi(Cy,—1).

fully described by a single integer, its rafgkwhich de-
pends on the chosen field.

2.5 Reduction

The standard method for computing homology is the re-
duction algorithm. We describe this method for integer
coefficients as it is the more familiar ring. The method
extends to modules over arbitrary PIDs, however.

As C;, is free, the oriented-simplices form thestan-
dard basisfor it. We represent the boundary operator
O,: C, — C_; relative to the standard bases of the
chain groups as an integer matm{;, with entries in
{-1,0,1}. The matrix)Mj, is called thestandard ma-
trix representatiorof 0. It hasm,; columns andn;_,
rows (the number ok- and (k — 1)-simplices, respec-
tively). The null-space of\/;, corresponds td@;, and its
range-space tB,_, as manifested in Figuré There-
duction algorithmderives alternate bases for the chain
groups, relative to which the matrix fak, is diagonal.
The algorithm utilizes the followinglementary row op-
erationson Mj,:

1. exchange row and rowy,

2. multiply row ¢ by —1,

3. replace rowi by (row:) + g(row j), whereg is an
integer andj # i.

Figure 3. The dashed 1-boundary rests on the surface of a
torus. The two solid 1-cycles form a basis for the first homology
class of the torus. These cycles are non-bounding: neither is a
boundary of a piece of surface.

For example, ife; ande; are theith and;jth basis ele-
ments forCy, respectively, a column operation of type
(3) amounts to replacing with e; + ge;. A similar row
operation on basis elementsandé; for C,_;, how-
ever, replaces; by é; — ¢é;. We shall make use of this
fact in Sectiord. The algorithm systematically modifies
the bases o€, andC;_; using elementary operations
to reduceM, to its (Smith) normal form

b1 0

wherel;, = rank My, = rank My, b’ > 1, andb; |b; 1,
forall 1 < ¢ < [;. The algorithm can also compute
corresponding baselg;} and {é;} for C;, andCj_1,
respectively, although this is unnecessary if a decompo-
sition is all that is needed. Computing the normal form
in all dimensions, we get a full characterizationHyf:

(i) the torsion coefficients dfl;_; (d; in (1)) are pre-
cisely the diagonal entriés greater than one.
(i) {e; | lg+1 < i< my}isabasisfoZ,. Therefore,
rankZ, = my — lg.
(i) {b;e; | 1 < i <} is abasis foB;_;. Equiva-
lently, rank By, = rank My 1 = ly1.

Combining (ii) and (iii), we have

B

rank Z; — rank By = my — I — lgy1-(3)

Example 2.1 For the complex in Figuré, the standard



matrix representation df, is

‘ ab bec cd ad ac
al—-1 0 0o -1 -1
M, = b1 -1 0 0 0 ,
c| 0O 1 -1 0 1

dl 0 0 1 1 0

where we show the bases within the matrix. Reducing
the matrix, we get the normal form

‘cd be ab 21 2o

d—c|1 0 0 0 0
M, = c—bl0 1 0 0 0|,

b—al0 0 1 0 0

a |0 0 0 0 0

wherez; = ad — bc — e¢d — ab andzy = ac — bec — ab
form a basis foZ; and{d — ¢,c — b,b — a} is a basis
for Bg.

We may use a similar procedure to compute homol-
ogy over graded PIDs. Aomogeneous basis a basis
of homogeneous elements. We begin by representing
relative to the standard basis Gf, (which is homoge-
neous) and a homogeneous basisZpr;. Reducing
to normal form, we read off the description provided by
direct sum ) using the new basig; } for Z;_:

(i) zero rowi contributes a free term with shifi; =
degé;,

(ii) row with diagonal termb; contributes a torsional
term with homogeneoug; = b; and shifty; =
degé;.

The reduction algorithm required(m?3) elementary
operations, wheren is the number of simplices i .

The operations, however, must be performed in exact

integer arithmetic. This is problematic in practice, as

The definition is well-defined: both groups in the de-
nominator are subgroups @, so their intersection

is also a group, a subgroup of the numerator. phe
persistentkth Betti number ofk* is 3,”, the rank of
the free subgroup dﬂﬁf. We may also define persistent
homology groups using the injectiofy” : H; — H.',
that maps a homology class into the one that contains
it. Then,imn,” ~ Hy” [11, 18. We extend this
definition over arbitrary PIDs, as before. Persistent ho-
mology groups are modules and Theor2rdescribes
their structure.

3 The Persistence Module

In this section we take a different view of persistent
homology in order to understand its structure. Intu-
itively, the computation of persistence requires compat-
ible bases foH), andH;*. It is not clear when a suc-
cinct description is available for the compatible bases.
We begin this section by combining the homology of
all the complexes in the filtration into a single alge-
braic structure. We then establish a correspondence that
reveals a simple description over fields. Most signifi-
cantly, we illustrate that the persistent homology of a
filtered complex is simply the standard homology of a
particular graded module over a polynomial ring. A sim-
ple application of the structure theorem (Theor2r)
gives us the needed description. We end this section by
illustrating the relationship of our structures to the per-
sistence equation (Equatiof)()

Definition 3.1 (persistence complex)A  persistence

H H H K2
the entries of the intermediate matrices may become ex-c0mplexC is a family of chain complexefC, }> over

tremely large.

2.6 Persistence

We end this section with by re-introducing persistence.
Given a filtered complex, thigh complexXk* has asso-
ciated boundary operato8s, matricesM}, and groups

+,Zi Bi andH for all i,k > 0. Note that super-
scripts indicate the filtration index and are not related to
cohomology. Thep-persistentith homology group of
K*is

" = 2./ (BN Z)). (4)

R, together with chain map’s’: C! — C‘*', so that
we have the following diagram:

0 1

ctlc!Lc?

2

Our filtered complexs” with inclusion maps for the sim-
plices becomes a persistence complex. Below, we show
a portion of a persistence complex, with the chain com-
plexes expanded. The filtration index increases hori-
zontally to the right under the chain mayg and the
dimension decreases vertically to the bottom under the



boundary operatorg.

o | o |

0 1 2
et L ¢l L .2 St
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0 1 2
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o f° 1 ft 2 f?
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Definition 3.2 (persistence module)A  persistence
moduleM is a family of R-modulesM?, together with
homomorphisms?: M* — Mi+!,

Theorem 3.1 (correspondence)The correspondence

«a defines an equivalence of categories between the
category of persistence modules of finite type ofer
and the category of finitely generated non-negatively
graded modules oveR]t].

The proof is the Artin-Rees theory in commutative alge-
bra [12].

Intuitively, we are building a single structure that con-
tains all the complexes in the filtration. We begin by
computing a direct sum of the complexes, arriving at a
much larger space that is graded according to the filtra-
tion ordering. We then remember the time each simplex
enters using a polynomial coefficient. For instance, sim-
plex a enters the filtration in Figuré at time0. To shift
this simplex along the grading, we must multiply the
simplex using. Therefore, while: exists at time), ¢ - a
exists at timel, t? - @ at time 2, and so on. The key
idea is that the filtration ordering is encoded in the co-

For example, the homology of a persistence complex is a efficient polynomial ring. We utilize these coefficients

persistence module, wheyé simply maps a homology
class to the one that contains it.

Definition 3.3 (finite type) A persistence complex
{C., '} (persistence modulgM/?, ©'}) is offinite type

if each component complex (module) is a finitely gen-
eratedR-module, and if the mapg’ (¢?, respectively)
are isomorphisms far > m for some integefn.

As our complexk is finite, it generates a persistence
complexC of finite type, whose homology is a persis-
tence modulé\l of finite type. We showed in the Intro-
duction how such complexes arise in practice.

3.1 Correspondence

Suppose we have a persistence modNe =
{M?*, ¢"};>0 over ring R. We now equipR|[t] with the
standard grading and define a graded module &gr
by

where theR-module structure is simply the sum of the

structures on the individual components, and where the

action oft is given by
L‘-(mo,ml,m27 ...)=(0, goo(mo)7 cpl(ml), @2(m2), ce)e

That is,t simply shifts elements of the module up in the
gradation.

in Sectiord to derive the persistence algorithm from the
reduction scheme in Secti@b.

3.2 Decomposition

The correspondence established by TheoBinsug-
gests the non-existence of simple classifications of per-
sistence modules over a ground ring that is not a field,
such a<Z. Itis well known in commutative algebra that
the classification of modules ovEft] is extremely com-
plicated. While it is possible to assign interesting in-
variants toZ[t]-modules, a simple classification is not
available, nor is it ever likely to be available.

On the other hand, the correspondence gives us a sim-
ple decomposition when the ground ring is a fiéld
Here, the graded ring'[¢] is a PID and its only graded
ideals are homogeneous of forft") = ¢™ - R[t],n >
0, so the structure of thé'[¢t]-module is described by
sum @) in Theorem?2.1:

(@zmp[ﬂ)ea PrFH/Em) ] . (5)
i=1 Jj=1

We wish to parametrize the isomorphism classes of
F'[t]-modules by suitable objects.

Definition 3.4 (P-interval) A P-interval is an ordered
pair (i, j) with 0 < i < j € Z® = Z U {4o0}.

We associate a gradeHl[t]-module to a se§ of P-
intervals via a bijection@. We defineQ(i,j) =
YiF[t]/(t~%) for P-interval (i,5).  Of course,



Q(i,+00) = X'F[t]. For a set ofP-intervals§ =
{(i1, 1), (i2,52) - - ., (in, jn) }, We define

Q(8) = P Q. 5n).
1=1

Our correspondence may now be restated as follows.

Corollary 3.1 The correspondenc® — @(8) defines

a bijection between the finite sets Bfintervals and the
finitely generated graded modules over the graded ring
F[t]. Consequently, the isomorphism classes of persis-
tence modules of finite type ovét are in bijective cor-
respondence with the finite setsBfintervals.

3.3

Before proceeding any further, we recap our work so far
and relate it to prior results. Recall that our input is a
filtered complexk and we are interested in itgh ho-
mology. In each dimension the homology of complex
K'* becomes a vector space over a field, described fully
by its rank .. We need to choose compatible bases
across the filtration in order to compute persistent ho-
mology for the entire filtration. So, we form the persis-
tence module corresponding 6, a direct sum of these

Interpretation

rank 317 of H.? is the number of triangles i contain-
ing the point(l, p).

Consequently, computing persistent homology over a
field is equivalent to finding the corresponding sefef
intervals.

(i, 0)

p=0

(d) eouaysiszad

(i,j - i)}

(Lj=1o

y
Figure 5. The inequalitesp > 0,1 > i,andl+p < j definea
triangular region in the index-persistence plane. This region de-

fines when the cycle is a basis element for the homology vector
space.

vector spaces. The structure theorem states that a ba4  Algorithm for Fields

sis exists for this module that provides compatible bases
for all the vector spaces. In particular, ed@hnterval
(i,4) describes a basis element for the homology vec-
tor spaces starting at timeuntil time j — 1. This ele-
ment is ak-cyclee that is completed at timg forming a
new homology class. It also remains non-bounding u
til time 7, at which time it joins the boundary grod,.
Therefore, theP-intervals discussed here are precisely
the so-called:-intervals utilized in [L1] to describe per-
sistentZ,-homology. That is, while component homol-

n_

ogy groups are torsionless, persistence appears as tor

sional and free elements of the persistence module.
Our interpretation also allows us to ask when B!,
is a basis element for the persistent groh(gg. Recall
Equation 4). Ase ¢ Bﬁf for all I < j, we know that
e & B for I +p < j. Along with I > i andp > 0,
the three inequalities define a triangular region in the
index-persistence plane, as drawn in FigbreThe re-
gion gives us the values for which thecyclee is a basis
element forH.”. In other words, we have just shown a
direct proof of thek-triangle Lemman [11], which we
restate here in a different form.

Lemma 3.1 Let T be the set of triangles defined By
intervals for thek-dimensional persistence module. The

In this section we devise an algorithm for computing
persistent homology over a field. Given the theoret-
ical development of the last section, our approach is
rather simple: we simplify the standard reduction al-
gorithm using the properties of the persistence module.
Our arguments give an algorithm for computing the
intervals for a filtered complex directly over the figid
without the need for constructing the persistence mod-
ule. This algorithm is a generalized version of the pair-
ing algorithm shown in]1].

4.1 Derivation

We use the small filtration in Figurkeas a running ex-

ample and compute ovéh,, although any field will do.

The persistence module corresponds @,]-module

by the correspondence established in Theozen Ta-

ble 1 reviews the degrees of the simplices of our filtra-

tion as homogeneous elements of this module.
Throughout this section we uge; } and{é;} to rep-

resent homogeneous bases @y and C;_;, respec-

tively. Relative to homogeneous bases, any represen-

tation M}, of 0, has the following basic property:

degéz + deng(laJ) = degeja (6)



non-pivot columns form the desired basis . In our
al|blc|d|ab|bc|cd]|ad]|ac|abc| acd example, we have

Table 1. Degree of simplices of filtration in Figure 1 B d 0 0 0 O
My = |ec|t [2] o 0o 0], (®
where M, (i, j) denotes the element at locatigi j). bl 0 ¢ 0 0
We get al0 O ¢t 0 O
‘ ab be ed ad ac wherez; = ad —cd —t-bc —t - ab, andzy = ac — t2 -
dl'o 0 ¢t t 0 be — t2 - ab form a homogeneous basis .
M, = clo 1 t 0 1|, @ The procedure that arrives at the echelon form is
bt t 0 0 O Gaussian elimination on the columns, utilizing elemen-
alt 0 0 ¢ ¢ tary column operations of types (1, 3) only. Starting

) . with the left-most column, we eliminate non-zero en-
for 0, in our example. The reader may verify Equa- tries occurring in pivot rows in order of increasing row.

tion (6) using this example for intuition, e.g4: (4,4) = To eliminate an entry, we use an elementary column op-

t* as degud — dega = 2 — 0 = 2, according to Tabld. eration of type (3) that maintains the homogeneity of
Clearly, the standard bases for chain groups are ho-the basis and matrix elements. We continue until we ei-

mogeneous. We need to represént C, — Cj_; rel- ther arrive at a zero column, or we find a new pivot. If

ative to the standard basis f@; and a homogeneous needed, we then perform a column exchange (type (1))
basis foer_l. We then reduce the matrix and read to reorder the columns appropriate|y_

off the description ofH;, according to our discussion

in Section2.5. We compute these representations in- _emma 4.1 (Echelon Form) The pivots in column-
ductively in dimension. The base case is trivial. As echelon form are the same as the diagonal elements in
do =0, Zy = Cp and the standard basis may be used normal form. Moreover, the degree of the basis elements
for representingd;. Now, assume we have a matrix gn pivot rows is the same in both forms.
representationV/;, of Jy relative to the standard basis

{e;} for C; and a homogeneous badi;} for Z._;. Proof: Because of our sort, the degree of row basis el-
For induction, we need to compute a homogeneous ba-ements:; is monotonically decreasing from the top row
sis for Z,, and represent;,; relative toCy,; and the down. Within each fixed colump, dege; is a constant
computed basis. We begin by sorting basjsin re- c. By Equation 6), degMy(i,j) = ¢ — degé;. There-
verse degree order, as already done in the maitrix in fore, the degree of the elements in each column is mono-
Equation 7). We next transform\/, into the column- tonically increasing with row. We may eliminate non-
echelon formM/;,, a lower staircase form shown in Fig-  zero elements below pivots using row operations that do
ure6 [17]. The steps have variable height, all landings not change the pivot elements or the degrees of the row
have width equal to one, and non-zero elements may basis elements. We then place the matrix in diagonal

only occur beneath the staircase. A boxed value in the form with row and column swaps. O
0 0 The lemma states that if we are only interested in the de-
0o - gree of the basis elements, we may read them off from
: the echelon form directly. That is, we may use the fol-
* * 0 : .
« ST o ... lowing corollary of the standard structure theorem to ob-
. H 0 .. 0 tain the description.

Fi . Corollary 4.1 Let M;, be the column-echelon form for

igure 6. The column-echelon form. An x indicates a non-zero . .

value and pivots are boxed. Oy relative to basege; } and{eiN} for C,, andZ;_4, re-
spectively. If rowi has pivotMy(i,j) = t", it con-

figure is apivotand a row (column) with a pivot is called  tributesx9€9¢: F'[t] /™ to the description oH,,_;. Oth-

a pivot row (column) From linear algebra, we know erwise, it contributes29€%: ['[¢t]. Equivalently, we get

thatrank M, = rankBj_; is the number of pivots in (degé;, degé; + n) and(degeé;, co), respectively, a&-

an echelon form. The basis elements corresponding tointervals forH; ;.



In our example,Ml(l,l) = ¢ in Equation B). As
degd = 1, the element contributes'Z,|t]/(t) or P-
interval (1,2) to the description df.

my_;x ny my xmy_

Figure 7. As 9041 = 0, M M1 = 0 and this is
unchanged by elementary operations. When M}, is reduced
to echelon form M, by column operations, the corresponding
row operations zero out rows in M, 41 that correspond to pivot
columns in M.

We now wish to represerdl,; in terms of the basis
we computed foZ,. We begin with the standard ma-
trix representatiom/y 1 of dx11. AS OxOr11 = 0,
MMy, = 0, as shown in Figurd. Furthermore,
this relationship is unchanged by elementary operations.
Since the domain a¥;, is the codomain 01, the el-
ementary column operations we used to transfadin
into echelon formM,, give corresponding row opera-
tions onMj 1. These row operations zero out rows in
M;,,1 that correspond to non-zero pivot columnsif,
and give a representation@f . ; relative to the basis we
just computed foZ,. This is precisely what we are af-
ter. We can get it, however, with hardly any work.

Lemma 4.2 (Basis Change)To represendy . ; relative
to the standard basis f@;; and the basis computed
for Z;,, simply delete rows inV/;,; that correspond to
pivot columns inMj,.

Proof: We only used elementary column operations of
types (1,3) in our variant of Gaussian elimination. Only

the latter changes values in the matrix. Suppose we re-

place column by (columns) + g(columny) in order to
eliminate an element in a pivot royy as shown in Fig-
ure7. This operation amounts to replacing column basis
element; by e;+qe; in M},. To effect the same replace-
ment in the row basis fay;,, 1, we need to replace row

4 with (row j) — g(row 7). However, row; is eventu-
ally zeroed-out, as shown in Figureand row: is never
changed by any such operation. O

Therefore, we have no need for row operations. We

simply eliminate rows corresponding to pivot columns
one dimension lower to get the desired representation
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for Or41 in terms of the basis foZ,. This completes
the induction. In our example, the standard matrix rep-
resentation fob), is

abc acd
ac t 12
ad | 0 t3
My = cd| 0 t3
be | t3 0
ab | 3 0

To get a representation in terms @f and the basis
(21, 22) for Z; we computed earlier, we simply elimi-
nate the bottom three rows. These rows are associated
with pivots in M, according to Equatiors]. We get

where we have also replaced andac with the corre-
sponding basis elements = ad — bc — cd — ab and
z9 = ac — be — ab.

4.2 Algorithm

Our discussion gives us an algorithm for computihg
intervals of anF[t]-module over fieldF. It turns out,
however, that we can simulate the algorithm over the
field itself, without the need for computing the[¢]-
module. Rather, we use two significant observations
from the derivation of the algorithm. First, Lemmal
guarantees that if we eliminate pivots in the order of de-
creasing degree, we may read off the entire description
from the echelon form and do not need to reduce to nor-
mal form. Second, Lemmd.2 tells us that by simply
noting the pivot columns in each dimension and elimi-
nating the corresponding rows in the next dimension, we
get the required basis change.

Therefore, we only need column operations through-
out our procedure and there is no need for a matrix rep-
resentation. We represent the boundary operators as a
set of boundary chains corresponding to the columns
of the matrix. Within this representation, column ex-
changes (type (1)) have no meaning, and the only opera-
tion we need is of type (3). Our data structure is an array
T with a slot for each simplex in the filtration, as shown
in Figure8 for our example. Each simplex gets a slot in
the table. For indexing, we need a full ordering of the
simplices, so we complete the partial order defined by
the degree of a simplex by sorting simplices according
to dimension, breaking all remaining ties arbitrarily (we
did this implicitly in the matrix representation.) We also



ab bc c¢d ad ac abc acd
4 5 6 7 8 9 10

A2

|

ad ac

a b ¢ d
1

3
el ]e

L

b ¢ d
-a -b —c

Figure 8. Data structure after running the algorithm on the fil-
tration in Figure 1. Marked simplices are in bold italic.

need the ability tanark simplices to indicate non-pivot
columns.

Rather than computing homology in each dimension
independently, we compute homology in all dimen-
sions incrementally and concurrently. The algorithm, as
shown in Figure9, stores the list ofP-intervals forH,
in_Lk.

COMPUTEINTERVALS (K) {
for k = 0todim(K) Ly, = 0;
forj=0tom —1¢
d = REMOVEPIVOTROWS (¢7);
if (d = 0) Mark o7;
else{
i = maxindexd; k = dim o?;
Storej andd in T'[i];
Ly, = Ly U {(deg o, dego?)}
}
}
forj=0tom —1{
if 07 is marked and’[;] is empty{
k=dimo’; Ly = L, U {(dego?, 00)}
}
}
}

Figure 9. Algorithm COMPUTEINTERVALS processes a complex
of m simplices. It stores the sets of P-intervals in dimension k
in L.

When simplexo? is added, we check via proce-
dure REMOVEPIVOTROWS to see whether its bound-
ary chaind corresponds to a zero or pivot column. If
the chain is empty, it corresponds to a zero column and
we marko’: its column is a basis element fa@y,, and
the corresponding row should not be eliminated in the
next dimension. Otherwise, the chain corresponds to
a pivot column and the term with the maximum index
1 = maxindexd is the pivot, according the procedure de-
scribed for theF'[¢]-module. We store indexand chain
d representing the column iff[;]. Applying Corol-
lary 4.1, we getP-interval (deg 0%, deg o?). We con-
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chain REMOVEPIVOTROWS () {
k=dimo; d = 0y0;
Remove unmarked terms ih
while (d # 0) {
i = maxindexd;
if T'[¢] is empty, break;
Let ¢ be the coefficient of* in T'[i];
d=d—q 'Tl[i;

returnd;

}

Figure 10. Algorithm REMOVEPIVOTROWS first eliminates rows
not marked (not corresponding to the basis for Z,_ 1), and then
eliminates terms in pivot rows.

tinue until we exhaust the filtration. We then perform
another pass through the filtration in search of infinite
P-intervals: marked simplices whose slot is empty.

We give the function RMOVEPIVOTROWS in Fig-
ure 10. Initially, the function computes the boundary
chain d for the simplex. It then applies Lemm&a2,
eliminating all terms involving unmarked simplices to
get a representation in terms of the basisZgr,. The
rest of the procedure is Gaussian elimination in the order
of decreasing degree, as dictated by our discussion for
the F'[t]-module. The term with the maximum indéx=
max d is a potential pivot. IfT’[:] is non-empty, a pivot
already exists in that row, and we use the inverse of its
coefficient to eliminate the row from our chain. Other-
wise, we have found a pivot and our chain is a pivot col-
umn. For our example filtration in Figu the marked
0-simplices{a, b, ¢, d} and 1-simplicedad, ac} gener-
ateP-intervalsLy = {(0,0),(0,1),(1,1),(1,2)} and
L, ={(2,5),(3,4)}, respectively.

4.3 Discussion

From our derivation, itis clear that the algorithm has the
same running time as Gaussian elimination over fields.
Thatis, it take)(m?) in the worst case, where is the
number of simplices in the filtration. The algorithm is
very simple, however, and represents the matrices effi-
ciently. In our preliminary experiments, we have seen a
linear time behavior for the algorithm.

5 Algorithm for PIDs

The correspondence we established in Secietimi-
nates any hope for a simple classification of persistent



groups over rings that are not fields. Nevertheless, we 6 Experiments
may still be interested in their computation. In this sec-
tion, we give an algorithm to compute the persistent ho-
mology groupsH,* of a filtered complex for a fixed

1 andp. The algorithm we provide computes persistent
homology over any PIID of coefficients by utilizing a
reduction algorithm over that ring.

In this section, we discuss experiments using an im-
plementation of the persistence algorithm for arbitrary
fields. Our aim is to further elucidate the contributions
of this paper. We look at two scenarios where the previ-
ous algorithm would not be applicable, but where our al-

i . gorithm succeeds in providing information about a topo-
To compute the persistent group, we need to obtain logical space.

a description of the numerator and denominator of the
guotient group in Equatior]. We already know how to .
characterize the numerator. We simply reduce the stan-6.1 ~ Implementation

d.ard matr.lx representat|oM,§ of 0, using Te reduc' We have implemented our field algorithm 8y, for p a
tion algorithm. The denominatoB;;” = By, "N .Zz’ prime, andQ coefficients. Our implementation is
plays the role of the boundary group in Equatigh.(  ang utilizes GNU MP, a multiprecision library, for ex-
Therefore, instead of reducing matrb; |, we need  4¢¢ computation4]. We have a separate implementa-
to reduce an alternate matri,?, that describes this  tion for coefficients irZ, as the computation is greatly
boundary group. We obtain this matrix as follows: simplified in this field. The coefficients are eith&ror

1, so there is no need for orienting simplices or main-
(1) We reduce matri®/; to its normal form and obtain  taining coefficients. Ak-chain is simply a list of sim-

a basis{z7} for Z%, using fact (i) in Sectior2.5. plices, those with coefficient. Each simplex is its
We may merge this computation with that of the OWwn inverse, reducing the group operation to siyen-
numerator. metric differencewhere the sum of twé-chainsc, d is

c+d=(cUd)—(cnNd).Weusea?2.2GHz Pentium
4 Dell PC with 1 GB RAM running Red Hat Linux 7.3

(2) We reduce matrix/ ? to its normal form and ob- ' 20
for computing the timings.

k+1
tain a basis{b'} for B,"? using fact (iii) in Sec-
tion 2.5

6.2 Data

Our algorithm requires a persistence complex as input.
In the introduction, we discussed how persistence com-
plexes arise naturally in practice. In ExamAe, we
discussed generating persistence complexes using ex-
cursion sets of Morse functions over manifolds. We
have implemented a general framework for computing
complexes of this type. We must emphasize, however,
that our persistence software processes persistence com-
plexes of any origin.

Our framework takes a tuplds, f) as input and pro-
duces a persistence complégk, f) as output. K is
ad-dimensional simplicial complex that triangulates an
underlying manifold, andf : vertK' — R is a discrete
function over the vertices ok that we extend linearly
We now reduceV/;”, to normal form and read off the  over the remaining simplices df. The functionf acts
torsion coefficients and the rank &.”. It is clear as the Morse function over the manifold, but need not
from the procedure that we are computing the persistent & Morse for our purposes. Frequently, our complex is
groups correctly, giving us the following. augmented with a map : K — R that immerses

or embeds the manifold in Euclidean space. Our algo-

rithm does not require for computation, butp is of-
Theorem 5.1 For coefficients in any PID, persistent ho- ten provided as a discrete map over the vertice& of
mology groups are computable in the order of time and and is extended linearly as before. For example, Fig-
space of computing homology groups. ure 11 displays a triangulated Klein bottle, immersed

(3) Let N = [{v'} {z}] = [B Z], that is, the columns
of matrix NV consist of the basis elements from the
bases we just computed, afitland Z are the re-
spective submatrices defined by the bases. We next
reduceN to normal form to find a basiéu?} for
its null-space. As before, we obtain this basis us-
ing fact (ii). Eachu? = [a? (7], wherea?,(? are
vectors of coefficients ofb'}, {27}, respectively.
Note thatNu? = Ba?+ Z¢{? = 0 by definition. In
other words, elemenBa? = —Z(? is belongs to
the span of both bases. Therefore, bptn?} and
{Z¢9} are bases foB,? = B " N Zj,. We form a
matrix M,?, from either.

12



numbersy, of k-simplices
0o [ T | 2 [ 3 | 4 X
K 2,000 6,000 4,000 0 0 0
E 3,095 52,285 177,067 212,327 | 84,451 1
J 17,862 | 297,372 | 1,010,203| 1,217,319| 486,627 || 1

Table 2. Datasets. K is the Klein bottle, shown in Figure 11. E is potential around electrostatic charges. J is supersonic jet flow.

in R3. For each dataset, Tabl gives the number
s Of k-simplices, as well as the Euler characteristic
x = Y_.(—=1)*s. We use the Morse function to com-
pute the excursion set filtration for each dataset. Table
gives information on the resulting filtrations.

Figure 11. A wire-frame visualization of dataset K, an immersed
triangulated Klein bottle with 4000 triangles.

| K| len || filt(s) | pers(s)
K 12,000| 1,020| 0.03| <0.01
E 529,225| 3,013 | 3.17 5.00
J || 3,029,383| 256 24.13| 50.23

Table 3. Filtrations. The number of simplices in the filtration
|[K| = 3=, si, the length of the filtration (number of distinct
values of function f), time to compute the filtration, and time to
compute persistence over Zz coefficients.

6.3 Field Coefficients

A contribution of this paper is the generalization of the
persistence algorithm to arbitrary fields. This contribu-
tion is important when the manifold under study con-
tains torsion. To make this clear, we compute the ho-
mology of the Klein bottle using the persistence algo-
rithm. Here, we are interested only in the Betti numbers
of the final complex in the filtration for illustrative pur-
poses. The non-orientability of the Klein bottle is visible

13

F Bo | Br | B2 | time (s)
Zo 121 0.01
Zs 1 1 0 0.23
Zs 1 1 0 0.23
73203 1 1 0 0.23
Q ||1]1]o0 0.50

Table 4. Field coefficients. The Betti numbers of K computed
over field F' and time for the persistence algorithm. We use a
separate implementation for Z2 coefficients.

in Figure11l. The change in triangle orientation at the
parametrization boundary leads to a rendering artifact
where two sets of triangles are front-facing. In homol-
ogy, the non-orientability of the Klein bottle manifests
itself as a torsional 1-cyclewhere2cis a boundary (in-
deed, it bounds the surface itself.) The homology groups
overz are:

Ho(K) = Z,
Hl(K) = 7Z X ZQ,
Ha(K) = {0}

Note that3; = rankH; = 1. We now use the “height
function” as our Morse functionf = z, to generate the
filtration in Table3. We then compute the homology of
dataseK with field coefficients using our algorithm, as
shown in Tablet.

OverZ,, we getd; = 2 as homology is unable to rec-
ognize the torsional boundagy with coefficients) and
1. Instead, it observes an additional class of homology
1-cycles. By the Euler-Poindarelation,y = >, 3;, SO
we also get a class of 2-cycles to compensate for the in-
crease id, [16]. ThereforeZs-homology misidentifies
the Klein bottle as the torus. Over any other field, how-
ever, homology turns the torsional cycle into a boundary,
as the inverse of 2 exists. In other words, while we can-
not observe torsion in computing homology over fields,
we can deduce its existence by comparing our results
over different coefficient sets. Similarly, we can com-
pare sets ofP-intervals from different computations to
discover torsion in a persistence complex.

Note that our algorithm’s performance for this dataset
is about the same over arbitrary finite fields, as the coef-



ficients do not get large. The computation o@takes 0
about twice as much time and space, since each rational |
is represented as two integers in GNU MP.

6.4 Higher Dimensions st

A second contribution of this paper is the extension of

the persistence algorithm from subcomplexesSbto »

complexes in arbitrary dimensions. We have already uti- =}

lized this capability in computing the homology of the ol

Klein bottle. We now examine the performance of this , ‘ ‘ ‘ ‘ ‘
algorithm in higher dimensions. For practical motiva- 0 » o Lo 0 0

tion, we use large-scale time-varying volume data as in-
put. Advances in data acquisition systems and comput-
ing technologies have resulted in the generation of mas-
sive sets of measured or simulated data. The datasets

usually contain the time evolution of physical variables, requires at least 16 bytes for representing any integer.
such as temperature, pressure, or flow velocity at sample

points in space. The goal is to identify and localize sig- .

nificant phenomena within the data. We propose using /  Conclusion

persistence as the significance measure.

The underlying space for our datasets is the four-
dimensional space-time manifold. For each dataset, we
triangulate the convex hull of the samples to get a trian-
gulation. Each complex listed in Tabkis homeomor-
phic to a four-dimensional ball and hgs= 1. Dataset
E contains the potential around electrostatic charges at
each vertex. Datasétrecords the supersonic flow ve-
locity of a jet engine. We use these values as Morse

functions to generate the filtrations. We then compute 2. and relate the previous algorithm to the classic

Figure 12. Graph of 3] for dataset J, where £ is the flow ve-
locity.

We believe the most important contribution of this pa-
per is a reinterpretation of persistent homology within
the classical framework of algebraic topology. Our in-
terpretation allows us to:

1. establish a correspondence that fully describes the
structure of persistent homology over any field, not
only overZs, as in the previous result,

persistence ove%, coefficients to get the Betti numbers. reduction algorithm, thereby extending it to arbi-
We give filtration sizes and timings in Tal8eFigurel12 trary fields and arbitrary dimensional complexes,
displaysg, for dataset]. We observe a large number of not just subcomplexes &® as in the previous re-
two-dimensional cycles (voids), as the co-dimension is sult.

2. Persistence allows us to decompose this graph into

the set ofP-intervals. Although there are 730,692 We provide implementations of our algorithm for fields,

intervals in dimension 2, most are empty as the topolog- and show that they perform quite well for large datasets.
ical attribute is created and destroyed at the same func-Finally, we give an algorithm for computing a persis-
tion level. We draw the 502 non-empfintervals in tent homology group with fixed parameters over arbi-
Figurel3. We note that th&-intervals represent a com-  trary PIDs.
pact and generahape descriptofor arbitrary spaces. Our software for-dimensional complexes enables us
to analyze arbitrary-dimensional point cloud data and
For the large data sets, we do not compute persistencetheir derived spaces. One current project uses this im-
over alternate fields as the computation requires in ex- plementation for feature recognition using a novel alge-
cess of 2 gigabytes of memory. In the case of finite fields braic method 7]. Another project analyzes the topo-
Z,, we may restrict the primg so that the computation  logical structures in a high-dimensional data set derived
fits within an integer. This is a reasonable restriction, from natural images/]. Yet another applies persistence
as on most modern machines with 32-bit integers, itim- to derived spaces to arrive at compact shape descriptors
pliesp < 216 — 1. Given this restriction, any coefficient ~for geometric objects3, 5]. Future theoretical work in-
will be less tharp and representable as a 4-byte integer. clude examining invariants for persistent homology over
The GNU MP exact integer format, on the other hand, non-fields and definingultivariate persistencevhere
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Figure 13.
dimension 2. The amalgamation of these intervals gives the
graph in Figure 12.

The 502 non-empty P-intervals for dataset J in

there is more than one persistence dimension. An ex-

ample would be tracking a Morse function as well

as

density of sampling on a manifold. Finally, we have

recently reimplemented the algorithm using the generic
paradigm. This implementation will soon be a part of [11]

the CGAL library [].
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