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Abstract--This article overviews the information-driven 
approach to sensor collaboration in ad hoc sensor networks. The 
main idea is for a network to determine participants in a “sensor 
collaboration” by dynamically optimizing the information utility 
of data for a given cost of communication and computation. A 
definition of information utility is introduced, and several 
approximate measures of the information utility are developed for 
reasons of computational tractability. We illustrate the use of this 
approach using examples drawn from tracking applications.  

I. INTRODUCTION 

The technology of wirelessly networked micro-sensors 
promises to revolutionize the way we live, work, and interact 
with the physical environment. For example, tiny, inexpensive 
sensors can be “sprayed” onto roads, walls, or machines to 
monitor and detect a variety of interesting events such as 
highway traffic, wildlife habitat condition, forest fire, 
manufacturing job flow, and military battlefield situation.   
 
Because of its spatial coverage and multiplicity in sensing 
aspect and modality, a sensor network is ideally suited for 
tracking moving phenomena (e.g. moving vehicles or people) 
traversing the range of many sensors in a large area, 
monitoring a large number of objects or events simultaneously 
(e.g. forest fires or large animal herds), or detecting low-
observable events (e.g. stealthy, low signal-noise ratio sources, 
subject to loud distractors or other countermeasures). The 
detection, classification, and tracking of moving, non-local, 
low-observable events requires non-local collaboration among 
sensors. Aggregation of a multitude of sensor data can improve 
accuracy. Informed selective collaboration of sensors, in 
contrast to flooding data requests to all sensors, can reduce 
latency. Moreover, sensor collaboration can minimize 
bandwidth consumption (translating into energy savings) and 
mitigate the risk of network node/link failures. The longevity 
of a network depends on the rate the power is consumed 
performing computation and communication tasks at these un-
tethered, battery powered sensors. 
 
Therefore, one of the central issues for Collaborative Signal 
and Information Processing (CSIP) to address is energy-
constrained dynamic sensor collaboration   how to 
dynamically determine who should sense, what needs to be 
sensed, whom the information must be passed on to.  For non-
local spatio-temporal events due to motion or spatial 

 
 
1 Corresponding author. 

multiplicity of targets, sensor collaboration can dynamically 
invoke regions of a network informed by motion prediction as 
in tracking, or activate sensors around which there has been a 
significant change in physical measurement as in large-scale 
event monitoring (e.g. waking up sensors that are on the 
boundary of a forest fire). For low-observable events, sensor 
collaboration can selectively aggregate multiple sources of 
information to improve detection accuracy, or to actively 
probe certain nodes in order to disambiguate multiple 
interpretations of an event. 
 
Although the ideas introduced in this paper apply to a wide 
range of distributed detection, classification, and monitoring 
problems, we will focus on the tracking problem and use it as a 
running example to introduce the techniques of information-
driven dynamic sensor collaboration. We assume that each 
sensor has a local sensing and communication range; a 
physical phenomenon of interest has a local or non-local 
spatial extent. In addition, we assume that each node in the 
network can locally estimate the cost of sensing, processing, 
and communicating data to another node, and can monitor its 
power usage. The benefits of sensor collaboration can be 
measured as improvement in one or more of the following 
capabilities:  
 

1. Detection quality: Detection resolution, sensitivity, 
and dynamic range; misses and false alarms; response 
latency. 

2. Track quality: Tracking errors, track length, 
robustness against sensing gaps. 

3. Scalability: Size of network, number of events, 
number of active queries. 

4. Survivability: Robustness against node/link failures. 
5. Resource usage: Power/bandwidth consumption. 

 
The main idea of the information-driven approach is to base 
the decision for sensor collaboration on information 
constraints as well as constraints on cost and resource 
consumption. Using measures of information utility, the 
sensors in a network can exploit the information content of 
data already received to optimize the utility of future sensing 
actions, thereby efficiently managing the scarce 
communication and processing resources. The information-
driven approach to sensor querying and data routing builds on 
the work of directed diffusion routing [Intanagonwiwat et al. 
2000; Estrin et al. 1999] that has been successfully deployed 
for ad hoc sensor networks; it can enhance the diffusion 
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mechanism in directed diffusion to further reduce latency and 
resource usage. 

II. A TRACKING SCENARIO 
 To illustrate the main idea of the information-driven 
approach, we consider a task of tracking a moving vehicle 
through a two-dimensional sensor field (see Fig. 1). A user 
initiates the following query: “report the position of the 
vehicle every 5 seconds”. A few interesting features of the 
problem are worth noting. There is no road constraint, and 
therefore no prior knowledge of possible vehicle trajectories 
can be exploited. Second, the vehicle can accelerate or 
decelerate, in between the nearest sensors. Both of these 
render traditional closest-point-of-approach (CPA) based 
trackers difficult to apply. Third, many sensors can 
potentially make simultaneous observations and flood the 
network with the information. This requires the network to 
make intelligent decisions about who should sense and who 
should communicate and at what time. For the sake of 
simplicity, we focus on the sensor collaboration during the 
tracking phase, ignoring the detection phase and glossing 
over the details of routing the query into regions of interest. 
We further assume there is one leader node active at any 
moment, and its task is to select and route tracking 
information to the next leader. A multiple, simultaneous 
leader protocol can be analogously developed, and is beyond 
the scope of this paper. 
 

��� A user query enters the sensor network at node Q. 
2. Meta knowledge guides the query towards a region of 

potential events. 

��� Node a computes an initial estimate of vehicle state � ax , 
determines the next best sensor 

� , ) ,  ( )a iNext( b i neighbors aλ = ∈x , and hands off the 
state information to b. iλ is sensor characteristics for node 
i.�

4. Node b computes a new estimate by combining its 

measurement bz with the previous estimate � ax using, say a 

Bayesian filter: � � ; b a b Next c= ⊕ =x x z  

5. Node c computes: � � ; c b c Next d= ⊕ =x x z  

6. Node d computes: � � ; d c d Next e= ⊕ =x x z  

��� Node d sends current estimate back to the querying node Q.�

8. Node e computes: � � ; e d e Next f= ⊕ =x x z  

9. Node f computes: � � ; ...f e f Next= ⊕ =x x z  

10. Node f sends current estimate back to querying node. … 
 
As the above tracking scenario illustrates, sensor selection is a 
local decision. The decision must be based on a measure of 
information utility and cost, which can be locally evaluated 
and updated. The following section will overview the 
information-driven sensor querying (IDSQ) approach.  

III. IDSQ: INFORMATION DRIVEN SENSOR QUERYING AND 
DATA ROUTING 

We formulate the problem of distributed tracking as a 
sequential Bayesian estimation problem. Assuming that the 
state of a target we wish to estimate is x .2 Each new sensor 
measurement jz  is combined with the current estimate 

1 1( | , , )jp −x z z� , hereafter called belief state, to form a new 
belief state about the target being tracked 1 1( | , , , )j jp −x z z z� .  
The problem of selecting a sensor j that is likely to provide 
greatest improvement to the estimation at the lowest cost 
becomes an optimization problem. The objective function for 
this optimization problem can be defined as a mixture of both 
information gain and cost: 
 

Where φUtility is the information utility measure, φCost is the cost 
of communication and other resources, and α is the relative 
weighting of the utility and cost. We will refer to sensor l, 
which holds the current belief, as the leader node. This node 
might act as a relay station to the user, in which case the belief 
resides at this node for an extended time interval, and all 
information has to travel to this leader. In another scenario 
(such as in Fig.1), the belief itself travels through the network, 

 
2 We will use a superscript to denote the time stamp of the belief ( )tx . 

This is not to be confused with the use of a subscript to index sensors; for 
example, jx is the location of sensor j. 
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Figure 1. A tracking scenario illustrating how the decision of sensor 
collaboration is accomplished using a measure of information utility as well as
a measure of cost. Here, a vehicle moves through the sensor field from left to
right. A user query is initially routed from node Q to node a which performs an 
initial estimate of the vehicle position. The node a then selects the next sensor 
b which it believes will provide the best measurement for the next estimation
at a reasonable cost, and hands the current estimate to b. … This process of 
sensor-to-sensor hand-off continues as the vehicle moves through the field. 
Periodically, the state estimation is sent back to the user using a shortest path
routing algorithm such as directed diffusion routing. 

( )1 1( ( | , , )) ( ( | , , )) 1 ( )j Utility j Cost jM p pα ϕ α ϕ= ⋅ − −x z z x z z z� �
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and leadership is transferred from node to node through the 
network. Depending on the network architecture and the 
tracking task, either of these cases or a combination thereof 
can be implemented. The detailed mathematical derivation, 
along with algorithms for implementing the information-driven 
sensor querying and data routing, can be found in [Chu et al. 
2002]. In this article we will attempt to provide a more 
comprehensive overview of the approach and situate it in the 
context of the tracking applications. 
 
The first term in the objective function M(⋅) characterizes the 
usefulness of the data provided by the sensor j. For example, 
when the sensor (e.g., a microphone measuring acoustic 
amplitude) provides a range constraint, the usefulness of the 
sensor data can be measured by how close the sensor is to the 
mean of the belief state under the Mahalanobis metric. We will 
return to this in some detail when we describe different criteria 
for sensor selection later. The second term measures the cost 
of obtaining the information, characterized by link bandwidth, 
transmission latency, node battery power reserve, etc. In the 
case of a moving leader node, this is the cost of handing the 
current belief state off to sensor j, acquiring data at sensor j, 
and combining the data with the current belief.  In the case of a 
stationary leader node, this is the cost of requesting data from 
sensor j, acquiring the data and returning it to the leader to be 
incorporated into the belief state. In this case, the 
communication cost may be a function of the distance between 
sensor l and sensor j, as a crude measure of the amount of 
energy required to transmit the data from sensor j to sensor l. 
For example, with Mahalanobis distance as an information 
utility measure and Euclidean distance as an energy cost 
measure, the objective function becomes: 

where  � Tx , Σ̂ , jx , lx  are the mean of the target position, its 
covariance, the position of queried sensor, and the position of 
querying sensor, respectively. 
 
An example of using this objective function to query sensors 
and route data for a localization problem is illustrated in Fig. 
2. The task here is to determine which sensors have the most 
useful information and ship the information back to a fixed 
querying node, denoted by ‘?’ in the figure. It is important to 
note that incremental belief update during the routing 
dynamically changes both the shape and the offset of the 
objective function according to the updated values of �Tx  and 
Σ̂  at every node along the routing path. As the updated values 
of �

Tx  and Σ̂  are passed on to the next node, all routing 
decisions are still made locally. The plotted objective function 
in the figure represents a snapshot of the objective function 
that an active routing node locally evaluates at a given time 
step.  

IV. SENSOR SELECTION 
Given the current belief state, we wish to incrementally update 
the belief by incorporating measurements of other nearby 

sensors. However, among all available sensors in the network, 
not all provide useful information that improves the estimate. 
Furthermore, some information might be useful, but redundant. 
The task is to select an optimal subset and to decide on an 
optimal order of how to incorporate these measurements into 
our belief update. 
 
It has to be emphasized that, due to the distributed nature of 
the sensor network, this selection has to be done without 

explicit knowledge of the measurement residing at each 
individual sensor, in order to avoid communicating less useful 
information. Hence, the decision has to be made solely based 
upon the sensor characteristics such as the sensor position or 
sensing modality, and the predicted contribution of these 
sensors. 
 
Fig. 3 illustrates the basic idea of optimal sensor selection. The 
illustration is based upon the assumption that estimation 
uncertainty can be effectively approximated by a Gaussian 
distribution, illustrated by uncertainty ellipsoids in the state 
space. In the figure, the solid ellipsoid indicates the belief state 
at time t, and the dashed ellipsoids are the incrementally 
updated belief after incorporating an additional measurement 
from a sensor, S1 or S2, at the next time step. Although in both 
cases, S1 and S2, the area of high uncertainty is reduced by the 
same amount, the residual uncertainty in the case of S2 
maintains the longest principal axis of the distribution. If we 
were to decide between the two sensors, we might favor case 
S1 over case S2, based upon the underlying measurement task. 

( ) �( ) �( ) ( ) ( ) ( )1 1ˆT T
T Tj j j j l j lM α α−= − − − − − − −x xx x x Σ x x x x

 

1   

  

T

? 

 
 
Figure 2. Sensor querying and data routing by optimizing an objective 
function of information gain and communication cost, whose iso-
contours are shown as the set of concentric ellipses. This figure 
illustrates how a user query on the location of the target is being routed 
towards the maximum of the objective function  the center of the 
concentric ellipses   along the routing path. The circled dots are the 
sensors being queried for data along the path. ‘T’ represents the target 
position, with its covariance shown as a small red ellipse. ‘?’ denotes 
the position of the query origin. 
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Figure 3. Sensor selection based on information gain of individual sensor 
contributions. The information gain is measured by the reduction in the error 
ellipsoid. In the figure, reduction along the longest axis of the error ellipsoid 
produces a larger improvement in reducing uncertainty. Sensor placement 
geometry and sensing modality can be used to determine the potential 
information gain to be provided by the two sensors S1 and S2. 
 
Although details of the implementation depend on the network 
architecture, the fundamental principles introduced in this 
article hold for both, the selection of a remote sensor by a 
leader node (e.g., a cluster head), as well as the decision of an 
individual sensor to contribute its data and to respond to a 
query traveling through the network. The task is to select the 
sensor that provides the best information among all available 
sensors that have not been incorporated. As has been shown in 
[Chu et al. 2002], this provides a faster reduction in estimation 
uncertainty, and usually incurs a lower communication 
overhead for meeting a given estimation error requirement, 
compared to blind or nearest-neighbor sensor selection 
schemes. 

V. INFORMATION UTILITY 
Information utility measures play a key role in the information-
driven approach to sensor selection. In this section, we first 
introduce an information-theoretic definition of the utility 
measure. We then describe several heuristic approximations to 
the measure that prove to be practically useful. 
 
Our goal is to predict the information utility of a piece of non-
local sensor data before obtaining the data. In practice, the 
prediction must be based on the currently available 
information: the current belief state, the characteristics of the 
sensor of interest which includes information such as the 
sensor position and sensing modality that can be established 
beforehand. 
 
We assume there are N sensors labeled from 1 to N and the 
corresponding measurements of the sensors are 1, , Nz z� . Let 

{ }1, ,U N⊂ �  be the set of sensors whose measurements have 
been incorporated into the belief. That is, the current belief is 

( | { } )i i Up ∈x z . The sensor selection task is to choose a sensor 
whose data has not been incorporated into the belief yet and 
which provides the most information3.  To be precise, let us 

 
3 For a moving target, each sensor can be reused without loss of generality. 

define an information utility function Utilityϕ  that assigns a 
value to each probability distribution. 
       
For the moment, we ignore the cost term in the objective 
function. The best sensor, defined by the earlier objective 
function, is given by  

 ˆ argmax ( ( |{ } { }))j V Utility i i U jj pϕ∈ ∈= x z z∪  
where V  is the set of sensors whose measurements are 
potentially useful.  
 
The following are possible definitions of the information 
utility function. 
 

A. Information-theoretic measure: entropy 
The information utility function ( )ϕ ⋅  evaluates the 
compactness of the belief state distribution. The natural choice 
of ( )ϕ ⋅  is the statistical entropy, which measures the 
randomness of a given random variable. Mathematically, the 
entropy is defined as 

( ) ( )log ( )p
x S

H x p x p x
∈

= −∑  

for a discrete random variable x. The equivalent mathematical 
quantity for a continuous random variable is 

( ) ( )log ( )p
S

H x p x p x dx= −∫  

In both of the entropy definitions, S denotes the support of the 
random variable. Generally speaking, the smaller the entropy 
is, the more certain we are about the value of the random 
variable. Therefore, the information utility measure based on 
the entropy can be defined as 

( ( |{ } { })) ( )i i U j pp H xϕ ∈ −x z z∪ � . 
The entropy-based definition, while mathematically precise, is 
difficult to compute in practice since we need to have the 
measurement before deciding how useful the measurement is. 
A more practical alternative is to estimate the usefulness of a 
measurement based only on characteristics of a sensor such as 
its location or sensing modality. 
 

B. Mahalanobis distance measure 
The idea of using Mahalanobis distance as a measure can be 
illustrated using Fig. 3. In the figure, the solid squares labeled 
S1 and S2 are sensors whose measurements can potentially 
improve the current belief state. Suppose each sensor’s 
measurement provides a range constraint. A new belief state, 
whose uncertainty is shown as dashed ellipse, is computed by 
combining the measurement with the current belief state, using 
Bayes rule. In the sensor configuration shown, S1 would 
provide better information than 2S  because S1 lies close to 
the longer axis of the uncertainty ellipse and S1’s range 
constraint would more perpendicularly intersect this longer 
axis. To favor the sensors along the longer axes of an 
uncertainty ellipsoid, we use Mahalanobis distance, a distance 
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measure normalized by the uncertainty covariance. Therefore, 
when the current belief can be well approximated by a 
Gaussian distribution, the utility function is 

� � �
1ˆˆ( , , ) ( ) ( )T

j j jϕ
−

= − − −x x Σ x x Σ x x  

where jx  is the position of sensor j,  and x̂  is the mean of the 
belief  (target position estimate). 
 
The Mahalanobis distance-based utility measure works well 
when the current belief can be well approximated by a 
Gaussian distribution or the distribution is very elongated, and 
the sensors are range sensors.  However, a bearing sensor 
reduces the uncertainty along the direction perpendicular to the 
target bearing.  For a general uncertainty distribution or 
bearing sensors, we must develop alternative information 
utility measures. 
 

C. Measures on expected posterior distribution 
The idea of using expected posterior distribution is to predict 
what the new belief state (posterior distribution) would look 
like if a simulated measurement of a sensor from the current 
belief state is incorporated. The utility of each sensor can then 
be quantified by the entropy or other measures on the new 
distribution from the simulated measurement.  
 
We use the tracking problem to derive an algorithm for 
evaluating the expected utility of a sensor. In the ideal case 
when a real new measurement is available, the new belief or 
posterior is evaluated using the familiar sequential Bayesian 
filtering: 

( 1) ( 1)

( 1) ( 1) ( 1) ( ) ( ) ( ) ( )

( | )

                ( | ) ( | ) ( | )

t t

t t t t t t t
j

p

C p p p d

+ +

+ + +

=

⋅ ⋅ ⋅∫

x z

z x x x x z x

where ( ) ( )( | )t tp x z  is the current belief given a history of the 

measurement up to time t: ( ) (0) ( ){ , , }t t=z z z� , ( 1) ( )( | )t tp +x x  

specifies the predefined dynamics model, and ( 1) ( 1)( | )t t
jp + +z x  

is the likelihood function from the measurement of sensor j. 
 
How do we compute the expected value of ( 1) ( 1)( | )t tp + +x z  

without having the data ( 1)t
j

+z  in the first place? The idea is to 
guess the shape of likelihood function from the current belief 
and the sensor position.  
 
Without loss of generality, the current belief is represented by 
a discrete set of samples on a grid of the state space.  This non-
parametric representation of the belief state allows to represent 
highly non-Gaussian distribution and nonlinear dynamics. 
Figure 4 shows an example of the grid-based state 
representation. The gray squares represent the likely position 
of the target as specified by the current belief. The brighter the 
square, the more likely the target is there. For a sensor i, given 
the observation model ( 1) ( 1) ( )( , )t t t

i ih+ +=z x w , where ( )t
iw is the 

sensor noise, we can estimate the measurement ( 1)t
i

+z  from the 
predicted belief and compute the expected likelihood function, 
that is,  

( 1)
( 1)

( 1) ( 1) ( 1) ( 1) ( )

( )

ˆ ( | ) ( , ) ( | )
t

t k
k

t t t t t
i ki k

vv S

p L v p
+

+

+ + + +

=∈

 
= ⋅ 

 
∑

xx

z x x x z

where the marginal likelihood is defined as 
( 1)( 1) ( 1) ( 1)ˆ( , ) ( ( ) | )tt t t

ki k i kL v p v++ + +=x z x x�  
and the prediction as 

 
( ) ( )

( )

( 1) ( )

( 1) ( ) ( ) ( )

( )

( | )

( | ) ( | )
t tkt k

k

t t

t t t t
u uu S

p

p p

+

+
= =∈

   ⋅      
∑ x xx

x z

x x x z

�

 

 
Using the estimated likelihood function ( 1) ( 1)ˆ ( | )t t

ip + +z x  from 
sensor i, the expected posterior belief can be obtained as 
follows 

 ( 1) ( 1) ( 1) ( 1) ( 1) ( )ˆ ˆ( | ) ( | ) ( | )t t t t t t
ip C p p+ + + + += ⋅ ⋅x z z x x z  

We can then apply measures such as the entropy to the 
expected belief ( 1) ( 1)ˆ ( | )t tp + +x z , as an approximation to the 

true belief ( 1) ( 1)( | )t tp + +x z . This approach can apply to non-
Gaussian belief since the discrete approximation of the belief 
state assumes a general form. However, to compute the 
expected belief, we have conditioned the expected likelihood 
function on the predicted belief state. We will examine some 
of the consequences of this bias in the discussion section.  
 

j

L1 i

L3 i

L 3 j

L 1 j 
L 2 j 

i
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Fig. 4.  The expected likelihood function for each sensor (i or j)  is a weighted 
sum of the marginal likelihood function conditioned at each grid point in the 
predicted belief distribution. The expected posterior can then be computed 
from this likelihood function. 

VI. EXPERIMENTAL RESULT 
In this section, we present computational results from applying 
the information utility measures introduced in the last section 
to target localization and tracking problems. 
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A. Localizing a stationary target 
We compare the information-driven sensor selection with 
blind nearest neighborhood selection in the context of 
localizing a stationary target. Figure 5 shows two snapshots of 
the tracking algorithm based on the nearest neighborhood 
criterion (NN). Fig. 5(a) shows the posterior distribution after 
combining the data from the sensor at the middle of the linear 
array with the data from its two nearest neighbors. Using the 
NN criterion, the next best sensor is one of their nearest 
neighbors in the linear array. The new posterior distribution 
remains as a bimodal distribution (Fig. 5(b)) till the sensor at 
the upper-left corner of the sensor field is selected. 
 
In Fig. 6, the sensor selection is based on the Mahalanobis 
distance measure. Fig. 6(a) shows the posterior after 
combining the measurements from the same three sensors near 
the middle as in Fig. 5(a). The residual uncertainty, however, 
is elongated and thus the upper-left sensor is selected as the 
next sensor according to the Mahalanobis distance. The new 
measurement from that sensor effectively reduces the current 
uncertainty to a more compact region (Fig. 6(b); also compare 
Fig. 6(b) with Fig. 5(b)). 
 

   
(a)              (b) 

Fig. 5.  Sensor selection based on the nearest neighbor method. The 
estimation task here is to localize a stationary target labeled ‘∗ ’. Squares 
denote sensors.   (a) Select the nearest sensor ; (b) Incorporate the new 
measurement from the selected sensor. 
 

 
(a)              (b) 

Fig. 6.  Sensor selection based on the Mahalanobis distance measure of 
information utility. The localization problem is the same as that in Fig. 5. 
 

B. Tracking a moving target with non-Gaussian 
distribution 

We now illustrate how the information utility measures can be 
applied to a tracking problem. In our study, we assume a 
leader node (the square-enclosed dot in Fig. 7) carries the 
current belief state. The leader chooses a sensor with good 

information in its neighborhood according to the information 
measure, and then hands off the current belief to the chosen 
sensor (the new leader). 
 
As discussed earlier, the information-based approach to sensor 
querying and data routing selectively invokes sensors to 
minimize the number of sensing actions needed for a given 
accuracy and hence, latency and energy usage. It can optimize 
the use of multi-sensing-modality information (e.g., range and 
bearing sensing) to improve tracking accuracy. It can also 
handle non-constant target dynamics and is more general than 
the CPA-based method. 
                       

 
                        (a)                                                                (b) 
Fig. 7.  Tracking a moving target using an information-driven approach. A 
target is moving from the bottom of the field to the top. As the target moves 
through the field of sensors denoted by the dots, a subset of sensors are 
activated to carry the belief state. Each new sensor is selected according to an 
information utility measure on the expected posterior distribution of the new 
state. (a) Current belief distribution at time t. (b) New posterior distribution at 
time t+1, after incorporating a measurement from the selected sensor. 
 
Fig. 8 shows the performance of various trackers based on four 
different sensor selection criteria: nearest neighborhood (a)-
(b), minimizing Mahalanobis distance (c)-(d), minimizing 
entropy (e)-(f), and minimizing relative entropy (or 
maximizing Kullback-Liebler-distance (KL-distance) 
[Thomas&Cover 1991] between predicted belief and expected 
belief) (g)-(h). For each criterion, we also examine the effect 
of a simple heuristic that prevents each node from being 
selected more than N times. Since the target position 
estimation provided by a single range sensor is under-
constrained, it is desirable that the same sensor not be selected 
over and over again in order to maintain a certain amount of 
spatial diversity. In practice, the repeated use of information 
from a single sensor may also lead to over confidence in the 
final estimation due to correlations between consecutive 
measurements from the same sensor. 
 
The figures in the left column of Fig. 8 are the results without 
using the heuristic, and the ones in the right column with the 
heuristic. These empirical results indicate that two of the 
entropy-based utilities without the heuristic outperform the 
others by the huge margin of errors errors and confirm that the 
expected utility measure is a reasonable choice as information 
utility. On the other hand, it is observed that the Mahalanobis 
distance and the Nearest Neighborhood select the same set of 
sensors repeatedly and forces the target position estimation to 
be biased as a result. The heuristic, in this case, helps by 
preventing the same set of sensors from being selected 
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repeatedly while it actually hurts in the case of the entropy-
based measure. The larger error for the low sensor density in 
the Mahalanobis and the Nearest Neighborhood utility is 
because there are not enough sensors to work when the 
heuristic is used. 
 
Figure 9 shows a snapshot of a simulation run using the 
relative entropy as the utility measure.  
 
Table 1 summarizes the statistics from the simulation results 
shown in Fig. 8. A track is defined as lost when the final 
estimated position of the target is more than 15 meters away 
from the actual position. Fig. 10 graphs the estimated tracks 
for each choice of the information utilities, ordered in the same 
way as in Table 1, for sample runs with sensor density 60. 
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Fig. 8.   Experimental results showing how the tracking error, defined as the mean 
error of estimated target positions, varies with the sensor density, defined as the 
number of sensors in the sensor field.  The sensors are selected according to four 
different criteria, with or without using the max activation heuristic: (a) Nearest 
neighborhood. (b) Nearest neighborhood with the heuristic. (c) Mahalanobis 
distance. (d) Mahalanobis distance with the heuristic. (e) Entropy. (f) Entropy with 
the heuristic. (g) Relative entropy (KL-distance). (h) Relative entropy with the 
heuristic. 

 
Communication 
Range = 30 

 
Figure 9.  Snapshot of a typical simulation using the relative entropy measure 
to select sensors. The yellow dots are sensor nodes and the gray grids are 
current estimates on the target position. The pink-square-enclosed node is the 
current leader, and the green-square-enclosed nodes are its current neighbors. 
In this example, sensor density is 100, and the node communication range is 
set to30. 
 
 # Lost tracks/ 

total runs 
Mean error 

(a) Nearest neighbor 75/80 34.39 
(b) Nearest neighbor with heuristic 37/80 44.79 
(c) Mahalanobis distance 70/80 24.86 
(d) Mahalanobis distance with 
heuristic 32/80 44.20 
(e) Entropy 0/80 5.13 
(f) Entropy with heuristic 0/80 5.05 
(g) Relative entropy 0/80 8.09 
(h) Relative entropy with heuristic 2/80 10.79 
 
Table 1.  Statistics on tracker performance for different choices of the utility 
functions 
 
 
 

(a)        (b)       (c)        (d)       (e)        (f)        (g)        (h) 
 

Figure 10. Tracking results for different choices of the utility functions. The 
red lines are the actual tracks, and the blue-gray curves are estimated tracks. 
 



 8

VII. DISCUSSIONS 

A. Representation of belief state 
In our tracking example, the belief state is being passed from 
one leader to another. To efficiently implement the IDSQ 
tracking algorithm, it is important to design a compact 
representation of beliefs so as to minimize the communication 
requirement. 
 
While the parametric representation is the most compact form, 
it is limited to specific classes of distributions that can be 
modeled this way. At the other extreme, one can approximate 
an arbitrary distribution with a set of discrete samples. This 
forms the basis of many successful Monte Carlo based 
algorithms such as sequential Monte Carlo or Markov Chain 
Monte Carlo methods [Doucet et al. 2000]. One drawback of 
the non-parametric approaches is the large numbers of samples 
that are needed to represent the state space, and addressing this 
problem is a very active topic of current research. Somewhere 
between the parametric and particle sample based approaches 
lies the grid-based representation of beliefs. In this 
representation, each grid approximates the value of the belief 
at the grid location. When the state space is sparse, meaning 
many parts of the space have negligible probability masses, the 
grid can be efficiently encoded in a sparse representation to 
minimize storage requirement. Fig. 11 provides a pictorial 
description of the three representations. 
 

Particles Grid  Gaussian 
(Parametric) 

 
Figure 11. Representation of belief: parametric (e.g., Gaussian), non-
parametric (e.g., grid samples, particle samples).  

B. Sequential vs. concurrent information exchange 
In our discussion thus far, we have primarily focused on the 
case where a leader node selects the next leader to hand off the 
belief state information. While the idea is simple, this single 
node-to-node handoff may suffer information loss when the 
current leader/link incurs a failure. A more robust scheme uses 
a zone-to-zone hand-off where a group of sensors (in a zone) 
elect a leader and collectively maintain the belief state. The 
leader performs the normal node-to-node handoff to the next 
chosen leader of a cluster of sensors. But when the leader node 
fails, another sensor in the same cluster will step in as an 
acting leader, and the handoff continues. Pushing this idea to 
the extreme, every sensor may exchange information with 
another sensor in parallel, perhaps at the cost of consuming 
greater overall communication bandwidth. There are several 
possible types of information to exchange. Each sensor can 
send its own belief to a chosen next sensor, it can send its 
measurement to a neighbor sensor to whom the data is likely to 
be useful, or it can request other’s belief or measurement. 
 

The selection of which style of information exchange to deploy 
for a sensor net depends on how the information will be 
extracted and used (e.g. query types) and the level of desired 
robustness to failure and tolerance for latency. 
  

C. Query types 
In our straw-man tracking scenario (Fig. 1), we assumed that a 
user initiates a query about the location of a vehicle as a 
function of time. In other use cases, one might expect the 
network to possess some low-level awareness of the targets. 
When an event was detected and classified, the network can 
initiate a tracking task. As the network begins to activate 
sensors in a local region to maintain active belief states, the 
information about the current active regions and their event 
logs can help to guide user queries, which may enter the 
network at any point of the network, into the region of high 
information relevance. 
 
Beyond the single target tracking scenario, one might be 
interested in tracking a group of targets or relations among the 
targets [Guibas 2002]. In these cases, a user initiated high-
level query may, upon entering the network, break into several 
sub-queries, some of which are routed into regions where 
individual targets are present, and some of which coordinate 
the routing or interpretation of the first group of sub-queries. 
Complexities arise as targets merge, split, or cross-over. Sub-
queries may have to reconcile with each other periodically to 
maintain consistency. 
 
The taxonomy of query types, the nature of physical 
phenomenon being observed, and their corresponding in-
network processing styles are future topics of investigation. 
 

D. Bias in sensor selection 
The information utility measures we have introduced are 
approximate in nature. Mahalanobis distance is a heuristic for 
measuring the utility of range sensing data. In the presence of 
the finite-precision representation of probability distribution 
and possibly nonlinear utility functions, the sensor selection 
based on the expected posterior computed from predicted 
likelihood function may be strongly biased by the prior 
distribution. As the experimental results have shown, some of 
the cases where the track is lost are actually due to this bias. A 
poorly approximated prior may produce incorrect utility 
values, leading to the selection of less useful sensors 
eventually causing the tracking error to explode. 
 
Similar to the sequential Monte Carlo method (also known as 
particle filters) [Doucet et al. 2000], one way to reduce the 
effect of the poorly approximated priors on sensor selection is 
to design proposal distributions that draw on multiple 
information sources. 

E. Tracking robustness 
The quality of tracking is a complex function of several 
parameters: sensor placement density, sensing range, 
communication range, spatial extent of the physical 
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phenomenon being observed, target dynamics, S/N ratio. This 
paper has skimmed over the important issue of quantifying 
track quality. Another critical issue for robustness is 
handshake during information handoff from node to node. We 
expect future research will seek to understand the effect of 
these parameters on the behaviors of trackers and design 
robust communication protocols.  
 

F. Related work 
The idea of using information utility to manage sensing 
resources has been investigated in computer vision and 
robotics, e.g. active vision or active testing [Geman96]. Most 
of the approaches assume the selection is done centrally. 
[Manyika & Drrant-Whyte 1994] introduces expected utility 
measures for decentralized sensing systems based on local 
decision at each node; but the communication cost is not 
explicitly considered during the optimization. Likewise,  
[Byers 2000] uses a simple step or sigmoid function to 
describe utilities of each node, without explicit modeling of 
network spatial configuration. IDSQ generalizes these 
approaches to consider both network spatial configuration and 
communication cost in sensor selection. 
 
The issues of data storage, retrieval, and naming in sensor 
networks have been studied by the wireless networking, 
decentralized database, and distributed tracking communities. 
Directed data diffusion (e.g., [Intanagonwiwat et al. 2000]) 
uses a publish-subscribe mechanism to name data and pair data 
sources with data sinks, exploiting the network topologies.  
[Brooks et al. 2002] also uses data to guide sensor 
communication; in this case, prediction from tracking history 
is used to invoke sensors for future processing.  IDSQ builds 
on directed diffusion and allows local nodes to make routing 
decisions based on information gain and resource cost. 

VIII. CONCLUSION 
We have formulated the problem of distributed tracking using 
wirelessly connected sensors as an information optimization 
problem and introduced several practically feasible measures 
of information utility. The information-driven approach to 
sensor querying and data routing balances the information gain 
provided by each sensor with the cost associated with 
acquiring the information. This way, the sensor network can 
seek to make an informed decision about sensing and 
communication in an energy constrained environment. 
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