
D. Dumitriu, S. Funke, M. Kutz, N. Milosavljevic. How Much Geometry It Takes to Reconstruct a 2Manifold in R^3. Proceedings of the 9th Workshop on Algorithm Engineering and Experiments (ALENEX), 2008.
Abstract:
Known algorithms for reconstructing a 2manifold from a point sample in R^3 are naturally based on decisions/predicates that take the geometry of the point sample into account. Facing the always present problem of roundoff errors that easily compromise the exactness of those predicate decisions, an exact and robust implementation of these algorithms is far from being trivial and typically requires the employment of advanced datatypes for exact arithmetic as provided by libraries like CORE, LEDA or GMP. In this
paper we present a new reconstruction algorithm, one of whose main novelties is to throw away geometry information early on in the reconstruction process and to mainly operate combinatorially on a graph structure. As such it is less susceptible to robustness problems due to roundoff errors and also benefits from not requiring expensive exact
arithmetic by faster running times. A more theoretical view on our algorithm including correctness proofs under suitable sampling conditions can be found in a companion paper.
Bibtex:
@inproceedings{dfkmhmgitr2r08,
author="Daniel Dumitriu and Stefan Funke and Martin Kutz and Nikola Milosavljevi\'c",
title="How Much Geometry It Takes to Reconstruct a 2Manifold in R^3",
booktitle="Proc. of the 9th Workshop on Algorithm Engineering and Experiments (ALENEX)"
month="January",
year="2008"
}

